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The following ten questions were sent in recently by a stu-
dent. These lucid questions are some of those most frequently 
asked. The Dozenal Society of America is furnishing the full 
responses to these questions complete with illustrations and 
references. Thanks to Mr. Israeli for questions 1–10!

0.  What is the number one reason why one believes base 12 is 
superior to decimal?

A. Briefly, twelve is a highly divisible yet compact num-
ber; it has more divisors than ten. This facilitates learn-
ing and using arithmetic, and simplifies the natural  
fractions [1, 2, 3]. This observation dates as far back as the mid-
dle ages, involving luminaries of mathematics such as Blaise  
Pascal [4, 5] and Laplace [6]. Dozens have been used since an-
cient times; the Roman usage as “unciæ”[7, 8, 9] strongly affect-
ing systems of currency (12 pence to a shilling) and measure 

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

Figure 0.1. The decimal multiplication table.

1 2 3 4 5 6 7 8 9 a b 10

2 4 6 8 a 10 12 14 16 18 1a 20

3 6 9 10 13 16 19 20 23 26 29 30

4 8 10 14 18 20 24 28 30 34 38 40

5 a 13 18 21 26 2b 34 39 42 47 50

6 10 16 20 26 30 36 40 46 50 56 60

7 12 19 24 2b 36 41 48 53 5a 65 70

8 14 20 28 34 40 48 54 60 68 74 80

9 16 23 30 39 46 53 60 69 76 83 90

a 18 26 34 42 50 5a 68 76 84 92 a0

b 1a 29 38 47 56 65 74 83 92 a1 b0

10 20 30 40 50 60 70 80 90 a0 b0 100

Figure 0.2. The duodecimal multiplication table.

(12 inches to the foot, 12 original ounces to a pound, ‘inch’ 
and ‘ounce’ both deriving from Roman uncia.)

 The integer twelve has six divisors {1, 2, 3, 4, 6, 12} while 
the number ten only has four {1, 2, 5, 10}. Divisors are im-
portant because they exhibit relatively brief and predict-
able patterns in arithmetic in a number base they divide. 
We can see this when we look at the decimal multiplica-
tion products for the number 5. Decimal products of the 
number 5 and an integer x have a least significant digit that 
is one of {0, 5}. Because of this, we understand any integer 
ending with -0 or -5 is some multiple x of 5. Decimal is also 
an even base: because of this, the multiplication products 
of 2 end in one of {0, 2, 4, 6, 8}. In decimal, we can test for 
evenness and divisibility by 5 simply by examining the last 
digit of an integer.

 The number twelve has two additional divisors than ten. 
In duodecimal, the number 6 behaves much like 5 in the  
multiplication table. In duodecimal, any product of 6 and 
an integer x will have a least significant digit that is one of 
{0, 6}. Like decimal, duodecimal is even, so any product of 
2 and an integer x will end with one of {0, 2, 4, 6, 8, a}. 

 Because twelve has two more divisors, users of duo-
decimal enjoy two other divisor product lines in the 
multiplication table. Any product 3x will end in one of  
{0, 3, 6, 9}, and any product 4x will end in one of {0, 4, 8}.

 Because twelve has six divisors, with the smallest four con-
secutive, it presents a multiplication table featuring brief 
patterns in the product lines of many numbers. (See page 4 
for a study of patterns in the decimal and duodecimal mul-
tiplication tables and Appendix A for bases 8 ≤ r ≤ 16.)

 The divisors of a base have a second important effect. Ev-
ery divisor d of base r has a complement d′ [10] such that

 (0.1) r = d × d′

 This relationship between a divisor and its complement 
can be seen in the multiplication table: the decimal prod-
ucts of five have 2 possible end digits (10 = 5 × 2), the 
duodecimal products of four have three possible end digits  
(12 = 4 × 3). The relationship also appears in digital ex-
pansions of fractions. Generally,

 (0.2)  1∕d = d′∕r

 thus we will see the digit d′ following the radix point. In 
base ten we have 1∕2 = 0.5 and 1∕5 = 0.2. In base twelve we 
will have 1∕2 = 0.6, 1∕3 = 0.4, 1∕4 = 0.3 and 1∕6 = 0.2. Thus duo-
decimal features single-place terminating fractions for all 
the ‘natural fractions’[11, 12]:
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½ ⅓ ⅔ ¼ ¾
Decimal .5 .333… .666… .25 .75

Duodecimal .6 .4 .8 .3 .9
 Figure 0.3. The natural fractions in decimal and duodecimal notation.

 One might raise the question, “granted, twelve has more divi-
sors than ten, but what about the other numbers?” First, let’s 
acknowledge that number bases fit for general human compu-
tation must lie in a certain range. If a number base is too small, 
we’ll need many digits to express even a relatively small quan-
tity. Imagine a binary speed limit sign said “1000000 kph”! A 
driver would need to slow down and peruse the sign to be sure 
not to be speeding at double or bumbling at half the posted 
limit! The seven decimal-digit telephone number would be-
come nearly a two-dozen-bit string of 1’s and 0’s. It would be 
easy to miss out on a hot date if one made a transcription er-
ror somewhere. If a number base is too large, then one would 
need to memorize a larger multiplication table, for example, 
in order to perform arithmetic. If the Mayans multiplied us-
ing modern techniques, would they need to spend more than 
double the time a decimal society would in mastering their 
multiplication tables? There are 20 digits in the vigesimal 
(base-20) system, each with 20 combinations. There are 55 
unique products in the decimal multiplication table vs. 210 in 
the vigesimal and 78 in the duodecimal. 

 Let’s presume a number base will need to be between about 7 
or 8 through about 16, possibly including 18 and 20. Here is a 
list of divisor counts and ratios [13, 14] for bases 2 through 20:

r σ0(r) σ0(r)/r

2 2 100 
3 2 66 ⅔
4 3 75 
5 2 40 
6 4 66 ⅔
7 2 28 4∕7
8 4 50 
9 3 33 ⅓

10 4 40 

r σ0(r) σ0(r)/r

11 2 18 2∕11
12 6 50
13 2 15 5∕13
14 4 28 4∕7
15 4 26 ⅔
16 5 31 ¼
17 2 11 15∕17
18 6 33 ⅓
19 2 10 10∕19
20 6 30

 Figure 0.4. Number of divisors σ0(r) and divisor density σ0(r)/r for each 
base r between 2 and 20 inclusive.

 Note that twelve is the smallest number with 6 divisors, and 
the largest number with 50% or more of its digits as divisors. 
Mathematicians refer to the number twelve as a “highly com-
posite number”, a number that sets a record number of divi-
sors, i.e., having more divisors than all numbers smaller than it 
[15, 16]. Further, twelve is the third smallest superior highly com-
posite number [17], part of the sequence [18] of such numbers {2, 
6, 12, 60, 120, 360, 2520, …}. Essentially, a shcn has a greater 
divisor density than all larger integers. 
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 Twelve gives us the ability to access the power of 6 divisors 
with a magnitude of number base that is not much larger 
than decimal. The dozen gives us clean natural fractions, 
incorporating these into its digital representation. Duo-
decimal divisors are by far the very most important reason 
why duodecimal is the optimum number base for general 
human intuitive computation.

1.  Other then having more factors than 10 does, what other ma-
jor properties make 12 a better base for a number system?

A. Briefly, twelve has proportionally fewer totatives (digits 
that have 1 as the greatest common divisor with the num-
ber base) than ten, minimizing resistance to human intu-
ition in computation and manipulation of numbers. Fewer 
totatives means fewer “difficult” product lines in the mul-
tiplication table, fewer occasions of recurrent fractions, a 
more organized arrangement of primes, and a smaller pro-
portion of other digits and numbers that have recurrent 
reciprocals. Dozenal has a denser set of regular numbers, 
aiding human intuition in computation. Regular numbers 
have terminating digital fractions and divisibility tests akin 
to that of divisors.

 These features are not as easily summarized as the fact 
that twelve has more divisors than ten, but are just as im-
portant. The following pages attempt to explain the brief 
synopsis above, and prove it using mathematics. The ex-
planation can get technical. The terms used in the above 
synopsis are explained in the following text. Let’s begin by 
examining the digits of a number base, since many of the 
properties can be summarized by such an examination.

 Five Universal Types of Digits

 The digits of a number base are important because a num-
ber base “sees” the world through its digits. Let the integer 
r ≥ 2 be a number base. A digit is an integer 0 ≤ n < r [19, 

20]. Using digits, we can express the arbitrary integer x as a 
product of the integers q and r plus the digit n [21, 22, 23]:

 x = qr + n

 The digit “0” signifies congruence with the number base; 
it will be interpreted as signifying r itself as a digit [24]. We 
know the divisors of ten are {1, 2, 5, 10}; we would interpret 
the digits {0, 1, 2, 5} as decimal divisor digits. Similarly, the 
divisors of twelve are {1, 2, 3, 4, 6, 12}, but we would inter-
pret the digits {0, 1, 2, 3, 4, 6} as duodecimal divisor digits.

 In general, there are five kinds of digits. Once we’ve intro-
duced each type, we can examine how the types behave, 
then arrive at a way that aids the assessment of the merit of 
all number bases.

 The Divisor

 We’ve already read about divisors. We can test whether a dig-
it n is a divisor of r by examining the greatest common divisor 
(highest common factor) gcd(n, r) = n. In fact, we can distin-
guish two of the four kinds of digits using gcd(n, r). Divisors 
may be prime or composite for a composite number base. All 



number bases r have the “trivial divisors” {1, r} [25].

0 1 2 3 4 5 6 7 8 9

 Figure 1.1. The divisors d of base r = 10, shown in red.

 The Totative

 Another type of digit n is coprime to base r, meaning that the 
digit and the base have no common divisors but 1 [25–30]. Thus 
digit n is coprime to r if and only if gcd(n, r) = 1. Such a digit is 
called a “totative” [31]. The Euler totient function φ(r) counts 
the number of totatives of an integer r [32, 33]. (More will be said 
about totatives and the Euler totient function later.)

0 1 2 3 4 5 6 7 8 9

Figure 1.2. The totatives t of base r = 10, shown in blue.

 The Unit

 The digit 1 is special, since it is both a divisor and a totative of 
any number base r, as well as neither prime nor composite [34, 

35]. Because of this, we can refer to it as a “unit” [36]. Digits that 
are not units (i.e., digits n ≠ 1) are referred to as “non-units”. 
Thus we have three kinds of digits we can distinguish using 
one iteration of the greatest common divisor.

0 1 2 3 4 5 6 7 8 9

Figure 1.3. “Countable” digits κ of base r = 10, shown in color.

 Two Kinds of Neutral Digit 

 [The following is derived from a forthcoming paper. [37]]

 If we examine some digits, we will find

 1 < gcd(n, r) < r.

 Since we know a divisor will have gcd(n, r) = n and a totative 
will have gcd(n, r) = 1, such a digit n must be neither. Thus 
there are neutral digits.

0 1 2 3 4 5 6 7 8 9

Figure 1.4. Neutral digits s of base r = 10, shown in gold.

 There are two and only two kinds of “neutral digit”. I call 
these “semidivisors” and “semitotatives”. Neutral digits are 
composite, thus neutral digits are always composite. Further, 
neutral digits exist only in composite bases r > 4.

 The Semidivisor, a Regular Number

 A regular number g in base r is one whose factors are found 
among the factors of base r [38, 39]. Regular decimal numbers 
include any power of two or five or any combination of 2 and 
5. Examples are the numbers 2, 5, 8, 10, 20, 25, 32, 100, 125, 
256, etc. Regular digits are the set of regular numbers less than 
the base. The set of decimal regular digits is

Gten = {0, 1, 2, 4, 5, 8}

 Some of the regular digits are divisors {0, 1, 2, 5} but some are 
not divisors {4, 8}. The digits {4, 8} are neutral digits, since 
gcd(4, 10) = 2 and gcd(8, 10) = 2. If we examine the prime de-
compositions of these two digits, we’d see that at least one of the 
prime factors would have an exponent that exceeds that of the 
same prime factor in the number base. Indeed, 4 = 22 and 8 = 23, 
while the prime decomposition of ten is 2 · 5. The decimal digits  
{4, 8} are semidivisors. Semidivisors exist in composite bases 
r that are not powers of prime numbers. Base 6 is the small-
est base that possesses a semidivisor. Octal and hexadecimal 
cannot possess semidivisors because these bases are powers 
of two.

 The Semitotative, Product of Divisors & Totatives

 The semitotative is simply a digit that is the product of at 
least one prime divisor and at least one prime totative. The 
decimal semitotative is digit 6. In duodecimal, the semitota-
tive is digit ten. In hexadecimal, there are four digits that are 
semitotatives: {6, 10, 12, 14}. Semitotatives exist for all com-
posite number bases that have minimum totatives less than 
the minimum divisor’s complement, d′. (See Figure 1.5) Be-
cause the minimum totative of bases 4 and 6 are both larger 
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1 a2 3

Base 4 cannot have semitotatives because the minimum totative (3) is 
larger than both the minimum divisor (2) and its complement (2).

1 a2 3 4 5

Base 6 cannot have semitotatives because the minimum totative (5) is 
larger than both the minimum divisor (2) and its complement (3).

1 a2 3 4 5 6 7

Base 8 possesses the semitotative 6 because the minimum totative (3) 
is less than the minimum divisor’s complement (4).

1 a2 3 4 5 6 7 8 9

Base 10 possesses the semitotative 6 because the minimum totative 
(3) is less than the minimum divisor’s complement (5).

1 a2 3 4 5 6 7 8 9 a b

Base 12 possesses the semitotative 10 because the minimum totative 
(5) is less than the minimum divisor’s complement (6).

1 a2 3 4 5 6 7 8 9 a b c d e f

Base 16 has four semitotatives. The totatives 3, 5, and 7 are less than 
the minimum divisor’s complement,8. The totative 3 generates the 
semitotatives 6 and 12 by multiplication with the divisor 2 and 22 
respectively. The totatives 5 and 7 produce the semitotatives 10 and 
14 respectively with the divisor 2.

Figure 1.5 



1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

1 2 3 4 5 6 7 8 9 a b 10

2 4 6 8 a 10 12 14 16 18 1a 20

3 6 9 10 13 16 19 20 23 26 29 30

4 8 10 14 18 20 24 28 30 34 38 40

5 a 13 18 21 26 2b 34 39 42 47 50

6 10 16 20 26 30 36 40 46 50 56 60

7 12 19 24 2b 36 41 48 53 5a 65 70

8 14 20 28 34 40 48 54 60 68 74 80

9 16 23 30 39 46 53 60 69 76 83 90

a 18 26 34 42 50 5a 68 76 84 92 a0

b 1a 29 38 47 56 65 74 83 92 a1 b0

10 20 30 40 50 60 70 80 90 a0 b0 100

Figure 1.8. Patterns in the decimal multiplication table (left) and the duodecimal multiplication table (right). Patterns of increasing digits are indi-
cated by a tone that widens according to the size of the least significant digit. Red patterns pertain to divisors, orange to semidivisors, which along with 
divisors comprise a base’s regular numbers. Exact multiples of the number base are circled.

than d′, these bases do not have semitotatives. Because num-
ber bases like 8 and 16 that are powers of primes don’t have 
semidivisors, semitotatives are their only neutral digits. Base 
6 is unique in that it has a semidivisor but no semitotative. As 
the number base r gets larger, semitotatives burgeon. For very 
large highly composite bases, semitotatives are the most com-
mon type of digit, far outweighing the totatives, with vanish-
ingly few regular digits.

0 1 2 3 4 5 6 7 8 9
 Figure 1.6. Semidivisors sd (orange) and semitotatives st (yellow) of base 

r = 10, shown in gold.

 Now we can make a digit map of any number base. In the 
digit map, totatives are colored a pale gray, as there are several 
kinds of totative digits.

 See Appendix B for digit maps for bases 2 ≤ r ≤ 60. Using these 
maps, the majority of the properties of the number bases can 
be determined at a glance.
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 There are five kinds of digits: units, divisors, and semidivisors are 
regular digits, and semitotatives and totatives are non-regular.

 Now that we know that there are five kinds of digits, let’s ex-
amine three common applications for number bases.

 Expansion of Fractions.

 The decimal expansion of fractions that came into use in the 
middle ages revolutionized computation. The integral and 
fractional part of numbers could be computed using the same 
addition and multiplication algorithms. Since we are discussing 
number bases, let’s refer to the expression of fractions using the 
digits of a number base “digital expansion”. 

 We’ve already seen that the digital expansion of reciprocals 
of the divisors d of a number base terminate after a single 
place filled with the divisor complement d′. This is the sim-
plest type of fraction (except perhaps the digital expansion of 
the fraction 1⁄1 = 1.)

 Regular numbers are by definition those that have terminat-
ing digital expansions. Thus, semidivisors also have terminat-
ing digital expansions [40]. The decimal expansions of ¼ = .25 
and of ⅛ = .125. The dozenal expansions of ⅛ = ;16 and 1⁄9 
= ;14. This works for reciprocals of regular numbers greater 
than the base. The decimal expansions of 1⁄625 = .0016 and 
1⁄32768 = .000030517578125, the latter, though regular, not 
very convenient.

 The digital expansions of fractions with totatives or numbers 
coprime to the base in the denominator are purely recur-
rent[41]. The decimal expansion of 1⁄7 = .142857… and the 
dozen expansion of the same fraction is ;186a35….  The digi-
tal expansions of semitotatives and any product of at least one 
prime divisor and at least one prime totative will have a brief 
non-recurrent “preamble” followed by a recurrent, infinite 
portion (i.e., these are “mixed recurrent” [41]). The decimal 
expansions of 1⁄6 = .1•666… and 1⁄14 = .0•714285…. The doz-
enal expansion of 1⁄a = ;1•2497….

 Generally, divisors are the most preferable denominators be-
cause their digital expansions are briefest. Any regular number 

N
um

be
r B

as
e r

 (i
n 

de
ci

m
al

)

2 0 1

3 0 1 2

4 0 1 2 3

5 0 1 2 3 4

6 0 1 2 3 4 5

7 0 1 2 3 4 5 6

8 0 1 2 3 4 5 6 7

9 0 1 2 3 4 5 6 7 8

10 0 1 2 3 4 5 6 7 8 9

11 0 1 2 3 4 5 6 7 8 9 a

12 0 1 2 3 4 5 6 7 8 9 a b

13 0 1 2 3 4 5 6 7 8 9 a b c

14 0 1 2 3 4 5 6 7 8 9 a b c d

15 0 1 2 3 4 5 6 7 8 9 a b c d e

16 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

Digit n

Figure 1.7. A digit map of bases 2 ≤ r ≤ 16.



will at least have a terminating expansion, though some regu-
lar numbers can have very long expansions. The non-regular 
numbers, including totatives and semitotatives, are the least 
preferable denominators because they have recurrent digital 
expansions. A number base that maximizes divisors, semidivi-
sors, and regular numbers in general but minimizes totatives 
and semitotatives seems to be preferable.

 Multiplication Tables.

 The multiplication table is an essential learning aid for arith-
metic in any number base. We’ve already seen that divisors 
have brief patterns, that decimal has two non-trivial divisors 
{2, 5} and dozenal has four {2, 3, 4, 6}. The totatives of a 
number base r generally feature patterns of end digits in the 
product line have a maximally-long cycle. The set of end digits 
of the products of 7 in the decimal table is 

{0, 7, 4, 1, 8, 5, 2, 9, 6, 3}
 and in dozenal it is similarly jumbled:

{0, 7, 2, 9, 4, b, 6, 1, 8, 3, a, 5}
 The neutral digits have cycles that are not maximum and may 

even be brief, but do not “land” on every multiple of the num-
ber base r like those of divisors. The end digits of the decimal 
semidivisor 4 are {0, 4, 8, 2, 6} and the decimal semitotative 6 
are {0, 6, 2, 8, 4}. The end digits of the dozenal semidivisor 8 are 
{0, 8, 4} and the dozenal semitotative a are {0, a, 8, 6, 4, 2}.

 Divisors tend to have the most easily memorized and recalled 
product lines. The product lines of totatives would seem to be 
less easily memorized and recalled, especially if the number 
base is large. Neutral digits can have product lines that are be-
tween those of divisors and totatives to memorize and recall. 
Again, a number base that maximizes divisors while minimiz-
ing totatives seems to be preferable. (See Figure 1.8. and Ap-
pendix B)

 Intuitive Divisibility Tests. 

 An intuitive divisibility test is a quick and simple method of 
determining whether an integer is divisible by another. This 
is a useful application because one can simplify fractions or 
quickly determine, for instance, whether one can set a group 
of three colors of tile in a wall 57 tiles wide, and come out 
with unbroken groups. The intuitive divisibility test is a kind 
of shortcut. See Appendix C for a map of intuitive divisibility 
tests for bases 2 ≤ r ≤ 60.

 The first class of divisibility rules pertain to regular numbers. 
Let’s call the class the “regular divisibility rules.” To deter-
mine whether an arbitrary integer x is divisible by a regular 
digit, we examine a finite set of least significant digits [42]. Divi-
sors require us to examine only the very least significant digit, 
as we’ve already seen. Semidivisors and regular numbers in 
general will require us to examine more than one rightmost 
digit. Example: decimal 744 is divisible by the semidivisor 4 
because 744 ends in “44”, which is a multiple of 4. The deci-
mal regular rule pertaining to 8 is not as easy to implement. 
Decimal 1568 is divisible by 8 because the last three digits are 
divisible by 8. I don’t know about you, but I haven’t memo-
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rized the 125 combinations of three digits that are divisible by 
8! Dozenal semidivisors and non-divisor regular digits have 
similar tests. Dozenal 2468; is divisible by 8 because it ends 
in “68;”, which is a multiple of 8. Dozenal 2468; is not divis-
ible by 14; (one dozen four, which is sixteen) because “468” is 
not one of the ten dozen eight (decimal 108) combinations of 
three-digit dozenal numbers that are divisible by 14;.

 Let’s recognize a special type of totative, because this kind of 
totative is key to a major pair of intuitive divisibility tests. Let 
the integers alpha, α = (r + 1), the “neighbor upstairs,” and 
omega, ω = (r – 1), the “neighbor downstairs.” The decimal 
omega is 9 and alpha is 11. The duodecimal omega is eleven 
and the alpha is one dozen one. 

 An integer x is divisible by alpha if the difference of the sum 
of the digits in even places and the sum of the digits in odd 
places is divisible by alpha [43]. In decimal, 1342 is divisible by 
11 because (1 + 4) – (3 + 2) = 0, and zero is a multiple of 11. 
This is the “alternating sum” or “alpha rule”.

 An integer x is divisible by omega if the sum of the digits in all 
the places of the integer x is divisible by omega [44]. Decimal 
729 is divisible by 9 because (7 + 2 + 9) = 18, and 18 is clearly 
divisible by 9. Dozenal 2b9; (decimal 429) is divisible by b 
because (2 + b + 9) = 1a;, which is clearly a multiple of b.

 The last intuitive divisibility test is called the “compound test”. 
Decimal has an intuitive rule for the digit 6: if an integer x is 
even and divisible by 3, then it is divisible by 6. Duodecimal 
does have such rules but they pertain to numbers larger than 
twelve, since there are no neighbor-related rules for digits less 
than eleven.

 The decimal omega is composite, which is fortuitous. This is 
because the “benefits” of the neighbor-related numbers alpha 
and omega are “inherited” by their factors. Additionally for-
tunate is the fact that all factors of a number coprime to the 
base are also coprime, helping to ameliorate the difficulty pre-
sented by numbers coprime to the base. We can call a totative 
that does not benefit from neighbor-relatedness an “opaque 
totative”, because these do not have intuitive rules that facili-
tate their use as tools of computation.

 Since 3 is a factor of 9, the omega rule functions for 3 in base 
ten. This is why we can use the digit sum rule to determine if 
an integer is divisible by three in base ten. 

 Because the duodecimal neighbors are both prime, they do 
not “share” the neighbor-related divisibility rules with smaller 
numbers. This is unfortunate, because this leaves us with no 
intuitive divisibility test for the number 5 in base twelve. 

 Neighbor-relatedness also mildly affects totatives in the mul-
tiplication table. More significantly, omega-relatedness mini-
mizes the cycle of recurrent fractions, while alpha-related to-
tatives have a brief, 2-digit recurrent cycle. In base ten, 1⁄3 = 
.333… and 1⁄9 = .111…, while 1⁄11 = .090909….

 Hexadecimal has ω = fifteen. Thus, not only does the 
digit sum rule work for 3, but also for 5. Additionally,  
1⁄3 = .555… and 1⁄5 = .333…. Base 26 has ω = 25 and  



α = 27, thus enjoys neighbor related benefits for the digits  
{3, 5, 9, 25}.

 We can show neighbor-related totatives in digit maps.

0 1 2 3 4 5 6 7 8 9

Figure 1.9. A digit map of base r = 10,  
showing omega totatives in light blue.

 Bases that have plenty of divisors have plenty of easy divis-
ibility tests. Semidivisors and non-divisor regular numbers of-
ten have simple tests, but some of these can be impractical. A 
number base with a great deal of “opaque totatives” presents 
resistance to human computation. One that has one or more 
composite “neighbors” will have some totatives with neighbor-
related divisibility tests as well as brief recurrent digital expan-
sions. This helps ameliorate the difficulty totatives present to 
human intuition in computation.
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 Limiting Totative Resistance

 The following is even more technical than some of this infor-
mation, however it does illustrate that duodecimal minimizes 
resistance presented by totatives. 

 In addition to the generally resistive effect of totatives in the 
three common applications described above, they have anoth-
er major application. The totatives of a number base “arrange” 
prime numbers. A number base r will express prime numbers 
q that are coprime to r with a number having a least significant 
digit that is a totative. Decimal does not have an unpleasant 
number of totatives, so the less-dense distribution of primes 
presented by dozenal is not as keenly noticed. However, hexa-
decimal and octal can harbor primes on any odd digit, which 
is far less convenient. See Figure 1.10. (For an excellent in-
teractive illustration of the arrangement of primes in various 
number bases, visit http://demonstrations.wolfram.com/
DistributionOfPrimes/.)

 The Euler totient function φ(r) counts totatives of r [24, 25]. 
The Euler totient function φ(p) for a prime p is:

 (1.1) φ(p) = p – 1, [26]

 The Euler totient function [27, 28] for all composite numbers r is

 (1.2) φ(r) = r ·  
k

Π
i = 1

 (1 – 1/p
i
) 

 = r(1 – 1/p1
)(1 – 1/p2

)…(1 – 1/p
k
).

 From formula (1.2) we can see that each distinct prime divisor 
pi contributes one factor (1 – 1/p

i
). The factor is reliant on the 

magnitude of pi but the exponent of pi is immaterial in each 
factor. 

If we consider the totient ratio

 (1.3)  φ(r)/r =  
k

Π
i = 1

 (1 – 1/p
i
)

 the base r and the magnitude of its digit range are scaled to 1, 
and we can observe the effects of distinct prime factors on the 
proportion of totatives in base r. (See Figure 1.11.) We only 
need to consider squarefree versions ρ of bases r such that 

 (1.4)  r = p1
a1 p2

a2… pk
ak  ρ = p1

 p2… pk

 e.g., 12 = 22 · 3  6 = 2 · 3 and  
360 = 23 · 32 · 5  30 = 2 · 3 · 5.

 Dozenal has the distinct prime divisors {2, 3}, scoring a to-
tient ratio of ⅓ while decimal has {2, 5} with a totient ratio 
of 2∕5. Hexadecimal has one prime divisor {2} and a totient 
ratio of ½. Dozenal thus has less of “the bad stuff”. (See Figure 
1.11; twelve appears at “2·3” while ten appears at “2·5”.)

 These applications aren’t the only important ways a number 
base is used as a technology, but they are key ways. A less-
important application is the examination of end-digits of per-
fect squares. In this case, duodecimal perfect squares end in 
one of {0, 1, 4, 9} while decimal perfect squares end in one of 
{0, 1, 4, 5, 6, 9}. Most of the merits of a number base can be 
understood at a glance through examination of the number-
theoretical relationships between base r and its digits n.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110

111 112 113 114 115 116 117 118 119 120

Figure 1.10 a. Decimal arrangement of coprime primes with end digits that 
are decimal totatives {1, 3, 7, 9}. Primes in red are decimal divisors.

1 2 3 4 5 6 7 8 9 a b 10
11 12 13 14 15 16 17 18 19 1a 1b 20
21 22 23 24 25 26 27 28 29 2a 2b 30
31 32 33 34 35 36 37 38 39 3a 3b 40
41 42 43 44 45 46 47 48 49 4a 4b 50
51 52 53 54 55 56 57 58 59 5a 5b 60
61 62 63 64 65 66 67 68 69 6a 6b 70
71 72 73 74 75 76 77 78 79 7a 7b 80
81 82 83 84 85 86 87 88 89 8a 8b 90
91 92 93 94 95 96 97 98 99 9a 9b a0

Figure 1.10 b. Duodecimal arrangement of coprime primes with end digits 
that are duodecimal totatives {1, 5, 7, b}. Primes in red are dozenal divisors.

1 2 3 4 5 6 7 8 9 a b c d e f 10
11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20
21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30
31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f 40
41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f 50
51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f 60
61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f 80

Figure 1.10 c. Hexadecimal arrangement of coprime primes with end dig-
its that are hexadecimal totatives (odd digits).
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2

2

3

3

5

5

7

7

11

11

13

13

1⁄6

⅓

½

⅔

5⁄6

1⁄12

¼

5⁄12

7⁄12

11⁄12

¾

1

0 0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

2

3

2·3

2·3·5

5

2·5

3·5

2·3·5·7

2·7

7

3·7

5·7

3·5·7

2·3·7

2·5·7

2·3·5·7·b
2·3·5·7·b·d

b
d

b·d

7·d

5·d
7·b·d

5·b·d

5·7·d
3·d

5·7·b·d
3·b·d

3·7·d

3·5·d
3·7·b·d
2·d
3·5·b·d

3·5·7·d
2·b·d
2·7·d
3·5·7·b·d
2·5·d
2·7·b·d
2·5·b·d
2·5·7·d
2·3·d
2·5·7·b·d
2·3·b·d
2·3·7·d
2·3·5·d
2·3·7·b·d
2·3·5·b·d
2·3·5·7·d

3·b

7·b

5·b

2·3·b

2·5·b

2·3·5·b
2·3·7·b

2·5·7·b

2·7·b

3·5·b

3·7·b

5·7·b

2·b

3·5·7·b

Figure 1.11. A plot with φ(r)/r on the vertical axis versus the maximum 
distinct prime divisor pmax on the horizontal axis. (The horizontal axis 
is not to scale.) The pmax-smooth numbers lie along a vertical line at each 
value of pmax. The boundary of minimum values of φ(r)/r defined by pri-
morials is indicated by a broken red line. The boundary of maximum 
values of φ(r)/r defined by primes is shown in blue. All other composite 
numbers r that have pmax as the maximum distinct prime divisor inhabit 
the region between the boundaries. See page 19; for more scope, running 
to the prime 61.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110

111 112 113 114 115 116 117 118 119 120

Figure 1.12 a. Decimal regular numbers 1 ≤ g < 120.
1 2 3 4 5 6 7 8 9 a b 10

11 12 13 14 15 16 17 18 19 1a 1b 20
21 22 23 24 25 26 27 28 29 2a 2b 30
31 32 33 34 35 36 37 38 39 3a 3b 40
41 42 43 44 45 46 47 48 49 4a 4b 50
51 52 53 54 55 56 57 58 59 5a 5b 60
61 62 63 64 65 66 67 68 69 6a 6b 70
71 72 73 74 75 76 77 78 79 7a 7b 80
81 82 83 84 85 86 87 88 89 8a 8b 90
91 92 93 94 95 96 97 98 99 9a 9b a0

Figure 1.12 b. Duodecimal regular numbers 1 ≤ g < 120.
1 2 3 4 5 6 7 8 9 a b c d e f 10

11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20
21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30
31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f 40
41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f 50
51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f 60
61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f 80

Figure 1.12 c. Hexadecimal regular numbers  1 ≤ g < 128.

 Enriching Regular Digit Density

 While duodecimal acts to reduce the totient ratio, it also en-
riches the density of regular digits that tend to facilitate hu-
man intuitive manipulation of numbers.

 Let’s start off by examining the prime decomposition of  
10 = 2 · 5. Ten has two distinct prime factors, enabling it to 
have regular numbers that are not powers of prime factors. 
Decimal has more regular numbers between 1 and 256 inclu-
sive than does hexadecimal: {1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 
50, 64, 80, 100, 125, 128, 160, 200, 250, 256} = 21 [58] versus 
{1, 2, 4, 8, 16, 32, 64, 128, 256}, only nine. Keep in mind six-
teen has 5 divisors while ten has 4. This means that decimal 
has more terminating unit fractions than hexadecimal. This is 
still fewer than dozenal, which has {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 
24, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 128, 144, 162, 192, 
216, 243, 256} = 28 [59].

 We can examine this in two ways. Like Figure 1.10 illustrates 
the arrangement of primes q that are coprime to r, we can pro-
duce Figure 1.12 that shows regular digits g below a threshold. 
Let’s use a threshold around 120 to 128 so we can “be fair”. 
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The unit (digit 1) appears in purple, divisors in red, and regular non-divisors g in 
orange. It’s clear that hexadecimal, a power of a prime p, is bereft of regular digits. 
Decimal and dozenal appear to have quite a few options for terminating digital 
fractions.

 The second way to examine regular digits of base r is to look at the unique prod-
uct combinations in the multiplication table of base r. We can color-code the 
products according to their relationship with r. Figure 1.13 uses the same color 
scheme as Figure 1.12, adding the non-regular numbers. The hexadecimal table 
appears void of regular numbers, while the decimal and duodecimal tables are 
rich with them.

 The practical application of an enriched set of regular digits is that the dozenal 
analog of percents (%), “per gross” (P/G), resonate with more useful terminat-
ing fractions than any number base between octal and hexadecimal. Figure 1.14 
shows how common proportions appear in the analogs to decimal percent across 
decimal, duodecimal, and hexadecimal. This dovetails with the keen handling of 
fractions, so consider this a resource for the last question as well.

 The keen set of regular digits goes beyond analogs to percentages. The common 
3-significant digit representation of figures can be awkward in decimal. Suppose 
you derive a result from a computation like 3⅓ units, or 6⅞ units. The decimal 
rounding of these figures to 3.33 or 6.88 units introduces needless error to the 
calculation. The duodecimal rounding to three digits would preserve the frac-
tional part of these figures: 3;40 and 6;a6. Because dozenal has a keen relation-
ship with its aliquot parts, it serves even to aid our approximations.

2.  Do you think the world should/will change to the dozenal system?

A. [The following represents the author’s opinion and is not necessarily the opinion 
of the Dozenal Society of America].

 Let’s start off by recognizing that a system of numera-
tion is a technology. It is a tool that facilitates human 
understanding and manipulation of real quantities. 
Mankind builds upon its technologies to produce fur-
ther inventions. Decimal is deeply entrained in our 
current civilization. In ancient times, only merchants 
and scribes recorded numbers. With the printing press, 
numbers and language could be printed en masse. The 
industrial revolution began to incorporate mechanical 
manifestations of the decimal number base. Greater 
education brought literacy and numeracy to the public. 
Broadcasting and literacy truly entrained the decimal 
system; the information age has intensified decimal 
exponentially. Not only is our mechanical hardware 
decimal, but also our software. Underlying the user in-
terface of our software, binary is the basis of our com-
puter technology, with hexadecimal serving to help 
programmers interpret binary data and reduce tran-
scription errors. What had served as a programmer’s 
tool has become accessible to graphic designers as the 
means to specify screen color. Decimal is highly inter-
woven into our civilization; the time to have changed 
bases was perhaps before the industrial revolution. 
Hexadecimal is an auxiliary technology that serves a 
niche purpose.

 There are two questions here: Should the world be 
dozenal, and could the world be dozenal.

1
2 4
3 6 9
4 8 12 16
5 10 15 20 25
6 12 18 24 30 36
7 14 21 28 35 42 49
8 16 24 32 40 48 56 64
9 18 27 36 45 54 63 72 81

10 20 30 40 50 60 70 80 90 100
Figure 1.13 a. Relationship of products in the 
decimal multiplication table with r = 10.

1

2 4

3 6 9

4 8 10 14

5 a 13 18 21

6 10 16 20 26 30

7 12 19 24 2b 36 41

8 14 20 28 34 40 48 54

9 16 23 30 39 46 53 60 69

a 18 26 34 42 50 5a 68 76 84

b 1a 29 38 47 56 65 74 83 92 a1

10 20 30 40 50 60 70 80 90 a0 b0 100

Figure 1.13 b. Relationship of products in the duodecimal 
multiplication table with r = 12.

1
2 4
3 6 9
4 8 c 10
5 a f 14 19
6 c 12 18 1e 24
7 e 15 1c 23 2a 31
8 10 18 20 28 30 38 40
9 12 1b 24 2d 36 3f 48 51
a 14 1e 28 32 3c 46 50 5a 64
b 16 21 2c 37 42 4d 58 63 6e 79
c 18 24 30 3c 48 54 60 6c 78 84 90
d 1a 27 34 41 4e 5b 68 75 82 8f 9c a9
e 1c 2a 38 46 54 62 70 7e 8c 9a a8 b6 c4
f 1e 2d 3c 4b 5a 69 78 87 96 a5 b4 c3 d2 e1

10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0 100
Figure 1.13 c. Relationship of products in the hexadecimal multiplication 
table with r = 16.



 First, the world would run more efficiently if it were based 
on dozens rather than tens. Less time would be necessary in 
educating the young regarding arithmetic and mathematics 
would thereby be simpler. The world should have based it-
self on duodecimal rather than decimal. It seems the last time 
this change might have been feasible was in the 18th century, 
perhaps when what has become the Systeme Internationale 
(metric system) was conceived. Even then, a change may have 
been too late. The change would have had to affect the Brit-
ish Empire and continental Europe before their colonies frag-
mented and the revolutions of the 18th century took place. 
Then the American currency would not have decimalized, 
and the metric system in place would instead be dozenal.

 The world will not likely “convert” to dozenal. Instead, duo-
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one half

thirds quarters

⅓
33.3…

¼
25

½
50

40 30

60
55.5… 40

80

⅔
66.6…

¾
75

80 90
aa.a… c0

eighths

⅛

12.5

⅜

37.5

⅝

62.5

⅞

87.5

16 46 76 a6

20 60 a0 e0

sixteenths

1∕16

 6.25

3∕16

18.75

5∕16

31.25

7∕16

43.75

 9 23 39 53

10 30 50 70

9∕16

56.25

11∕16

68.75

13∕16

81.25

15∕16

93.75

69 83 99 a3

90 b0 d0 f0

sixths and twelfths

1∕6

16.6…

5∕6

83.3…

20 a0

2a.a… d5.5…

1∕12

 8.33…

5∕12

41.6…

7∕12

58.3…

11∕12

91.6…

10 50 70 b0

15.5… 6a.a… 95.5… ea.a…

fifths

1∕5

20

2∕5

40

3∕5

60

4∕5

80

24;97… 49;72… 72;49… 97;24…

33.3… 66.6… 99.9… cc.c…
Figure 1.14. Common fractions expressed in analogs to percent. The top figure is decimal, middle dozenal, and bottom hexadecimal for each fraction.

decimal numeration may continue to find use as an auxiliary 
number base. Duodecimal may find a future application, 
much like hexadecimal has in the configuration of bits into 
parcels that facilitate manipulation by human programmers. 
Duodecimal will likely serve along with a great number of aux-
iliary bases like 16, 24, 60, and 360 well into the future.

 In many ways, we are today a duodecimal civilization. Ever 
ask someone if 48 or 72 were “round” numbers? Ever ask 
someone if the number 12 or 24 were somehow weird? The 
fact is that the world configures items by the dozen because 
it is a convenient number. Merchants have been purvey-
ing ware by dozens and grosses for centuries. Glancing in a 
catalog printed only yesterday, we can see pens and crayons 
sold in dozens. Sometimes tradition goes beyond simply do-



ing things because that’s how it’s been done; sometimes 
our forefathers had a keen system in place; their wisdom 
made them successful. Some traditional systems are sim-
ply smart solutions that have functioned well for centuries 
because they are optimum.

3. What things (if any) are being done to educate the world 
about the duodecimal system?

A. The Dozenal Society of America was founded in 1944 as 
a “voluntary nonprofit educational corporation, organized 
for the conduct of research and education of the public in 
the use of base twelve in calculations, mathematics, weights 
and measures, and other branches of pure and applied sci-
ence.” In the past, in addition to the work of notable math-
ematicians Pascal and Laplace, other luminaries have dis-
seminated insight regarding duodecimal numeration [45]. 
In England, Sir Issac Pitman wrote about the duodecimal 
system in the 9 February 1856 issue of his Phonetic Journal. 
Pitman, according to Wikipedia, “invented the most wide-
ly used system of shorthand” [46]. F. Emerson Andrews, a 
Founder of the Duodecimal Society of America, wrote “An 
Excursion in Numbers” in the Atlantic Monthly in October 
1934, introducing America to duodecimal numbers [47, 48]. 
In 1955, the French author Jean Essig wrote Douze notre 
dix futur (French: Twelve, the Future Ten) [49], and in 1959, 
the Duodecimal Society of Great Britain was founded [50]. 
The American Broadcasting Company produced a series 
of video shorts called “Schoolhouse Rock!” broadcast 
during Saturday morning children’s programming in the 
1970s and 1980s. One of the segments, “Little Twelve-
toes”, was produced and first aired 9 March 1973 [51, 52]. 
This interstitial program used the numerals printed in the 
Duodecimal Bulletin to introduce duodecimal multiplica-
tion to children. This brief introduction served to explain 
the products of twelve in the decimal multiplication table.

 On 18 July 1995, Prof. Gene Zirkel was interviewed on 
National Public Radio’s “All Things Considered” on the 
merits of duodecimal numeration [53].

 In short, the Dozenal Societies of America and Great Brit-
ain have used print, web, and interview to help educate 
the public on the merits of duodecimal numeration on a 
volunteer basis. From time to time, the wider society picks 
up on the publications and communications of the DSA 
and DSGB, resulting in broadcasts like that of the Atlantic 
Monthly in the 1930s, the Saturday morning cartoon “Lit-
tle Twelvetoes” in rotation across a couple decades on the 
ABC television network, and the NPR interview of 1995.

4. If certain places decided they did want to change to the dozenal 
system, would they just change the base in counting and math-
ematics or also change the measurements they use? (Length, 
weight, time, etc.)

 [The following represents the author’s opinion and is not 
necessarily the opinion of the Dozenal Society of America].

A. It’s difficult to prognosticate how a society would adapt to 
the alteration of a technology like the number base, which 

has by now become fundamental to everyday life. Let’s 
suppose that tomorrow, our community began using duo-
decimal arithmetic and numerals, that the change would 
be instant, without a learning curve or transition, and let’s 
assume that only the numerals, number words, and arith-
metic changed. We would then have a system of measure, 
whether that be the decimal metric system or the US Cus-
tomary / Imperial system of measure, or any other extant 
system, based in part or total on a non-dozenal number 
base. In most cases this would be awkward. There would 
probably be a move to produce a system of weights and 
measure that would match the number base, a dozenal 
metric system. This system might resemble Tom Pendle-
bury’s TGM [54] or Takashi Suga’s Universal Unit System 
[55]. Additionally, currency would likely be brought in line 
with the number base. Instead of a dollar or euro of 100 
cents, a pound of 100 pence, we’d likely see a unit of 144 
parts soon develop. Conversion between decimal and doz-
enal would be important if a single community changed 
over, since others would be using decimal, so along with 
language differences, there would be a numeration differ-
ence requiring translation. If all humanity changed to doz-
enal, we would still require “translation” of figures in his-
torical documents, as all human records before the change 
would  be decimal (or in other bases).

5. Assuming that the people agree that the duodecimal system 
is better than the decimal system, how could people go about 
changing from one system to the other?

 [The following represents the author’s opinion and is not 
necessarily the opinion of the Dozenal Society of America].

A. There are people who accept that duodecimal is optimum. 
These people may use duodecimal arithmetic in their work 
and their everyday life. I’ll use myself as an example. I am 
an American architect who uses the US Customary system 
of measure, as metric does not appear to have a chance 
of usurping the use of US Customary in my lifetime for 
a variety of sociopolitical reasons, feet and inches are the 
way lengths are reckoned on most building projects in the 
USA. When I take field measurements, I record them us-
ing duodecimal figures. Let’s suppose we need to measure 
a room that is 13′-1½″ (approximately 4 meters) wide. I 
would write 111;6 inches or 11;16 feet. If I had a series of 
dimensions, I could total them in duodecimal, then divide 
them by 3 to arrive at window spacing or distance between 
beams on center, etc., just as one can do in the decimal 
metric system. However, duodecimal feet and inches are 
superior in that a precise third and quarter can be repre-
sented simply in duodecimal, while in decimal metric, 
thirds tend to be avoided or rounded, or a module divisible 
by twelve, such as 1200 mm gets used.

 Even if one doesn’t use duodecimal arithmetic profes-
sionally, one can use it in everyday life. For example, I am 
a swimmer; I can count my laps in duodecimal. Today I 
swam four dozen laps in three dozen four minutes. That’s 
an average of 0;a minutes (50 seconds) per lap. Oftentimes 
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my wife is cooking and wants to divide the recipe. Usually 
the divisions happen to be in thirds, quarters, sixths, or 
eighths for one reason or another. These divisions are sim-
pler in duodecimal than in decimal.

 Having an application for duodecimal numeration will cer-
tainly augment its use. The computer science community 
uses hexadecimal as a tool in interpreting bits. This has tele-
graphed into the hexadecimal specification of screen colors 
by graphic designers, much-removed from the original pur-
pose of the computer scientist. Without a purpose, there 
really isn’t a practical need to convert to duodecimal.

 The best thing that a “dozenalist” can do to further the use 
of duodecimal is to apply it in his or her daily arithmetic.

6. What are the main disadvantages to the duodecimal system in 
real life situations? (Comparing to the system we use today)

A. [The following represents the author’s opinion and is not 
necessarily the opinion of the Dozenal Society of America].

 The Achilles’ heel for duodecimal is the fact that it possess-
es two “opaque” totatives, 5 and 7. Decimal possesses only 
one “opaque” totative. Five is an important prime number, 
not as important as two or even three, but certainly not 
unimportant. Fivefold symmetry isn’t as common in ge-
ometry and biology as threefold, but it is still encountered. 
Pentagons can produce regular three-dimensional objects, 
thus is important not only in geometry but chemistry and 
physics. This said, name all the buildings you know that 
feature pentagonal symmetry. The fact you can think of 
only one shows that five is not quite as important as two, 
three or their products in our society. In the decimal sys-
tem, 3 is related to the “omega totative” 9. This means 
we can use the digit-sum divisibility test to determine if a 
decimal integer is a multiple of three. We can’t do the same 
for 5 in base twelve—there is no intuitive divisibility test. 
One fifth has a maximally recurrent duodecimal expansion 
in duodecimal: 0;24972497…, just about as messy as one 
seventh in either decimal or duodecimal.

 The fact that five is opaque in duodecimal maroons the 
duodecimal semitotative ten, leaving it without an intui-
tive divisibility test. It would be important for a society us-
ing duodecimal to memorize the less-intuitive divisibility 
test for 5 so that people could have divisibility tests for its 
multiples, which are rather common, though not quite as 
common as multiples of 2, 3, or combinations thereof.

 The dozenal omega digit, eleven, is not very helpful. We 
seldom need to use elevenfold symmetry or determine 
whether a number is a multiple of 11 in daily life, com-
merce, and industry. Decimal is equipped with the ability 
to test for eleven-ness through the alternating-sum divis-
ibility test anyway. The decimal omega digit, 9, has a factor 
3 that inherits its digit-sum divisibility test. Since eleven is 
prime, that grace does not befall duodecimal. The neigh-
bor related digit divisibility tests in duodecimal, applying 
to the primes 11 and 13, simply aren’t very helpful.

 All this seems to imply that a human society using duodeci-
mal will tend to be more “allergic” to factors of five, fifths, and 
their products than the current decimal civilization is to thirds, 
sixths, twelfths, etc. This is only amplified by the fact that doz-
enal works so well with halves, thirds, quarters, sixths, eighths, 
etc. I think we would nearly never encounter anything divided 
by five or ten in a dozenal civilization, just as sevenfold-ness 
is rare in decimal civilization. In this way, decimal perhaps 
makes us better arithmeticians, because we are forced to use 
transparent totatives (3 and 9). In fact, I think in a decimal 
culture we are very accustomed to multiples of three, six, and 
twelve, even though our system doesn’t “resolve” them as well 
as duodecimal would.

 The fact that twelve is “allergic” to five in a way that renders 
five as “weird” as seven, to a more extreme degree than ten is 
alienated from three, bugs me.

 This is not to say that there aren’t dozenal divisibility tests 
for five. Clearly there are, and are produceable using modular 
maths. Here are two I geeked out using the relationship of 12n 
modulo 5 [56].

 Duodecimal divisibility tests for five using the least significant 
digit (all arithmetic is duodecimal):

 We must solve 

 10;n = 1 (mod 5), n = 3, 

 thus take the last digit, multiply it by 3, then add the product to 
the remaining digits. Example, 89; is divisible by 5 because 

 8 + 3(9) = 8 + 23; = 2b; = 5(7)

 [89; is decimal 105]. The integer 286; is divisible by 5 since

  28; + 3(6) = 28; + 16; = 42; = 5(a) 

 [286; is decimal 390]. The decimal power 49,a54; is divisible 
by five because

 49a5; + 3(4) = 49b5, 

 which is divisible by five because

 49b; + 3(5) = 4b1;,

 which is divisible by five because

 49; + 3(b) = 49; + 29; = 76; = 3(26;) = (2 · 32 · 5)

 [49,a54; is decimal 100,000.]

 Duodecimal divisibility tests for five using two least significant 
digits (again, all arithmetic is duodecimal):

 We must solve

 100;n = –1 (mod 5), n = 1,

 thus take the last two digits and subtract them from the rest. 
Example, 286; is divisible by five because

 86; – 2 = 84;, = a2 = 5(18;).

 The integer 1977; is divisible by 5 since

 77; – 19; = 5a; = 5(12;)
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 [1977; is decimal 3115]. The decimal power 49,a54;, is di-
visible by five because

 49a; – 54; = 446;,

 which is divisible by five because

 46; – 4 = 42; = 5(a).

 Given some tests for five, we have a compound method for 
testing divisibility by ten in base twelve. If a number is even 
and divisible by five, then it is divisible by ten. Thus the 
numbers 286; and 49,a54; are divisible by ten since they 
are even and divisible by five. The numbers 89; and 1977; 
are not divisible by ten, since they are odd.

 Rules like these wouldn’t seem “intuitive” because the av-
erage guy watching tv would never associate tearing off 
the last digit and multiplying it by three before subtracting 
the product from the rest of the digits to see if something 
is divisible by five. The average person is not likely to know 
modular maths as well.

7. The decimal system is the dominant system today. What good 
properties make the decimal system superior to other systems?

A. I wrote a post at the DozensOnline forum called “Dare I 
admit good things about decimal?”, which I am gleaning 
to answer this question completely [57].

 I am very nearly certain that decimal is the second- or 
third-best number base for general human computation. 
Let’s start off by examining the prime decomposition of  
10 = 2 · 5. Ten has two distinct prime factors, enabling it to 
have regular numbers that are not powers of prime factors. 
Decimal thus has the ability to arrange primes q coprime 
to 10 under just 4 totatives {1, 3, 7, 9} (see Figure 1.10 a). 
Additionally, decimal has a relatively high density of regu-
lar numbers (see Figures 1.12 a and 1.13 a). Let’s recap the 
decimal digit map:

0 1 2 3 4 5 6 7 8 9
 Figure 7.1. The decimal digit map, with the unit in purple, divisors 

in red, semidivisors in orange, semitotative in yellow, omega related 
totatives in light blue, and opaque totatives in light gray.

0 1 2 3 4 5 6 7 8 9 a b
 Figure 7.2. The duodecimal digit map.

0 1 2 3 4 5 6 7 8 9 a b c d e f
 Figure 7.3. The hexadecimal digit map.

 This article is a sort of rejoicing for the fact we didn’t end up 
with a worse base. Oftentimes, in our effort to illustrate the 
advantages of dozenal, we tend to bash decimal or downplay 
its attributes. Most people likely never examine the number 
base in play; base ten is as taken for granted as breathing 
the air around us. This thread is not an apology for decimal. 
We’ll see that some of the graces decimal enjoys are not nec-
essary given the greater divisibility of other number bases. 
This is simply an acknowledgement that we might have end-

ed up with a worse base of computation. As one who accepts 
that dozenal is the optimum number base for general human 
computation, I believe it is a testament to the strength of twelve 
as a base to objectively examine and acknowledge the beneficial 
qualities and arrangement of decimal. Let’s take a closer look at 
our native number base.

 Decimal sports four divisor digits {0, 1, 2, 5}, and four digits 
out of phase with ten, the totatives {1, 3, 7, 9}. The former 
are aids to computation while the latter tend to present resis-
tance to human intuition. Of the four primes {2, 3, 5, 7} less 
than ten, two are represented in decimal prime factorization, 
the set of prime divisors of ten {2, 5}, and two are left out as 
prime totatives {3, 7}. A user of decimal thus perceives the 
permutations of the prime divisors {2, 5} (especially when 
these numbers are small) as “regular”, friendly numbers, with 
keen, terminating fractions, easy divisibility rules, and simple 
multiplication fact cycles. Along with the digits 2 and 5, the 
digits 0 and 1 are easy to work with in decimal, as they are 
in any base. The digits {4, 8} are semidivisors, friendly and 
clean, enjoying terminating decimal representations of their 
reciprocals. The semitotative digit {6}, product of the prime 
divisor 2 and the prime totative 3, presents a little trouble; 
its reciprocal has a repeating decimal representation, and it 
seems to “skip around” in the multiplication table. Six of the 
ten decimal digits {0, 1, 2, 4, 5, 8} are regular. The other four 
{3, 6, 7, 9} are either totatives or semitotatives which suffer 
recurrent decimal fractions, have more difficult patterns in the 
decimal multiplication table, and cannot use the lesser-signif-
icant place values of an integer to determine divisibility in an 
intuitive way. 

 Ten enjoys two graces; we would fail to be impartial if we ig-
nore these.

 Firstly, if we look at the list of totatives, we see that the last 
one, let’s call ω = (r – 1) or “omega totative”, is 9. This “omega 
digit” is special in all bases: they are always totatives, their re-
ciprocals always enjoy a single repeating digit (.111...) as a dig-
ital fraction, and the “digit sum” divisibility test applies when 
attempting to detect divisibility of an arbitrary integer x by (r 
– 1). Most importantly, these keen qualities are inherited by 
their factors. Nine is the square of three, thus, two decimal to-
tatives {3, 9} enjoy a sort of “phantom divisibility”. The frac-
tions ⅓ and 1⁄9 and their multiples, are simply repeating single-
digit mantissas (⅓ = .333... and 1⁄9 = .111...). As shown before, 
decimal prime divisors include {2, 5} but miss the interposing 
prime 3; this omega-related totative status for 3 sort of fills 
in what’s missing regarding three. The fact that the omega 
totative is the square of three accentuates the “help” decimal 
gets from its neighbor downstairs (9). Hexadecimal enjoys a 
similar quality: both 3 and 5 are omega-related prime tota-
tives, yet 9 = 32, remains “unreachable” and relatively opaque 
to intuitive leverage. To top it off, the decimal semitotative 6 
is lent divisibility rules by 2 and 3, so that we have a means of 
intuitively testing divisibility by 6. So the decimal digits which 
are multiples of three {3, 6, 9} are somewhat covered by the 
benefical position of the composite totative 9, the square of 
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the prime 3, missing from the prime decomposition of ten. In 
decimal, although we do not enjoy direct divisibility by 3, the 
omega totative inheritances allow us to test for 3, and ease the 
recurrent digital fractions associated with the thirds and the 
ninths. If we subtract this list of somewhat ameliorated tota-
tives and semitotatives from the “bad” list {3, 6, 7, 9}, we have 
only one decimal “opaque” totative: 7. (See Appendix C for a 
map of intuitive divisibility rules for 2 ≤ r ≤ 60.)

 Secondly, decimal enjoys relatively compact and optimal aux-
iliary bases. An auxiliary base is one which we use to augment 
or obtain divisibility for reciprocals of numbers outside of a 
number base’s regular numbers, especially for cyclical mea-
surements in a given number base. Notably, we use sexagesi-
mal in the reckoning of the fractions of an hour and minute, 
and the subdivisions of a degree of arc. We use 360 degrees 
in the division of the circle. The use of these numbers lends 
a decimal civilization a “clean” third (i.e. a single-significant-
figure representation: ⅓, natively in decimal = .333..., be-
comes 20 in decimal sexagesimal) and divisions related to 
reciprocals of multiples of 3, the missing prime. You’ll hear 
“see you in ten minutes” and it sounds nice and round, but 
we’re talking about a sixth of an hour, while it would be a 
rare event to hear “see you in twelve minutes” or “a fifth of 
an hour”. The latter phrase ought to be common in a fully 
decimal world, as five is a divisor of ten: if we had fully metric 
time this awkwardness would be forced upon us. Everyone 
knows and loves the 45 and 30 degree angles; these are natu-
ral, geometrically mandated special angles. The fifth-circle is 
assigned a less “clean” 72 degrees, but still an integral number 
of degrees. See the auxiliary base thread for auxiliary bases in 
other number bases, and you’ll see the decimal arrangement 
is pretty good. The highly factorable dozen as a number base 
might use a bit of “help” in resolving fifths and tenths; using 
dozenal sexagesimal (5 on 12) goes too far and overaccen-
tuates the fifths, blunting the natural dozenal resolution of 
thirds and quarters, even halves. Dozenalists would need to 
resort to dozenal “500” (decimal 720) for a minimal auxiliary 
base that guarantees clean halves, thirds, quarters and sixths 
while resolving fifths. Then again, the dozenal rationale for an 
auxiliary base is extension of resolution to the next most com-
mon prime (five) rather than infill in the case of decimal. It’s 
because decimal features a split prime factorization, where the 
gap is minimal and the factorization otherwise compact, that 
60 and 360 are quite so handy. Pure dozenal cyclical divisions 
might tend to appear in a dozenal civilization, purely binary 
divisions perhaps in an octal or hexadecimal civilization, the 
latter suffering all the more because of it.

 In summary, decimal is missing the second most important 
prime, 3, from the set of its prime factors {2, 5}, which is not 
quite as efficient as if it were to have incorporated 3 in place 
of 5 (giving us base 6) or in addition to 5 (yielding base 30). 
Two convenient avenues provide a means for decimal civili-
zation to “get around” the problem of the missing three. The 
benefits presented by the decimal omega totative, 9, are in-
herited by 3 which is a factor of 9. The divisibility test benefits 
are transmitted to 6 via evenness and the digit sum rule for 

three. This means decimal users enjoy a sort of “phantom 
divisibility” for three which enables detection of 3 and 32 
in decimally-expressed integers, and many of the multiples 
of three via compounding the regular intuitive divisibil-
ity tests. Decimal is well-stocked with intuitive divisibility 
tests, delivered by its regular digits and its omega totative, 
covering nine of its ten digits. The second avenue is the 
effective availability of highly factorable auxiliary bases 
which resolve the third, maintain the half and the quarter, 
and only mildly punish the fifth. Decimal civilization tends 
to accept the blunted fifth in its cyclical measure, favoring 
clean halves, thirds, and quarters. Thus, decimal civiliza-
tion is able to work with the first three prime factors satis-
factorily, though the omega totative benefits and the high-
ly factorable auxiliary bases. These aids more or less seem 
to wipe out the decimal blind spot regarding the missing 
prime factor three, for some applications. Don’t get me 
wrong, thirds are still reciprocals of a decimal totative and 
behave that way, but they might have been “opaque” to 
our intuition if our number base weren’t congruent to 1 
(mod 3).

8. Today we divide a circle in 360 degrees and in 2π in radians. 
How would having a system with base 12 benefit the division 
of the circle?

A. This question is apt because it addresses one of two prin-
cipal methods of measuring the world. The first is a mea-
surement of a finite, non-repeating aspect of the world. We 
can use scalar or exponential measure, like feet measuring 
length, or decibels measuring volume of sound. The sec-
ond is the measure of cyclical aspects, like the circle and 
time. For the first aspect, divisibility is not quite as impor-
tant as for the second. A cyclical aspect has a definite im-
plied “whole”, the cycle itself, that demands incorporation 
in any consideration of how to measure it.

 There are three principal ways a duodecimal culture might 
divide the circle (or anything cyclical. For simplicity, let’s 
focus on the circle). The circle can be divided into 2π ra-
dians in any number base. A duodecimal division of the 
circle, whether “pure” (i.e., strictly in parts that are nega-
tive powers of the dozen) or multiples of the dozen (e.g., in 
two dozen parts), is convenient and would seem to be suf-
ficient for most purposes. Finally, the circle can be divided 
using an auxiliary number base, just as the number 360 is 
used in decimal.

 The first option requires no further explanation. Clearly, 
the constant π would have a different appearance. Doz-
enally, π = 3.184 809 493 b91 866 457 3a6 212, (rounded 
to two dozen negative places) still an irrational number.

 The other two benefit from some explanation. The DSA 
has an article called “Validating the Dozenal Measure of 
Angle” in its forthcoming Duodecimal Bulletin (Vol. 50; 
№. 1), retrievable at http://www.dozenal.org/articles/
db50111.pdf. Some of that article is gleaned to help ex-
plain why a dozenally-divided circle is sufficient for most 
purposes in today’s civilization.
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Figure 8.1. The unit circle, 
a circle with a radius of 
one unit of measure. This 
is the basis for this study 
of important angles.

Figure 8.2. The equilateral triangle (left) and the square (right).

Figure 8.3. Bisecting the equilateral triangle and the square.

Figure 8.4. One half of the equilateral triangle and the square.

Figure 8.5. Difference between the shapes in Figure 8.4 are the basis of 
drafting triangles.

0°

15°

30°

45°

60°

75°
90°

Figure 8.6. Two drafting triangles (the bisected cardinal shapes) and a 
parallel bar or T-square can be used to construct all basic angles (the 
two dozen angles at 15° or π/12 radian increments). The straight angle 
at 0° or 180° (0 or π radians) is constructed using the parallel bar or 
T-square alone. A right angle can be produced using the parallel bar or 
T-square and the perpendicular side of either of the drafting triangles. 
The angles of an equilateral triangle (60° or π/3 radians) or the bisec-
tor angles of either the square (45° or π/4 radians) or the equilateral 

triangle (30° or π/6 radians) can be produced using a 
single draftsman’s triangle on a parallel bar. 

The 15° (π/12 radian) or 75° (5π/12 
radian) angles can be produced 

with both triangles on the 
parallel bar. If the drafting 

triangles are flipped or 
mounted on the bot-

tom of the parallel 
bar or T-square, 
the angles in the 
other quadrants 
of the circle can 
be drafted.

 Strictly Dozenal Division of the Circle

 We begin by examining the simple fact that a circle can be pro-
duced by fully rotating a line segment in a plane about one of 
its points (see Figure 8.1). Such a unit circle is the basis for all 
measurements of angle.

 The first regular (two-dimensional) polygon many people will 
think of is the square, which can be made by propagating a line 
of a given length ℓ in a direction perpendicular to its length for 
the same length ℓ (See Figure 8.2). The resultant figure has 
four equal sides with four equal, right angles. This figure can 
be rotated so that exactly 4 such figures contain the circle in 
Figure 8.1—such a circle possesses a radius of ℓ. The square 
can be copied and tiled to fill up an infinite (Euclidean) two-
dimensional plane. Graph paper demonstrates that the tiling 
of squares can be very handy. The Cartesian coordinate sys-
tem with its familiar x and y axes, the street grids of cities like 
Chicago and Phoenix, the arrangement of columns in a big 
box store, all employ orthogonal arrangements of elements. 
Most of the built environment is based on the right angle. Our 
homes, offices, factories, streets, and cities commonly employ 
orthogonal geometry. Thus the right angle, a division of the 
circle into quarters, an angle of 90° (π/₂ radians), is perhaps 
the most important division of the circle in everyday life.

 The simplest regular polygon is a triangle, shown at left in 
Figure 8.2. We can construct a triangle having three sides of 
equal length and three corners with the same angles, thus an 
equilateral triangle, simply by placing a compass at one end of 
a line, drawing a circle as in Figure 8.1, then doing the same 
at the other end. We can draw straight lines from the inter-
sections to both ends of the first lines to obtain a triangle. An 
equilateral triangle, if we were to copy it and cut it out, can be 
used to fill the circle in Figure 8.1: exactly six equilateral tri-
angles with a common vertex can fill the circle. In fact, we can 
tile the equilateral triangle to fill up an infinite plane just like 
the square. We can make equilateral triangle “graph paper”. 
In trigonometry, the cosine of 60° (π/₃ radians) is exactly ½. 
Because the equilateral triangle is the simplest regular poly-
gon, because it can fill two-dimensional planes, and because 
precisely 6 equilateral triangles can fill a circle, it follows that 
such a 3-sided figure is important. Its geometry is thus impor-
tant. The angles we’ve generated are all 60° (π/₃ radians), 1/₆ 
of a full circle. So dividing a circle into six equal angles is an 
important tool.

 We can observe the importance of triangles in general and 
equilateral triangles in particular in our everyday society. 
Structural engineers design trusses, bar joists, and space 
frames with an equilateral arrangement, because the equilat-
eral triangle is the stablest two-dimensional figure. Because its 
sides are equal, it can be mass-manufactured. The equilateral 
triangle is perhaps not as apparent as arrangements made with 
right angles (orthogonality), but it is important in the build-
ing of our everyday structures.

 For the sake of this answer, we’ll call the equilateral triangle 
and the square “cardinal shapes”.

 Figure 8.3 shows these cardinal shapes bisected (cut in half). 
There are three ways to bisect an equilateral triangle using one 
of its points, which are congruent if we rotate the triangle 120° 

Page 12; The Dozenal Society of America Dozenal FAQs · De Vlieger 



180 0

165

345

150

330

135

315

120

300

105

285

195

15

210

30

225

45

24
0

60

23
6

75

27
0

90(2π/₃ radians). There are two ways to bisect a square using 
one of its points, which are congruent if we rotate the square 
90° (π/₂ radians). When we bisect an equilateral triangle, we 
obtain a right triangle with angles that measure 30°, 60°, and 
90° (π/₆, π/₃, π/₂ radians); see Figure 8.4. When we bisect a 
square, we obtain a right triangle with angles measuring 45° 
and 90° (π/₄ and π/₂ radians). These bisections are important 
because they relate a corner of an equilateral triangle with the 
midpoint of its opposite side, or the diametrically-opposed 
corners of a square to one another. In trigonometry, the sine 
of 30° (π/₆ radians) is exactly ½. Thus, 30° and 45°, one doz-
enth and one eighth of a circle, respectively, are of secondary 
importance. We’ll call the bisected equilateral triangle and the 
diagonally bisected square the “bisected cardinal shapes” for 
the sake of this answer.

 Figure 8.5 shows that the difference between the bisecting 
angles of the cardinal shapes is 15° (π/₁₂ radians), one two-
dozenth of a circle. Using 15° or one two-dozenth of a circle 
as a snap-point, one can construct any incidence of the bisect-
ing angles of a square or equilateral triangle. In fact, before the 
advent of computer-aided design and drafting (cadd), drafts-
men commonly used a pair of “45°” and “30°–60°” drafting tri-
angles, along with a T-square or parallel bar precisely to obtain 
the common angles which are two dozenths of a circle (see 
Figure 8.6). Thus, it is not by dozenalist design but sheer util-
ity that the two-dozenth of a circle, or 15° (π/₁₂ radian) angle is 
deemed important.

 To be sure, other regular polygons can be drawn. The pen-
tagon appears in regular three dimensional polyhedra, in the 
dodecahedron and the icosahedron, and in their symmetries. 
Geometrically, it is an important figure, however it cannot tile 
two dimensional space, and is not in common use in every-
day life. The fact that most Americans can name precisely one 
building that is shaped like a pentagon contributes to the case 
that pentagonal arrangements are a curiosity because they are 
rare. The hexagon is important: we can see in Figure 8.2 that 
the outline of the group of triangles inscribed in the left circle 
is a regular hexagon. Thus the hexagon can tile two dimen-
sional planes. Role playing games in the eighties employed 
the hexagonal grid system. There are some curious places 
(the Nassau Community College campus, the Price Tower in 
Bartlesville, Oklahoma, and other Frank Lloyd Wright build-
ings) which are arranged in a triangular-hexagonal geometry. 
The geometry of the hexagon is corollary to that of the equi-
lateral triangle. There certainly are many regular polygons in 
use in human civilization and apparent in nature, but the com-
monest and most important geometries appear to be linked to 
the equilateral triangle and the square.

 Other angles are important. On a map, we commonly hear 
“north northwest” or “east southeast”, the sixteen partitions 
of the circle. The 22½° (π/₈ radian) angle, one sixteenth of 
a circle, is important, perhaps more significant than 15° divi-
sions in cartography. The sixteenth of a circle shouldn’t be 
ignored for this reason.

 The decimal division of the circle into thirty dozen degrees 
is a quite handy tool (See Figure 8.7). Each of the two dozen 
angles related to the equilateral triangle and the square (let’s 
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Figure 8.7. The degree system used in decimal civilization (left). The sys-
tem was set up by our forefathers under a sexagesimal number base. The 
system survives to this day and continues to be used perhaps because all 
the basic angles are represented by decimal semiround or round numbers. 
At right, a closer examination of some key angles under the degree system. 
The right angle and the square bisector angle are 90° and 45° respectively. 
The equilateral angle and its bisector are 60° and 30° respectively. The 
difference betweeen the square and equilateral bisectors is 15°. The six-
teenth of a circle is 22½° or 22°30'. The fifth of a circle measures 72°

Figure 8.8. The circle divided into “temins”, a gross temins to a full circle 
(left). The unitary relationship to the full circle is maintained, the no-
tation for each of the basic angles is simpler, and the number of radi-
ans can be quickly determined by dividing the temins by six dozen, then 
multiplying by π. At right, a closer examination of some key angles ex-
pressed as temins. The right angle and the square bisector angle are 30t 
and 16t respectively. The equilateral angle and its bisector are 20t and 
10t respectively. The difference betweeen the square and equilateral bisec-
tors is 6t. The dozen-fourth of a circle is simply 9t. The fifth of a circle is 
24;9724…t, a repeating digital fraction.

call these two dozen angles “basic angles”) are resolved in the 
system of degrees without fractions. The system neatly ac-
commodates fifths and tenths of a circle, although these are 
comparatively rarely used.

 Under a dozenal system, we may discover that using a strictly 
dozenal division of the circle, perhaps using “temins” (per-
haps abbreviated t) for convenience, neatly accommodates all 
the basic angles as well as the sixteenths of a circle without 
fractions (See Figure 8.8). The basic angles are simply mul-
tiples of 6t. The sixteenths of a circle are multiples of 9t. If we 
desire to “unify” the basic and the sixteenth-circles into one 
system, we might regard 3t (7½°, π/₂₄ radian) as the dozenal 
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“basic angle”. We surrender the fifths (pentagonal symmetry) and tenths to re-
peating fractions, but maintain a fairly simple measure of the commonest angles. 
A strictly dozenal division of a circle, as presented by our Founders, thus appears 
sound and sufficient for everyday use.

 Auxiliary Bases

 In today’s world, the common division of the circle into 360 degrees (°) facilitates 
the division of the circle into “clean” thirds, sixths, and twelfths. [60]

 An “auxiliary base” is one that we use to improve divisibility for cyclical measure-
ments in a given number base. Let’s call the number base that we assume every-
one is generally using the “general base” or “the number base in play”. In today’s 
world, that would be the decimal. 

 The auxiliary bases are an ideal tool for bases that are “deficient” in a given required 
factor, like decimal or tetradecimal (base 14), and are less useful for highly factor-
able bases like dozenal. Due to the fact that sexagesimal is based on a highly factor-
able number (60) that is the product of the first three primes {22, 3, 5}, an auxiliary 
base is perhaps not required at all. 

 There are a few features of an auxiliary base we should examine. Firstly, the aux-
iliary base should be compact, perhaps involving no more than three figures as 
expressed by the number base in play, to be easily-borne in mind. There can 
be various scales of auxiliary bases giving a range of fineness. Consider decimal 
12/24 for hours, 60 for minutes, and 360 for degrees of arc, each yielding levels of 
fineness of division. 

 Secondly, we are attempting to “resolve” both factors which are not present in 
a number base, such as three in decimal or five in dozenal, as well as maintain 
the “clean” native divisions furnished by the divisors of the general base, such as 
halves in both bases, dozenal thirds and decimal fifths. We may elect to “sacri-
fice” the “cleanliness” to “buy” resolution. Decimal sexagesimal does render clean 
fifths (1∕5 = 0.2 = 12, a single-place fraction in the general base becomes a 2-place 
expression in the auxiliary base) but they are slightly less resolved than thirds (⅓ 
= 0.333... = 20, one significant digit in a 2-place auxiliary expression); the general 
base’s resolution of quarters are maintained by the auxiliary (¼ = 0.25 = 15). 

 Thirdly, the prime factorization of a number base “extracts” power from a highly 
factorable auxiliary base candidate. Generally, the superior highly composite 
numbers {2, 6, 12, 60, 120, 360, 2520, 5040,...} serve as decent auxiliary bases. 
Decimal, due to its deficiency regarding three, can sacrifice a little resolution of 
the less-important fifth to buy clean thirds, so the decimal auxiliary bases prove 
to be more compact. A base like hexadecimal is so rich in powers of two that the 
auxiliary base candidates need to include more multiplicity for the prime factor 
two than in other bases simply to overcome the hexadecimal “extraction”. Hexa-
decimal users will likely be reluctant to sacrifice the clean eighths and sixteenths 
that enable “rolling” digits (doubling or halving reaching shifts the figure up or 
down a place every four iterations, e.g.: 3 → 6 → c → 18 → 30) but may be able to 
live with a less clean sixteenth to buy thirds. In octal and hexadecimal, one may be 
interested not only in resolution of thirds, but also fifths. Ultimately, the auxiliary 
bases that enjoy application are a societal choice; in decimal somehow we find 
sixty more convenient than one hundred twenty. It may not be apparent to us 
that a hexadecimal society would elect to give up clean eighths and sixteenths for 
resolution of thirds and fifths, implying an auxiliary base of hexadecimal “f0” = 
decimal 240 (see Figure 8.9), “3c0” = decimal 960; the large “f00” = 3840 may be 
better but is certainly finer.

 The easiest thing to do to get a highly divisible auxiliary base in any general base 
is to multiply the base r by sixty. This delivers “sexagesimal cleanliness” to the 
base, e.g. clean halves, thirds, quarters, fifths, and sixths, etc. One can then elect 
to sacrifice some clean resolution of one factor, normally a native factor (other-
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“50” = decimal 60
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Figure 8.11. Dozenal auxiliary base,  
“260” = decimal 360
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Figure 8.12. Dozenal auxiliary base,  
“500” = decimal 720
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wise why use an auxiliary if you torpedo one of its prime 
factors?), to optimize the size or achieve a target scale. 
Decimal uses unmodified sixty, giving clean halves, thirds, 
quarters, fifths, sixths, etc., “living with” a blunted quarter 
and fifth (with respect to sexagesimal). The long hundred 
(120) would yield a clean quarter but still requiring a less 
clean fifth, at the expense of grander scale. To get a totally 
clean fifth, we would need to use 600, which gives us an-
other power of five, requiring no sacrifices, if sexagesimal 
cleanliness is the required standard.

 Dozenal is taxed because it has a greater multiplicity of 
two and a compact, gapless prime factorization. Unmodi-
fied sexagesimal will prove deficient, yielding resolution of 
fifths at the expense of all the resolution of quarters, thirds, 
and even halves that users of dozenal will likely see as sec-
ond nature. The use of the auxiliary bases we employ in 
decimal, such as 60 and 360, are unsatisfactory in duodeci-
mal (see Figures 8.10 for 60 and 8.11 for 360). Half a circle 
would subtend 26; dozenal degrees (30 decimal), with 
five dozen degrees to the circle. This implies that a doz-
enal hour (if a dozenal society would use hours) would not 
likely get divided into sixty minutes. Half a circle of 130; 
degrees (180 decimal) would be fine, but 76; degrees (90 
decimal) for a quarter circle would be hard to live with.

 To guarantee sexagesimal cleanliness in base twelve, we 
can use 60r, thus duodecimal 500; (decimal 720, see Figure 
8.12) to achieve a small scale auxiliary base. The problem 
we’ll have with dozenal is the only factors we can sacrifice 
are the more useful third, half, and quarter, to buy fifths. 
In base ten, we can bargain our fifth to get a good third. So 
dozenal is kind of stuck with a relatively large scale auxil-
iary base, while those for decimal are relatively compact.

 Summary

 The use of duodecimal as the civilizational number base of 
computation would not affect the use of radians. A circle 
divided purely dozenally, that is, in a power of twelve, is 
sufficient to replace the 360° circle. The “clean” resolu-
tion of fifths and tenths (72° and 36°, respectively) would 
become more complicated (24.9724…° and 12.4972…°) 
but this might be tolerable. A better division of a circle 
would be a duodecimal 500;° circle (500; dozenal = 720 
decimal). This would resolve all the angles that the deci-
mal 360° circle, and still maintain duodecimally-round 
numbers for the other major angles.

9. How if any would having a different system affect higher 
mathematics, above the fundamentals?

 Using a different number base would have a limited effect 
on higher mathematics. Arithmetic is different, but oper-
ates using the same rules. Constants would need conver-
sion. Calculus would not be any different.

10. If the world of numbers was to start over, which number sys-
tem would be best for humans to choose to use? (doesn’t have 
to be decimal, or duodecimals, could be any)

 [The following represents the author’s opinion and is not 
necessarily the opinion of the Dozenal Society of America].

 I think the world actually had it right as it started. I wouldn’t 
have changed the early development of numeracy in the 
world, only the way it was represented. The world did not 
begin by using sexagesimal (base sixty), but that base was 
one of the earliest technologies used. Our forefathers had 
it right; so right that we still use sixty minutes in an hour, 
sixty seconds in a minute, and a circle of 360 degrees!

 One of the earliest number systems the world produced 
was the Mesopotamian sexagesimal system. It had sixty 
digits that were composed of 6 “decade” figures and ten 
“unit figures” shown in Figure 10.1 below:

0☐ 1☐ 2☐ 3☐ 4☐ 5☐
☐0 0 0 10 a 20 k 30 u 40 E 50 O
☐1 1 1 11 b 21 l 31 v 41 F 51 P
☐2 2 2 12 c 22 m 32 w 42 G 52 Q
☐3 3 3 13 d 23 n 33 x 43 H 53 R
☐4 4 4 14 e 24 o 34 y 44 I 54 S
☐5 5 5 15 f 25 p 35 z 45 J 55 T
☐6 6 6 16 g 26 q 36 A 46 K 56 U
☐7 7 7 17 h 27 r 37 B 47 L 57 V
☐8 8 8 18 i 28 s 38 C 48 M 58 W
☐9 9 9 19 j 29 t 39 D 49 N 59 X

 Figure 10.1 The ancient Mesopotamian sexagesimal digits were 
composed of five decade-figures and nine unit-figures. With these 
fourteen figures, sixty unique digits were composed. One may find the 
corresponding example of an ancient Mesopotamian digit by finding 
the decade-figure in the header row, then using the leftmost column, 
finding the unit-figure. By running a finger to the column of the high 
rank figure, the unique sexagesimal digit can be identified. Example: 
decade-figure 5☐ and unit-figure ☐4 renders the digit-54: S.

 My opinion is that this system is even stronger than duo-
decimal, but our forefathers’ numerals weren’t. (See Fig-
ure 10.1 [61]) I think that the senary (base six) decade-fig-
ures and the decimal unit-figures of what I call “6-on-ten” 
sexagesimal may rival duodecimal numeration. We are 
familiar with the 6-on-ten arrangement, as it is seen on 
our digital clocks, in degrees-minutes-seconds notation 
for angles. If we were to simply write numbers in 6-on-ten 
without semicolons, we would have a fine tool for general 
intuitive human computation. Example, take the time for 
sunset today: 4:40 pm. If we wrote “1640” we would then 
be representing the time in 6-on-ten sexagesimal. Count-
ing from the least significant digit, every odd digit is a deci-
mal unit-figure, while every even digit is a senary decade-
figure. As long as we keep that in mind, we can perform 
arithmetic using the power of a number base that is even 
stronger than duodecimal. The problem is that people 
may not be in the habit of regarding one digit as “senary” 
and the other as “decimal” and could produce error. Most 
people would be confused by the arrangement. We could 
stack the decade-figures on the unit-figures like this: gE. 
This is actually closer to having pure sexagesimal digits, 
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and is a modern analog to what our forefathers were doing 
five-thousand-plus years ago in Mesopotamia: they would 
have written “gE” as “gE”. Also note that the sexagesimal 
number gE = 16(60) + 40 = decimal 1000. 

 I have used “pure” sexagesimal extensively using the follow-
ing “arqam” numerals [62, 63] invented in 1992:

0 0 10 a 20 k 30 u 40 E 50 O
1 1 11 b 21 l 31 v 41 F 51 P
2 2 12 c 22 m 32 w 42 G 52 Q
3 3 13 d 23 n 33 x 43 H 53 R
4 4 14 e 24 o 34 y 44 I 54 S
5 5 15 f 25 p 35 z 45 J 55 T
6 6 16 g 26 q 36 A 46 K 56 U
7 7 17 h 27 r 37 B 47 L 57 V
8 8 18 i 28 s 38 C 48 M 58 W
9 9 19 j 29 t 39 D 49 N 59 X

 Figure 10.2. The first sixty “Arqam” numerals, used to represent 
“pure” sexagesimal.

 Using the example from above, I can write the decimal 
number 1000 as gE. So we can write the sexagesimal ver-
sion of decimal 1000 in the following ways:

1000 16:40 1640 gE gE gE

 I use these sixty numerals because they express sexagesi-
mal in a “pure” manner, without  decimal “contamination” 
of the properties of sexagesimal from the 6-on-ten arrange-
ment. If I write the multiples of six in stacked 6-on-ten sex-
agesimal, I get the familiar-looking decimal sequence. But 
using arqam, I have single digits that divorce the decimal 
way of seeing sixes. Remember that 3 is a decimal semito-
tative, but in base sixty, six is a divisor.

0 6 c i o u A G M S
0 6 c i o u A G M S

 Duodecimal has an advantage over decimal because it has 
more divisors. The particular small, consecutive prime doz-
enal divisors {2, 3} yield greater numbers of dozenal regu-
lar numbers while minimizing resistance from totatives. 
Sexagesimal has a dozen divisors {1, 2, 3, 4, 5, 6, 10, 12, 15, 
20, 30, 60} compared to only six for twelve {1, 2, 3, 4, 6, 
12}. We used 256 as a benchmark to compare the regular 
numbers of bases ten, twelve, and sixteen. Here is a list of 
the 52 sexagesimal regular numbers less than 256 [64]:

 {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 
32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 
108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 
216, 225, 240, 243, 250, 256}

 Recall that decimal sports 21, dozenal 28, hexadecimal just 
9 regular digits below 256.

 Nothing lasts forever and empires fall. I visited the Met-
ropolitan Museum of Art in New York City last year. 
There were records that had the date “3100 bc” on it, so 
I thought “3100 years ago.” No, 5100 years ago! The tab-
let Plimpton 322 [65], produced around 3800 years ago, on 
which is scribed some sexagesimal numbers in cuneiform. 

The tablet implies that the Babylonians were familiar with 
the Pythagorean theorem well before Pythagoras! There 
are very many records dating from this time. Base sixty was 
the ancient Mesopotamian “decimal” in that it dominated 
society, and the users were sometimes pondering relative-
ly complex mathematics. I believe we ought never to have 
changed what our forefathers started.

11. What numerals would be used by a society that used duodeci-
mal rather than decimal?

 Clearly a number base r > 10 will need more than ten nu-
merals if we are using standard positional notation, where 
one numeral (symbol) represents one digit 0 ≤ n < r. The 
digit “0” represents congruency with the number base r, 
and rarely represents actual zero (i.e., when “0” stands 
alone as an integer) [66]. In base twelve, we need twelve nu-
merals. We may use the decimal numerals {0, 1, 2, …, 9} as 
they are, and simply append two “transdecimal” numerals 
that symbolize digit-ten and digit-eleven: this is referred to 
by the Dozenal Society of America (dsa) as the “Principle 
of Least Change”[67]. Here are six examples [68]:

Least Change 0 1 2 3 4 5 6 7 8 9 10 11

Alphanumeric 0 1 2 3 4 5 6 7 8 9 a b
Sir Issac Pitman 0 1 2 3 4 5 6 7 8 9 a b
W. A. Dwiggins 0 1 2 3 4 5 6 7 8 9 a b

“Bell” via Churchman 0 1 2 3 4 5 6 7 8 9 a b
R. Greaves / D. James 0 1 2 3 4 5 6 7 8 9 a b
M. De Vlieger “Arqam” 0 1 2 3 4 5 6 7 8 9 a b

 Alternatively, we can create an entirely new set of numer-
als for dozenal such as six examples of the “Principle of 
Separate Identity” below [68]:

Separate Identity 0 1 2 3 4 5 6 7 8 9 10 11

F. Ruston 0 1 2 3 4 5 6 7 8 9 a b
R. J. Hinton 0 1 2 3 4 5 6 7 8 9 a b

P. D. Thomas 0 1 2 3 4 5 6 7 8 9 a b
S. Ferguson (1) 0 1 2 3 4 5 6 7 8 9 a b

W. Lauritzen (1) 0 1 2 3 4 5 6 7 8 9 a b
M. De Vlieger (2) 0 1 2 3 4 5 6 7 8 9 a b

 A number base r may produce exactly r numerals using 
elements. The following example has a numeral for zero 
(0), then builds the numerals 1 through 5 using horizontal 
strokes (1), then adds a vertical stroke (6) to each digit 0 
< n ≤ 5 to produce each digit n ≥ 6. There are thus only 
three elements that produce the dozen digits necessary to 
represent base twelve.

Elements 0 1 2 3 4 5 6 7 8 9 10 11

R. Marino 0 1 2 3 4 5 6 7 8 9 a b

 This scheme is similar to the vigesimal (base-twenty) nu-
merals used by the Mayans or the sexagesimal (base-sixty) 
numerals used by the ancient Mesopotamians.

 The dsa does not endorse any particular symbols for the 
digits ten and eleven. For uniformity in publications we 
use Dwiggins “dek” (A) for ten and his “el” (B) for elev-
en. Whatever symbols are used, the numbers commonly 
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called “ten”, “eleven” and “twelve” are pronounced “dek”, “el” 
and “dough” in Dwiggin’s duodecimal system.

 When it is not clear from the context whether a numeral is 
decimal or dozenal, we use a period as a unit point for base ten 
and a semicolon, or Humphrey point, as a radix point for base 
twelve. 

 Thus ½ = 0;6 = 0.5, 2⅔ = 2;8 = 2.666..., 6⅜ = 6;46 = 6.375.

 The Dozenal Society of Great Britain (dsgb) uses Sir Issac 
Pitman’s transdecimal numerals, (a) for digit-ten and (b) for 
digit-eleven.

 The dsa welcomes experimentation with numeral forms, pro-
viding various resources at its website [68, 69, 70] that intend to 
aid those considering producing their own numerals. Take a 
look at this webpage at the dsa website for more information 
on duodecimal numerals:

 http://www.dozenal.org/articles/numerals.html.•••
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Figure 1.15. A plot to scale with φ(r)/r on the vertical axis versus the maximum distinct prime divisor pmax on the horizontal axis. The pmax-smooth 
numbers lie along a vertical line at each value of pmax. The boundary of minimum values of φ(r)/r defined by primorials is indicated by a broken red 
line. The boundary of maximum values of φ(r)/r defined by primes is shown in blue. All other composite numbers r that have pmax as the maximum 
distinct prime divisor inhabit the region between the boundaries. (See Figure 1.11 for detail at 2 ≤ pmax ≤ 13.)



Appendix A: Multiplication Tables Analyzed by Digit Type for Bases 8 ≤ r ≤ 16
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1 2 3 4 5 6 7 10

2 4 6 10 12 14 16 20

3 6 11 14 17 22 25 30

4 10 14 20 24 30 34 40

5 12 17 24 31 36 43 50

6 14 22 30 36 44 52 60

7 16 25 34 43 52 61 70

10 20 30 40 50 60 70 100

1 2 3 4 5 6 7 8 9 a 10

2 4 6 8 a 11 13 15 17 19 20

3 6 9 11 14 17 1a 22 25 28 30

4 8 11 15 19 22 26 2a 33 37 40

5 a 14 19 23 28 32 37 41 46 50

6 11 17 22 28 33 39 44 4a 55 60

7 13 1a 26 32 39 45 51 58 64 70

8 15 22 2a 37 44 51 59 66 73 80

9 17 25 33 41 4a 58 66 74 82 90

a 19 28 37 46 55 64 73 82 91 a0

10 20 30 40 50 60 70 80 90 a0 100

1 2 3 4 5 6 7 8 9 a b c d 10

2 4 6 8 a c 10 12 14 16 18 1a 1c 20

3 6 9 c 11 14 17 1a 1d 22 25 28 2b 30

4 8 c 12 16 1a 20 24 28 2c 32 36 3a 40

5 a 11 16 1b 22 27 2c 33 38 3d 44 49 50

6 c 14 1a 22 28 30 36 3c 44 4a 52 58 60

7 10 17 20 27 30 37 40 47 50 57 60 67 70

8 12 1a 24 2c 36 40 48 52 5a 64 6c 76 80

9 14 1d 28 33 3c 47 52 5b 66 71 7a 85 90

a 16 22 2c 38 44 50 5a 66 72 7c 88 94 a0

b 18 25 32 3d 4a 57 64 71 7c 89 96 a3 b0

c 1a 28 36 44 52 60 6c 7a 88 96 a4 b2 c0

d 1c 2b 3a 49 58 67 76 85 94 a3 b2 c1 d0

10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 100

Base 8 (Octal) Base 11 Base 14

1 2 3 4 5 6 7 8 10

2 4 6 8 11 13 15 17 20

3 6 10 13 16 20 23 26 30

4 8 13 17 22 26 31 35 40

5 11 16 22 27 33 38 44 50

6 13 20 26 33 40 46 53 60

7 15 23 31 38 46 54 62 70

8 17 26 35 44 53 62 71 80

10 20 30 40 50 60 70 80 100

1 2 3 4 5 6 7 8 9 a b 10

2 4 6 8 a 10 12 14 16 18 1a 20

3 6 9 10 13 16 19 20 23 26 29 30

4 8 10 14 18 20 24 28 30 34 38 40

5 a 13 18 21 26 2b 34 39 42 47 50

6 10 16 20 26 30 36 40 46 50 56 60

7 12 19 24 2b 36 41 48 53 5a 65 70

8 14 20 28 34 40 48 54 60 68 74 80

9 16 23 30 39 46 53 60 69 76 83 90

a 18 26 34 42 50 5a 68 76 84 92 a0

b 1a 29 38 47 56 65 74 83 92 a1 b0

10 20 30 40 50 60 70 80 90 a0 b0 100

1 2 3 4 5 6 7 8 9 a b c d e 10

2 4 6 8 a c e 11 13 15 17 19 1b 1d 20

3 6 9 c 10 13 16 19 1c 20 23 26 29 2c 30

4 8 c 11 15 19 1e 22 26 2a 2e 33 37 3b 40

5 a 10 15 1a 20 25 2a 30 35 3a 40 45 4a 50

6 c 13 19 20 26 2c 33 39 40 46 4c 53 59 60

7 e 16 1e 25 2c 34 3b 43 4a 52 59 61 68 70

8 11 19 22 2a 33 3b 44 4c 55 5d 66 6e 77 80

9 13 1c 26 30 39 43 4c 56 60 69 73 7c 86 90

a 15 20 2a 35 40 4a 55 60 6a 75 80 8a 95 a0

b 17 23 2e 3a 46 52 5d 69 75 81 8c 98 a4 b0

c 19 26 33 40 4c 59 66 73 80 8c 99 a6 b3 c0

d 1b 29 37 45 53 61 6e 7c 8a 98 a6 b4 c2 d0

e 1d 2c 4b 4a 59 68 77 86 95 a4 b3 c2 d1 e0

10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 100

Base 9 Base 12 (Duodecimal) Base 15

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

1 2 3 4 5 6 7 8 9 a b c 10

2 4 6 8 a c 11 13 15 17 19 1b 20

3 6 9 c 12 15 18 1b 21 24 27 2a 30

4 8 c 13 17 1b 22 26 2a 31 35 39 40

5 a 12 17 1c 24 29 31 36 3b 43 48 50

6 c 15 1b 24 2a 33 39 42 48 51 57 60

7 11 18 22 29 33 3a 44 4b 55 5c 66 70

8 13 1b 26 31 39 44 4c 57 62 6a 75 80

9 15 21 2a 36 42 4b 57 63 6c 78 84 90

a 17 24 31 3b 48 55 62 6c 79 86 93 a0

b 19 27 35 43 51 5c 6a 78 86 94 a2 b0

c 1b 2a 39 48 57 66 75 84 93 a2 b1 c0

10 20 30 40 50 60 70 80 90 a0 b0 c0 100

1 2 3 4 5 6 7 8 9 a b c d e f 10
2 4 6 8 a c e 10 12 14 16 18 1a 1c 1e 20
3 6 9 c f 12 15 18 1b 1e 21 24 27 2a 2d 30
4 8 c 10 14 18 1c 20 24 28 2c 30 34 38 3c 40
5 a f 14 19 1e 23 28 2d 32 37 3c 41 46 4b 50
6 c 12 18 1e 24 2a 30 36 3c 42 48 4e 54 5a 60
7 e 15 1c 23 2a 31 38 3f 46 4d 54 5b 62 69 70
8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80
9 12 1b 24 2d 36 3f 48 51 5a 63 6c 75 7e 87 90
a 14 1e 28 32 3c 46 50 5a 64 6e 78 82 8c 96 a0
b 16 21 2c 37 42 4d 58 63 6e 79 84 8f 9a a5 b0
c 18 24 30 3c 48 54 60 6c 78 84 90 9c a8 b4 c0
d 1a 27 34 41 4e 5b 68 75 82 8f 9c a9 b6 c3 d0
e 1c 2a 38 46 54 62 70 7e 8c 9a a8 b6 c4 d2 e0
f 1e 2d 3c 4b 5a 69 78 87 96 a5 b4 c3 d2 e1 f0

10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0 100

Base 10 (Decimal) Base 13 Base 16 (Hexadecimal)
Multiplication tables for bases 8 through 16. Multiples of the base r are circled. Product lines of divisors and semidivisors are shown in red and orange respectively. 
Yellow indicates the products of semitotatives. Light blue and light green indicate products of omega- and alpha-related totatives. The digit 2 in odd bases is both 
an alpha- and an omega-related totative. Light purple shows the products of 2 in an odd base. Light gray indicates product lines for “opaque” totatives in base r. 
In these diagrams the unit appears as an opaque totative, though its product line is trivial. See http://www.dozenal.org/articles/DSA-Mult.pdf for multiplication 
tables in bases 2 – 30, 32, 36, 40, and 60.



2 0 1

3 0 1 2

4 0 1 2 3

5 0 1 2 3 4

6 0 1 2 3 4 5

7 0 1 2 3 4 5 6

8 0 1 2 3 4 5 6 7

9 0 1 2 3 4 5 6 7 8

10 0 1 2 3 4 5 6 7 8 9

11 0 1 2 3 4 5 6 7 8 9 a

12 0 1 2 3 4 5 6 7 8 9 a b

13 0 1 2 3 4 5 6 7 8 9 a b c

14 0 1 2 3 4 5 6 7 8 9 a b c d

15 0 1 2 3 4 5 6 7 8 9 a b c d e

16 0 1 2 3 4 5 6 7 8 9 a b c d e f

17 0 1 2 3 4 5 6 7 8 9 a b c d e f g

18 0 1 2 3 4 5 6 7 8 9 a b c d e f g h

19 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i

20 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j

21 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k

22 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l

23 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m

24 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n

25 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o

26 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p

27 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q

28 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r

29 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s

30 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t

31 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u

32 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v

33 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w

34 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x

35 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y

36 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z

37 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A

38 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B

39 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C

40 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D

41 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E

42 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F

43 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G

44 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H

45 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I

46 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J

47 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K

48 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L

49 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M

50 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N

51 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O

52 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P

53 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q

54 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R

55 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S

56 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T

57 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U

58 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V

59 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W

60 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X

Appendix B: Digit Maps for Bases 2 ≤ r ≤ 60

Legend
1 Unit, 1 | r and 1  r
d Divisor, primes dp | r, and composites dc | r, the set of divisors of r = Dr

sd Semidivisor, a composite sd | kr, where its divisors ds  Dr

st Semitotative, a composite st | kr, where at least one of its divisors ds  Dr

t Totative, primes tp  r, and composites tc  r, the set of totatives of r = Tr

tα α-Totative, tα  Tr and tα | (r + 1)
tω ω-Totative, tω  Tr and tω | (r – 1)
tαω α/ω-Totative, tαω  Tr , tαω | (r + 1), and tαω | (r – 1)

1

tP

tC

st sd

dC

dPtω

tα

See the following web pages for PDF versions of  digit maps and 
digit spectra (http://www.vincico.com/arqam/digits/Digit-
BasePres.pdf), or an extension to base 120 (http://www.vincico.
com/arqam/DigitBaseRelationship.pdf)
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r n
2 0 1

3 0 1 2

4 0 1 2 3

5 0 1 2 3 4

6 0 1 2 3 4 5

7 0 1 2 3 4 5 6

8 0 1 2 3 4 5 6 7

9 0 1 2 3 4 5 6 7 8

10 0 1 2 3 4 5 6 7 8 9

11 0 1 2 3 4 5 6 7 8 9 a

12 0 1 2 3 4 5 6 7 8 9 a b

13 0 1 2 3 4 5 6 7 8 9 a b c

14 0 1 2 3 4 5 6 7 8 9 a b c d

15 0 1 2 3 4 5 6 7 8 9 a b c d e

16 0 1 2 3 4 5 6 7 8 9 a b c d e f

17 0 1 2 3 4 5 6 7 8 9 a b c d e f g

18 0 1 2 3 4 5 6 7 8 9 a b c d e f g h

19 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i

20 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j

21 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k

22 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l

23 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m

24 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n

25 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o

26 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p

27 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q

28 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r

29 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s

30 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t

31 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u

32 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v

33 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w

34 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x

35 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y

36 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z

37 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A

38 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B

39 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C

40 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D

41 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E

42 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F

43 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G

44 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H

45 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I

46 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J

47 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K

48 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L

49 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M

50 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N

51 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O

52 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P

53 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q

54 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R

55 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S

56 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T

57 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U

58 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V

59 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W

60 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X

Legend
1 Unit, a divisor of all numbers
d Divisor, examination of 1 rightmost place value (the divisor rule)
sd Semidivisor, examination of several rightmost place values (the semidivisor rule)
st Semitotative, without an intuitive divisibility rule
t Totative, without an intuitive divisibility rule
tα α-Totative, the Alternating Sum Rule
tω ω-Totative, the Digit Sum Rule
tαω α/ω-Totative, both the Alternating Sum and the Digit Sum Rules
ndα α-Inheritor, divisibility rules inherited from one or more { tα } and one {d, sd}
ndω ω-Inheritor, divisibility rules inherited from one or more { tω } and one {d, sd}
ndαω α/ω-Inheritor, divisibility rules inherited from one or more { tαω } and one {d, sd}
nαω α/ω-Compound, divisibility rules inherited from one or more each of { tα } and { tω }

This work was produced in February-March 2011 in Saint Louis, Missouri by Michael 
Thomas DeVlieger, aia, aiga. The original source for this work is http://www.vincico.
com/arqam/DigitBaseRelationship.pdf. The work was updated 28 June 2011. Con-
tact dozenal@vincico.com for questions or to report errata. Dan Simon pointed out 
the distinction between the α/ω-Inheritor and the α/ω-Compound 25 June 2011.
This document may be freely shared under the terms of the Creative Commons At-
tribution License, Version 3.0 or greater. See http://creativecommons.org/licenses/
by/3.0/legalcode regarding the Creative Commons Attribution License.

Appendix C: Intuitive Divisibility Tests for Digits of Bases 2 ≤ r ≤ 60
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