The Fishnet Sequence.

oEIS A359369, a sequence of David Sycamore • Megavissey, England.

Michael Thomas De Vlieger • St. Louis, Missouri • 29 December 2022.

Abstract.

We examine a simple sequence that exhibits trajectories in scatterplot associated with binary weight, implying that a given value m appears at most $\tau(m)$ times in the sequence.

Introduction.

Consider Oeis A120(x), the binary weight of x, that is, the sum of the binary digits or bits of x_{2}, the binary expansion of x. We consider A359369, a sequence of Sycamore defined as follows:

$$
\begin{gathered}
a(1)=1 . \text { For } n>1, a(n)=\sum_{k=1}^{n} \mathrm{~A} 120(a(k)) \\
\text { such that A } 120(a(k))=\text { A1 } 120(a(n)) .
\end{gathered}
$$

We can rewrite this definition in logic thus:

$$
\begin{gathered}
\text { Let } w=\operatorname{A120}(n) . \\
\text { Define function } f(n)=w \times c(w), \\
\text { where } c(w)=|k \in a(1 \ldots n)|: \operatorname{A120}(k)=w . \\
a(1)=1, a(n)=f(a(n-1)) .
\end{gathered}
$$

The sequence begins as follows:

$$
\begin{aligned}
& 1,1,2,3,2,4,5,4,6,6,8,7,3,10,12,14,6, \\
& 16,8,9,18,20,22,9,24,26,12,28,15,4,10,30 \text {, } \\
& 8,11,18,32,12,34,36,38,21,24,40,42,27,12 \text {, } \\
& 44,30,16,13,33,46,20,48,50,36,52,39,24, \\
& 28,42,45,32,14,48,56,51,36,58, \ldots
\end{aligned}
$$

This sequence has a curious plot that resembles a fishnet. It is clear that $a(n)$ is odd iff both w and $c(w)$ odd.

Lemma 1. Let trajectory $T_{w} \ni a(j): \operatorname{A120}(a(j))=w$. Suppose A120 $(a(i))=\operatorname{A120}(a(j))=w, i<j$, and that there is no $a(k), i<k<j$, such that A120 $(a(k))=w$. Then $c(w, j)=c(w, i)+1$.
Proof. Suppose not. Suppose that $c(w, j) \leq c(w, i)$. This would suggest that A120 $(a(j))=w$ did not increase the number of terms in $a(1 \ldots j)$ that have binary weight w, contradicting the definition of $c(w)$. Now suppose that $c(w, j)>c(w, i)+1$. This implies that there is at least one term $a(k), i<k<j$, such that A120 $(a(k))=w$, contradicting the proposition. In fact, if $a(j)$ represents the next number in the sequence after $a(i)$ with the same binary weight w, then the proposition must be true.

Corollary 1.1. Let $T_{w}(x)$ be the x-th term in a that has binary weight w. The mapping $c: T_{w}(x) \rightarrow y$ increments as x increments, and is tantamount to the sequence of natural numbers A27. So long as we have numbers with binary weight w, the trajectory T_{w} represents a set that is countably infinite.

Define sequence $S_{w}=\{m: \operatorname{A120}(m)=w\}$. Therefore, $S_{0}=\{0\}, S_{1}=$ A79, $S_{2}=$ A018900, $S_{3}=$ A014311, etc.
Corollary 1.2. The sequence consists of trajectories as follows:

$$
T_{w} \ni a(j): a(j) \in S_{w} .
$$

Corollary 1.3. Since input for the sequence function is the previous output, the sequence runs through $w \in \mathbb{N}$, therefore the sequence is infinite and well-defined.

It is evident the product m appears in the sequence no more than $\tau(m)$ times. From observation, the last time $m>1$ appears in this sequence is immediately following a number with binary weight m.

Figure 1: $\log \log$ scatterplot of $a(n)$ for $n=1 \ldots 2^{16}$, with a color function showing $w=$ A120(a(n-1)) with $w=1$ in red, $w=2$ in orange, $\ldots, w=15$ in magenta.

Conclusion.

The sequence A359369 is a simple study of the product of the "payload function" $\operatorname{A120}(a(n-1))=m$ and the cardinality of m in $a(1 \ldots n-1)$. Multiplication introduces the maximum cardinality $\tau(m)$ and parity patterns in the dataset. Open questions relate to the pairings of cardinality $c(w)$ and weight w, which was studied in part

References:

[1] N. J. A. Sloane, The Online Encyclopedia of Integer Sequences, retrieved December 2022.

Code:
[C1] Generate A359369:

```
nn = 2^10; c[_] = 0; a[1] = 1;
f[n_] := DigitCount[n, 2, 1];
Do[Set[k, (c[#]++; # c[#]) &[f[#]]] &@ a[n - 1];
    Set[a[n], k], {n, 2, nn}];
Array[a, nn]
```

Concerns sequences:
Aooooo 5: Divisor counting function $\tau(n)$.
Aoooo 79: Powers of 2.
A000 120: Binary or Hamming weight WT(n).
A014311: Sums of 3 distinct powers of 2 .
AO 18900: Sums of 2 distinct powers of 2 .
Document Revision Record:
2022 1229: Draft.
2023 0216: Version 1.

