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by michael de vliegerby michael de vliegerCIn architecture school, the student receives a healthy 
dose of “visual training,” an instruction that helps the 

future architect rely on graphic methods to analyze the world 
around him or her, to review his or her own ideas. Th e architect 
is trained to use visual methods, avoiding lengthy calculations when 
draft ing. (Th is was especially so before the computer changed how drawings are pro-
duced). In this spirit I present a method of visualizing the relationship of integers with 
their divisors. Th e resultant diagrams are perhaps emblematic of an integer’s versatility, 
especially when the integers are small.

Th e cyclic resonance diagrams (crd) work much like a common clock, starting our 
work from the top of the circle. If we are evaluating the integer r, then we will need to 
divide the circle into r equal parts. If r equals a dozen, then the circle will be divided 
just like the clock on the wall. Th e only exception is that we’d start with zero rather 
than “twelve” at the top. We aren’t “confined” to using twelve: we can use any integer 
and build cyclic resonance diagrams that illustrate that number’s integer properties. An 
example of this can be found below.

Decimal Cycles

A
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1:a a:a

ÄÅ
2:a 5:a

All numbers in this Figure are 
dozenal. Th e fi rst number in 
the ratio represents a divisor p, 
while the latt er number repre-
sents the base r.

Hexadecimal Cycles
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1:g g:g

ÎÐ
2:g 8:g

Ï
4:g

Dozenal Cycles

C
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1:c c:c

ÆÉ
2:c 6:c
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3:c 4:c
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Fig. 0: Th e Circumcircle.

Fig. 1: Available Avenues.

Fig. 2: Stepping by 1’s.

Fig. 3: Stepping by 2’s.

Construction.
Th e construction of the cyclic diagram begins with a 

circle. Th is circle will serve as the “circumcircle” within 
which all the polygons that make up the diagram will be 
inscribed. Figure 0 shows the circumcircle with r points 
placed at equal distances. In this example, r equals twelve, 
so each of the dozen points lie thirty degrees apart from 
one another. Let’s consider the topmost point the “zero 
point”, just as on a common clock face.

There is a natural symmetry to the diagrams, as each 
component polygon uses the zero point as a common 
vertex. Thus, only half of the circumcircle and points 
need to be studied. The cycles established on the right 
side are simply reflected on the left side of the diagram.
This twofold symmetry applies to odd integers as well as 
even. We’ll return to symmetry a bit later.

With the symmetry in mind, consider those points that 
lie on a vertical axis through and to the right of the center 
of the circumcircle. Each point on the circle under consid-
eration lies at a unique angle to the zero point. Th e path to 
each point represents a possible avenue for the generation 
of a regular, non-reentrant cyclic polygon (see Fig. 1). Th e 
bounding lines of such a polygon must not cross.
Intervals s and Polygons p.

We’ll now successively join the points on the circum-
circle to att empt to produce regular cyclic polygons. Th is 
activity is closely related both to modular mathematics 
and the integer properties of r. We are interested in regu-
lar cyclic polygons because these illustrate relationships 
between the integer r, and all integers s < r. Th e joining 
process represents successive addition mod r. Th e step s is 
the interval we use to join points. A polygon drawn using 
s will only be non-reentrant and close in one cycle (within 
one full revolution from the zero point) if s is a divisor of 
r. When s is a divisor of r, joining points separated at an 
interval of s will produce a regular non-reentrant cyclic 
polygon with p sides. Th us the number of sides p is the 
reciprocal divisor of s with respect to r: s × p = r.

Figure 2 illustrates the relationship between s = 1 and 
p = r. Beginning with the point closest to the zero point, 
we can draw a line between each point and generate a 
regular cyclic polygon with r sides. Th e joining of points 
using an interval s = 1 is equivalent to successively add-
ing 1 mod r. The polygon p is complete after r iterations; 
in the case of s = 1, p is equal to r, illustrating that   1 × r 

Fig. 4: Stepping by 3’s.

Fig. 5: Stepping by 4’s.

Fig. 6: Stepping by 5’s.

Fig. 7: Stepping by 6 = r/2.

= r. Thus the number 1 is a divisor of r. The reciprocal 
divisor of r is r itself. This is the “unity-identity” pair of 
divisors {1, r}. Every integer possesses the unity-identity 
set of divisors. Also, 1 is a totative, “relatively prime” to 
r, meaning that the number 1 produces a regular cyclic 
polygon only after the number of iterations i = r. Thus, 1 
is both a divisor and a totative of r.

Figure 3 illustrates the case s = 2. A hexagon (number 
of sides p = 6) results from drawing points 2 intervals 
apart. Solving the equation s × p = r: 2 × 6 = 10;. Th us 
2 and 6 are reciprocal divisors of one dozen, forming a 
divisor pair {2, 6}. Th is polygon p was produced when 
the number of iterations i = p; i and p are equal when s is 
a divisor of r.

Figure 4 shows the production of a square when s = 3. 
Th e square is a regular cyclic polygon with a number of 
sides p = 4. Th ree and four are reciprocal divisors of one 
dozen, forming a third divisor pair {3, 4}.

Figure 5 illustrates that a triangle (p = 3) is produced 
when the interval s = 4. Th is restates and reinforces the 
third divisor pair {3, 4}. Again, i and p are equal for s = 3 
or 4, because those integers are divisors of r = twelve.

When s = 5, as shown by Figure 6, a non-reentrant 
cyclic polygon is not produced. Th e fi rst step from the 
zero point joins 0 and 5. Th e second step joins 5 and a. 
Th e sum of 5 and a is greater than r, making a polygon 
which closes within one cycle impossible. Th us 5 is not 
a divisor of one dozen. Th ere is no integer p that, when 
multiplied by s = 5, will produce r = one dozen. We can 
produce a regular closed “star” polygon using the inter-
val s = 5 when the number of iterations i = r. Five is a 
totative of one dozen (i.e. fi ve is coprime to twelve).

Figure 7 illustrates a “line” results when s = 6. This is 
a special case peculiar to the diagrams. Technically, the 
“line” is a “polygon” with 2 sides called a “digon”. It is 
formed by joining the zero point to the point at 6, then 
returning to zero. Despite its appearance, it confirms 
what Figure 3 introduces: there is a pair of divisors {2, 
6} for r = one dozen.
The Completed Diagram

Since we’ve arrived at s = r/2, we’ve exhausted all pos-
sible avenues and can produce a cyclic diagram by over-
laying all the results which produced regular convex cy-
clic polygons (see Figure 8). The left side of the diagram 
can be regarded as reflections of the right side.
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Fig. 8: Cycles.

Fig. 9: Cycles, shaded.

Fig. a: Th e Cyclic
Resonance Diagram.

Fig. b: Digit classes of the dozen.

Symmetry and Resonance
The points on the circumcircle are joined by the 

twelve-sided polygon. This twelve-sided polygon or, 
speaking generally, the r-gon represents the trivial or 
“unity-identity” divisor pair {1, r} common to all inte-
gers. The symmetry of the diagram, within this r-gon, 
conveys the symmetry of the properties of integers. 

Totatives exhibit an additive symmetry: they are 
paired such that when the elements of a paired set of 
totatives are summed, they equal r. Thus for every tota-
tive pair {t1, t2}, t1 + t2 = r. Every integer possesses the {1, 
r-1} totative pair, along with additional pairs for every 
number greater than 6. Twelve has two pairs of totatives: 
{1, b} and {5, 7}. The diagram for twelve situates the to-
tatives horizontally across from one another. These are 
marked in red in Figure b. (The number 1 appears as a 
numeral because it is both a divisor and a totative of r.) 
So in the case of the position horizontally across from 5, 
we can employ the property of symmetry to surmise that 
s = 7 will project the path generated by s = 5, as shown 
by Figure 6, in reverse. The same is true for the position 
horizontally across from 1, despite the special nature of 
1. The path generated by s = b is simply that of s = 1, 
shown by Figure 2, in reverse.

The totatives, integers less than r which are relatively 
prime to r, are vertices only of the r-gon. In this example, 
the set of totatives are {1, 5, 7, b}. 

Examination of the completed diagram shows the re-
lationships among the divisors of r. Figures 10; and 13; 
illustrate the reciprocal divisor pair {2, 6}, while Figures 
11; and 12; illustrate {3, 4}. The non-trivial divisors of r 
outside of the set {1, r}, thus the elements of the set {2, 
3, 4, 6} each occupy vertices of more than one polygon. 
If we look at the point at “3 o’clock” (equivalent to 3), 
we can see that it is a vertex of the twelve-sided polygon.  
Additionally, 3 is a vertex of a square, a 4-sided polygon. 

The divisors of an integer exhibit multiplicative sym-
metry, which is demonstrated in the relationship between 
the interval s and the resultant polygon p. This relation-
ship is reversable: consider how the interval s = 4 produc-
es a polygon with p = 3 sides as seen in Figure d, and how 
the interval s = 3 produces a polygon with p = 4 sides in 
Figure e. The number 1 is special, again, because it is both 
a divisor of r and also relatively prime, thus a totative of r. 
Figure b indicates divisors by the letter “D”.

 The last class of digits, integers less than r, are those 
that are neither divisors nor totatives of r. They occupy 
positions that remain when divisors and totatives are 
eliminated. Note that twelve is not exemplary, having 

Fig. c: Th e 2–6 Relationship.

Fig. d: Th e 3–4 Relationship.

Fig. e: Th e 4–3 Relationship.

Fig. f: Th e 6–2 Relationship.

all the nontotative-nondivisors on the right side of the 
diagram. Some numbers, like ten, have a nontotative-
nondivisors on the right. Four is not a divisor of ten, nor 
is it relatively prime to ten. It is the product of two divi-
sors (both instances of the divisor 2). 

 Integers less than r which are neither totatives nor 
divisors, in this example {8, 9, a}, form vertices of mul-
tiple polygons like the divisors, but themselves do not 
“generate” the polygons. In the case of 8, this vertex is 
joined to the triangle generated by an interval s = 4; 8 
simply is the next point on the triangle after 4. Likewise, 
a is the final point on a hexagon generated by an interval 
s = 2. (There are nuances of relationships within the set 
of “nontotative nondivisors” that are illustrated in these 
figures which we will describe in a later article.)
Graphic Treatment.

The diagrams presented here employ a graphic tech-
nique called “exclusion”. This technique reverses the 
color of that portion of an object that lies “on top” of 
any portion of another object. This technique tends to 
produce the clearest diagrams, though certainly there 
are other ways to produce these diagrams. Th e eff ect of 
exclusion ultimately amounts to alternating the color 
of the “slices” defined by the intersection of the sides 
of various polygons (see Figure 9). Figure a shows the 
simplest manifestation of the diagram. Though the dia-
grams can be used to analyze the integer properties of 
a given integer when accompanied by the numbering of 
each point, the diagrams function well without annota-
tion when compared side by side.

Because these diagrams are succinct, it becomes pos-
sible to compare integers visually. The diagram “Dozenal 
Cycles” on page 2·1·0 presents the integer twelve along 
with all the resonances associated with each divisor be-
low it. Compare this to the “Decimal Cycles” and “Hexa-
decimal Cycles” on the same page. It’s evident that ten 
features fewer divisor relationships than the dozen. Ten 
has four divisors {1, 2, 5, b}, and four totatives {1, 3, 7, 
9}, while the dozen has six divisors and four totatives. 
Hexadecimal cycles are often cited as an appealing alter-
native to decimal or dozenal numeration. Visually com-
paring the diagram for twelve and that of sixteen makes 
evident the denser resonances of the dozen. Sixteen has 
5 divisors {1, 2, 4, 8, g} and eight totatives (every odd 
number lesser than r = sixteen!) It seems clear, looking at 
the diagrams, that a greater number of relationships, ver-
satility, and proportionally fewer obstacles (as conveyed 
by totatives) await us if we were to use the dozen.
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Cyclic Resonance Diagrams

123456
1 2 3 4 5 6
1 1     2 1     3 1     2

4
1     5 1     6

2     3

DEFGHI
d e f g h i

1    d 1     e
2     7

1     f
3     5

1      g
2      8

4

 1      h 1     i
2     9
3     6

PQRSTU
p q r s t u

1    p
5

1     q
2     d

1     r
3     9

1      s
2      e
4      7

1     t 1      u
2      f
3      a
5      6

bcdefg
B C D E F G

1     B  1     C
 2     j

 1     D
 3     d

1     E
2     k
4     a
5     8

1     F 1     G
2     l
3     e
6     7

nopqrs
N O P Q R S

1     N
7

1     O
2     p
5     a

 1     P
 3     h

1     Q
2     q
4     d

1     R 1     S
2     r
3     i
6     9

Th e integer r corresponding to the diagram appears below the diagram. Th e divisors of r ap-
pear below the integer, with reciprocal divisors paired in the same row. 

 

789ABC
7 8 9 a b 10

1    7 1     8
2     4

1     9
3

1     a
2     5

1     b 1     c
2     6
3     4

JKLMNO
j k l m n o

1     j 1     k
2     a
4     5

1     l
3     7

1      m
2      b

1     n 1     o
2     c
3     8
4     6

VWXYZa
v w x y z A

1     v 1     w
2     g
4     8

1     x
3     b

1     y
2     h

1     z
5     7

1     A
2     i
3     c
4     9

6

hijklm
H I J K L M

1     H 1     I
2     m
4     b

1     J
3     f
5     9

1     K
2     n

1     L 1     M
2     o
3     g
4     c
6     8

tuvwxy
T U V W X Y

1     T
5     b

1     U
2     s
4     e
7     8

1     V
3     j

1     W
2     t  

1     X 1     Y
2     u
3     k
4     f
5     c
6     a

All fi gures are argam. Chart produced in 2009 
by Mike De Vlieger. Creative Commons Att ribution License.
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Cyclic Resonance Diagrams of Larger Composite Integers

10 (60.) 14 (64.) 1c (72.)

1l (81.) 1u (90.) 1A (96.)

1E (100.) 20 (120.) 25 (125.)

28 (128.) 2o (144.) 60 (360.)
Larger integers can have especially complex diagrams. Th e simpler divisors of these num-
bers are perhaps more evident and discernable than the larger divisors. Integers are given in 
sexagesimal argam, with decimal in parentheses. Chart by Michael De Vlieger.

The Wider View.
The spread on pages 2·1·5−6 further illustrates the first five dozen integers. Observe 

the prime numbers; these appear as black polygons, since these are divisible only by 
themselves and 1. (Two appears as a half black, half white circle in order to accentuate its 
status as a “digon”.) Highly composite numbers are rather easily picked out. This chart 
was arranged so that a dozen integers appear on each row. This arranges the chart in a 
way that confines the primes to the dozenal totatives {1, 5, 7, b}, which correspond to 
{cn±1, cn±5}. Even numbers appear as diagrams that appear split in half. Integers divis-
ible by three feature a rather prominent triangle. Those divisible by four feature a promi-
nent square. Even though five is not a factor of twelve, the multiples of five communicate 
their composition, proudly displaying a pentagon. Multiples of six feature a hexagon. 
Integer properties displayed for divisors of larger integers are inherited by the larger in-
tegers. Primes increasingly resemble black circles, their bounding segments becoming 
indistinguishable from circles beyond around one dozen five or seven.
Diagrams of Large Integers.

As the integers get larger, the larger divisors of these integers become more difficult to 
discern. A thirty-sided polygon that is nested within a sixty-sided polygon is a challenge 
for most folks. Still, the intricacy of such figures points to the greater versatility of the 
integer five dozen over other integers such as four dozen eleven or other neighbors.

The diagrams on page 2·1·7 illustrate some highly composite numbers and powers of 
simple primes larger than five dozen. These demonstrate intricacy around their edges 
that make the diagrams less useful analytically, but still indicative of the lower divisors 
of the number in question.
Some Conclusions.

The author invites the reader to ponder the diagrams. These diagrams are rather uni-
versal since they are produced by geometry. The properties of the integer r are demon-
strated automatically through these geometric diagrams. Outside the convention of rep-
resenting the “digon” or two-sided “polygon” as a half-circle and the general application 
of the graphic tool of “exclusion”, nothing is done to “process” the geometry.

It may be possible to consider these resonance diagrams as logograms, especially of 
the smaller integers, because the diagrams convey so many intrinsic integer properties at 
a glance. The great thing about them is that one needs not know how to read a numeral 
to see the relationships between an integer and its divisors and totatives. Although it 
may be difficult for a human user to employ them as digits, they could certainly serve as 
universal digits of an “infinite base”.

Comparing highly composite numbers like five dozen with powers of two like five 
dozen four, we can see the various avenues of versatility emanating from the zero points. 
It’s apparent that sixty features pathways in directions sixty four doesn’t cover. We can 
also observe the apparent diminishing returns that are contributed by increasing the  
power of various primes in the prime composition of related integers, as seen in the dia-
grams of 50; (22 × 3 × 5) and 260; (23 × 32 × 5). 

The cyclic resonance diagrams perhaps represent a tool by which we might analyze the 
properties of integers, especially the small integers. They also offer a visual means of exam-
ining and comparing the properties of a range of integers. Finally, they stand as a beautiful 
representation of the natural symmetry and resonances embodied in each integer.
Th is document may be freely shared under the terms of the Creative Commons Att ribution Li-
cense, Version 3.0 or greater. See htt p://creativecommons.org/licenses/by/3.0/legalcode regard-
ing the Creative Commons Att ribution License.
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