
Octal (Base 8)

1 2 3 4 5 6 7 10

2 4 6 10 12 14 16 20

3 6 11 14 17 22 25 30

4 10 14 20 24 30 34 40

5 12 17 24 31 36 43 50

6 14 22 30 36 44 52 60

7 16 25 34 43 52 61 70

10 20 30 40 50 60 70 100

Decimal (Base 10)

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

Dozenal (Base 12)

Numeral Set: 
decimal equivalent

0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 a b

dozenal digits

1 2 3 4 5 6 7 8 9 a b 10

2 4 6 8 a 10 12 14 16 18 1a 20

3 6 9 10 13 16 19 20 23 26 29 30

4 8 10 14 18 20 24 28 30 34 38 40

5 a 13 18 21 26 2b 34 39 42 47 50

6 10 16 20 26 30 36 40 46 50 56 60

7 12 19 24 2b 36 41 48 53 5a 65 70

8 14 20 28 34 40 48 54 60 68 74 80

9 16 23 30 39 46 53 60 69 76 83 90

a 18 26 34 42 50 5a 68 76 84 92 a0

b 1a 29 38 47 56 65 74 83 92 a1 b0

10 20 30 40 50 60 70 80 90 a0 b0 100

Note that there are no standard dozenal numerals. The numerals presented 
here are the set of Dwiggins duodecimal numerals, used by the dsa between 
1945 and 1974, then restored in 2008. Other numerals are proposed by other 
organizations and individuals.

Octal (Base 8)

1 2 3 4 5 6 7 10

2 4 6 10 12 14 16 20
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4 10 14 20 24 30 34 40
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Decimal (Base 10)

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

Dozenal (Base 12)

Numeral Set: 
decimal equivalent

0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 a b

dozenal digits

1 2 3 4 5 6 7 8 9 a b 10

2 4 6 8 a 10 12 14 16 18 1a 20

3 6 9 10 13 16 19 20 23 26 29 30

4 8 10 14 18 20 24 28 30 34 38 40

5 a 13 18 21 26 2b 34 39 42 47 50

6 10 16 20 26 30 36 40 46 50 56 60

7 12 19 24 2b 36 41 48 53 5a 65 70

8 14 20 28 34 40 48 54 60 68 74 80

9 16 23 30 39 46 53 60 69 76 83 90

a 18 26 34 42 50 5a 68 76 84 92 a0

b 1a 29 38 47 56 65 74 83 92 a1 b0

10 20 30 40 50 60 70 80 90 a0 b0 100
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In the charts on the left, trends in the end 
digits of the multiplication facts for each 
digit are illustrated. Each triangular trend 
shape (a “phase”) begins at the point 
where the end digit equals zero, then ex-
pands to the full width of the column as the 
end digits of each fact increase. In the octal 
example for the products of 2, the phase 
begins at zero and grows in thickness as 
we proceed from 2 to 4 to 6, until, at “10”, 
the phase is widest. At the 4th product, 2 
× 4 = 10eight. This and any other instance 
of a multiple of the base are circled. The 
trends for end digits of products for digits 

n smaller than r/2 are increas-
ing. The end digits increment 
by the digit, until they equal r. 
When they reach r, they com-
plete a period whose length is 
r/n. The trend for the end digits 
of products for digits n > r/2 is 
decreasing. The end digits ap-
pear to begin at larger values 
and decrease as the multiplier 
increases. Trends associated 
with divisors are colored red 
with a thick solid edge. Those of 
semidivisors are colored orange, 
with a ragged edge. Trends for 
semitotatives are yellow with 

a ragged edge. Those 
of  digits coprime to 
the base are gray. 
Coprime digits which 
are divisors of (r – 1) 
are colored light blue. 
For even bases, the 
products of the divi-
sor r/2 have a phase 
shape that looks dif-
ferent from the trian-
gular phases greater 
than or lesser than 
r/2 (see 5 in decimal, 
6 in dozenal, etc.). 
This is because, in 
the multiplication 
table, the end digits of 
products of r/2 seem 
to alternate between 
0 and r/2.
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Hexadecimal (Base 16)
Numeral Set: 

decimal equivalent
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 a b c d e f

hexadecimal digits

1 2 3 4 5 6 7 8 9 a b c d e f 10

2 4 6 8 a c e 10 12 14 16 18 1a 1c 1e 20

3 6 9 c f 12 15 18 1b 1e 21 24 27 2a 2d 30

4 8 c 10 14 18 1c 20 24 28 2c 30 34 38 3c 40

5 a f 14 19 1e 23 28 2d 32 37 3c 41 46 4b 50

6 c 12 18 1e 24 2a 30 36 3c 42 48 4e 54 5a 60

7 e 15 1c 23 2a 31 38 3f 46 4d 54 5b 62 69 70

8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80

9 12 1b 24 2d 36 3f 48 51 5a 63 6c 75 7e 87 90

a 14 1e 28 32 3c 46 50 5a 64 6e 78 82 8c 96 a0

b 16 21 2c 37 42 4d 58 63 6e 79 84 8f 9a a5 b0

c 18 24 30 3c 48 54 60 6c 78 84 90 9c a8 b4 c0

d 1a 27 34 41 4e 5b 68 75 82 8f 9c a9 b6 c3 d0

e 1c 2a 38 46 54 62 70 7e 8c 9a a8 b6 c4 d2 e0

f 1e 2d 3c 4b 5a 69 78 87 96 a5 b4 c3 d2 e1 f0

10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0 100

This hexadecimal multiplication table uses standard alphanumeric digits.
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This hexadecimal multiplication table uses standard alphanumeric digits.
These analyses of the patterns in the octal, decimal, dozenal, and hexa-

decimal multiplication tables explore the impact of the prime compo-
sition of the number base on the ease with which one might memo-
rize the multiplication tables of that base.

Each positive integer r considered as a number base possesses r 
digits, zero through (r – 1). Any one of these digits we can consider 
n. The base r has a modular-math relationship to each of its digits; thus 
we can interpret the digit “0” as congruent to r. Hence, the digit “0” in 
decimal is congruent with the integer a, while in hexadecimal, it is congruent with 
14;. There are seven types of relationships r can have with each of its digits. (Here 
we are only considering positive, integral bases between 8 and 14;)

Oftentimes we read that divisors, those digits D which divide r such that the 
resulting quotient is also an integral divisor D′, are key tools in the usefulness of 
the base r. Indeed, divisors in the above charts have periods of integral length, 
that is, they return to a multiple of r after a period of D′ products in the multipli-
cation table. This is part of what makes the multiplication tables of some bases 
easier to memorize than others.

There is also a sort of “resistance” which often gets ignored, but after r = 
26; it dominates. This “resistance” is the set of “totative” digits T which are 
coprime to r, meaning that the least common multiple between r and T is (r × 
T). These digits repeat only after the full length r of the multiplication table line 
they govern. Seven, coprime to all the bases analyzed here, features facts in the 
table which only repeat after r products, thus for octal, after 8 products, at octal 
70, for decimal after a facts, at decimal 70. Only four bases {2, 4, 6, 10;} have 
divisor-dominant digit ranges; an additional six {3, 8, a, 16;, 20;, 26;} enjoy par-
ity between divisors and coprime digits. For all other bases, stubborn totative 
“resistance” is the stronger force, not that of happy divisors.

The number 1 is a special case. Because (1 × r) = r, it is a divisor. Because 
the least common multiple of 1 and r is (1 × r), it is coprime to r. Thus it is both 
a divisor and coprime, a member of both sets D and T.

Each base r has a prime factorization wherein prime numbers, through multipli-
cation, produce r. The prime factorization of 8 = {23}, a = {2 · 5}, 10; = {22 × 3}, 14; 
= {24}. The distinct prime factors dp serve as those digits which themselves are prime 
numbers and also are divisors of r. There may be composite divisors dc which are 
both composite numbers, themselves products of some or all of the dp of r, and are 
divisors of r. Thus, the set {1, Dp, Dc} are divisors of r. The set of digits {Dp, Dc} enjoy 
a regularity in the multiplication table, and regularity in their fractions. The divisor 

pair {1, r} are called “trivial divisors”; every integer possesses such divisors.
Like divisors, coprime digits T can be prime (Tp) or composite (Tc). 

The prime totatives tp  are prime numbers less than r which are unrep-
resented in the prime factorization of r. For some bases where certain 
unrepresented primes are small enough to square (9 in decimal and 
in hexadecimal) or multiply with another unrepresented prime digit 

(13; in hexadecimal), composite totatives tc  appear. Thus the set {1, Tp, 
Tc} are coprime to r. The coprime digits in the set {Tp, Tc} feature difficult 

maximally long cycles in the multiplication table, and recurring fractions. The 
totative pair {1, (r – 1)} are common to all integral bases—in binary, the digit 
1 serves the role of both elements in this pair. The patterns in the multiplication 
table for the “ω-totative” (r – 1) and its factors tω are not difficult to memorize; the 
pattern associated with 1 is trivial. The  “ω-totative” (r – 1) whose factorization 
contains unrepresented primes imparts simple digit-sum divisibility rules in base 
r for those primes.

Some digits S are neither divisors nor coprime to r. Such mixed digits are 
always composite, either composed of divisors (Sd) or involving both divisors 
and totatives (St). The semidivisors sd, such as 4 in decimal or 8 in decimal and 
dozenal, feature more or less regular patterns in the multiplication table and ter-
minating but not single-digit fractions. The semitotatives st also exhibit more or 
less regular multiplication patterns, but their fractions recur after an initial group 
of digits.

Thus, both the ease of memorization and patterning of the multiplication table of 
a given base, and the behavior of digital fractions in that base, are effects of the base’s 
prime factors. The more divisors (thus the larger the base) may not necessarily be the 
road to the best number base. The best base may be determined by number-theoreti-
cal considerations as well as the human ability to efficiently compute. •••

r 1 Dp Dc Sd St Tc Tp 1

8 1 2 4, 0 — 6 — 3, 5, 7 1

a 1 2, 5 0 4, 8 6 9 3, 7 1

10 1 2, 3 4, 6, 0 8, 9 a — 5, 7, b 1

14 1 2 4, 8, 0 — 6, a, 10, 12 9, 13 3, 5, 7, b, 11 1

The digits of r sorted according to digit class. Digits on the left may be seen as more friend-
ly, while those on the right tend to act against us when using a number base as a tool.


