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Abstract.

Scott Shannon wrote a sequence that requires all prime divisors of 
the sum of 2 adjacent terms to divide the following term. This leads 
to a sequence that exhibits phases wherein all terms are divisible by 
a “sticky” prime, raising the bar for numbers that endeavor to enter 
the sequence. The phases show in scatterplot as a series of escalat-
ing scallops. The sticky primes conglomerate into a sticky composite 
factor that continues to grow as n increases. This sticky factor yields 
interesting implications for subsequent terms in the sequence.

Introduction.

Shannon defines A359557 = a to be the following sequence:

a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number 
which has not appeared such that all the distinct prime factors of 
a(n–2) + a(n–1) are factors of a(n). 

For convenience, we set the following:

i = a(n–2), j = a(n–1), s = i + j, and κ = rad(s) = A7947(s).

We consider the candidate k for a(n), and define function c(x) to 
be TRUE if a(j) = x, j < n else FALSE. We summarize the sequence 
definition as follows:
 a(n) = n, n ≤ 2; for n > 2,  [f1]
 a(n) =  ⍃ m(κ) κ : ¬c(m(κ) κ). [axiom 1]

We can efficiently generate the sequence with a program that stores 
c(x) and m(x), initializing these globally to false and 1, respectively. 
Once a(n) = k = m(κ) κ, we set c(k) to true, and increment m(κ).

a(3) = 3 since s = 3 and m(3) = 1.
a(4) = 5 since s = 5 and m(5) = 1.
a(5) = 4 since s = 8 thus κ = 2, and m(2) = 2 (since a(2) = 2).
a(6) = 6 since s = 9 thus κ = 3, and m(3) = 2.
a(7) = 10 since s = 10 and m(10) = 1.
a(8) = 8 since s = 16 thus κ = 2, and m(2) = 3, but c(6) is true, so 

we move to m(2) = 4.
a(9) = 12 since s = 18 thus κ = 6, and m(6) = 2, etc.
The sequence begins as follows:
1, 2, 3, 5, 4, 6, 10, 8, 12, 20, 14, 34, 18, 26, 22, 24, 
46, 70, 58, 16, 74, 30, 52, 82, 134, 36, 170, 206, 94, 
60, 154, 214, 92, 102, 194, 148, 114, 262, 188, 90, 278, 
138, 78, 42, 120, 48, 84, 66, 150, 54, 204, 258, 462, 
180, 642, 822, 366, 132, 498, 210, 354, ...

Some Simply Sticky Theorems.
Lemma 1.1: 2 | i ∧ 2 | j ⇒ 2 | k.
Proof: i ≡ j ≡ 0 (mod 2) implies s = i + j ≡ 0 (mod 2), which in turn 
implies 2 | κ as 2 is prime. Since Axiom 1 demands a(n), n > 2 is the 
least novel k that is a multiple mκ, 2 | k. ∎
Lemma 1.2: 2 | i ∧ 2 | j ⇒ 2 | a(n+v), v ≥ 0.
Proof: This is evident through rewriting Lemma 1.1 as 2 | a(n–2) ∧ 
2 | a(n–1) ⇒ 2 | a(n) and induction on n. ∎
Theorem 1: Prime p | i ∧ p | j ⇒ p | a(n+v), v ≥ 0. (The “sticky prime” 
theorem.)
Proof: We prove this theorem through generalization of the con-

gruence argument and application of Axiom 1 in Lemma 1.1 and the 
induction argument in Lemma 1.2. ∎
Theorem 2: Q | i ∧ Q | j ⇒ Q | a(n+v), v ≥ 0. (The “sticky factor” 
theorem.)
Proof: This is a generalization of Theorem 1. Any factor Q common 
to i and j divides all subsequent terms of the sequence as a conse-
quence of the sum i + j, Axiom 1, and the induction argument of 
Lemma 1.2. ∎
Corollary 2.1: The sequence is not a permutation of natural num-
bers if we have 2 consecutive even terms, or generally, 2 consecutive 
terms divisible by a common factor Q.

Corollary 2.2: Q serves as a lower bound for a(n+v), v ≥ 0.

Summation scrambles the prime factors of s, but whereupon the 
parity of i and j are the same, we have an even k. This begins at n = 4. 
The multiplier m for the following number a(5) = 6 happened to be 
even, resulting in a sum of evens, which means that subsequent terms 
are even. It is clear that 2 | κ hence 2 | m(κ) κ for n > 4.

We say the prime divisor p common to i and j is sticky because 
according to the theorems, this prime divides subsequent terms. It is 
also true that we might say any factor Q common to i and j, whether 
or not Q is prime, is sticky, because subsequent terms are also divis-
ible by the factor Q.  

The Scalloping Scatterplot.
Scatterplot lays bare a curious “scalloping” behavior, revealing the 

sequence to suffer a series of phases that forces terms to be much 
larger than before, gradually abating until the onset of a new phase. 
The conjecture is that these are tuned to the emergence of a new 
sticky prime p such that p | i and p | j.

This has to do with the congruence generalization of summation 
and parity (Theorem 1). Instead, we may consider three cases as to 
summation as follows:
 p ∣ i ∧ p ∣ j,  p ∣ i ∧ p ∤ j,  p ∤ i ∧ p ∤ j  p ∤ i ∧ p ∣ j, 

In the first case implies p ∣ k.
The second case implies p ∤ k.
The third case normally yields p ∤ k especially when p is large, how-

ever, if i + j ≡ 0 (mod p) then p | k. 
Therefore there are 2 ways for odd p to arise as divisor of k, but 

only one means by which all subsequent terms in a are divisible by p.
It seems natural to surmise that a common factor Q, the product 

of sticky primes, would perhaps be a primorial Q  ∈ A2110. Is there 
something that requires the sticky primes p to emerge in order?

Indeed it is not necessarily true that we would have plenary divis-
ibility of subsequent terms by p in order of the primes. Suppose we 
have, say, 17 | a(j), then say 31 | i and 31 | j somehow immediately 
after, we could have 31 | a(j+k) : k > 0 before 19 | a(j+k) : k > 0. 
We may be able to show that such never happens on account of the 
greedy approach regarding m.
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Figure 1: Log-log scatterplot of a(n), n = 1…4096 showing records in medium red, highlighting squarefree semiprimes in large gold, prime powers in large green. Phase transitions are 
highlighted in large light cyan and the transition index is labeled in red. We show 5-smooth numbers in small green, 7-smooth numbers in small cyan, 11-smooth numbers in small blue, 
and 13-smooth numbers in small magenta. Remaining terms are shown in tiny black dots. The rows of tiny red dots below the sequence indicate the lower bound of Q.

Figure 2: Log-log scatterplot of a(n), n = 1…2²⁰.
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Phases in the Sequence.
Hence indeed we have phases in the sequence that are governed by 

divisibility of both i and j by some sticky prime p.
We define a sequence of the positions n : a(n) = p, which we call 

“phase transitions”, as follows:
5, 42, 114, 471, 1994, 2353, 4591, 6904, 9612, 10165, 
15922, 20530, 23372, 26742, 34375, 39302, 53538, 69757, 
89995, 96260, 108911, 129634, 144879, 177605, 199537, 
232930, 246327, 275596, 303470, 331535, 383137, 414878, 
452277, 509216, 572672, 621108, 672487, 703926, 790370, 
889469, 943629, 1027898, ...

Note that these indices n pertain to the first emergence of p | a(n). 
They are found by determining when both a(n) and a(n+1) are divis-
ible by p. There doesn’t seem to be a way to predict phase transitions 
except by determining that Q' : Q' | a(n–1) ∧ Q' | a(n) exceeds Q : Q 
| a(n–2) ∧ Q | a(n–1). In other words, we look for the occasion of 
the following:
 (a(n–1), a(n)) > (a(n–2), a(n–1)).  [f2]

Therefore, for n ≥ 5, 2 | a(n), and for n ≥ 42, 3 | a(n), etc. More 
precisely, for n ≥ 5, 2 | a(n), for n ≥ 42, 6 | a(n), for n ≥ 114, 30 | a(n), 
etc., since indeed, the previous record primes also divide a(n) as n 
increases. This suggests that primorials, products P(ℓ) = A2110(ℓ) 
of the first primes, are important in this sequence.

Let us then define the δ-th phase as that which begins with the δ-th 
sticky prime pδ | a(n+v), v ≥ 0. and ends with the term that precedes 
the (δ+1)-th sticky prime p(δ+1) as divisor of all terms that follow the 
first such divisible by p(δ+1). Hence, phase 0 begins with a(1) = 1 and 
ends with a(4) = 5, followed by phase 1, starting with a(5) = 4 and 
ending with a(41) = 278, followed by phase 2, starting with a(42) = 
138, etc. All the terms in phase 0 are divisible by 1 (i.e., they are un-
restrained), as are all subsequent terms. All the terms in phase 1 are 
even since p₁ = 2, as are all subsequent terms. All the terms in phase 
2 are trine, since p₂ = 3, as are all subsequent terms, etc. It is clear 
that sticky factor Q₁ = 2, Q₂ = 6, Q₃ = 30, etc., therefore, all terms 
in phase 2 are congruent to 0 (mod 6), all in phase 3 congruent to 0 
(mod 30), etc.

Table 1 shows the first 7 phase transitions and sticky factors.
δ	 			n									Q_δ
-------------------------
1    5      2
2   42      6
3  114     30
4  471    210
5 1994   2310
6 2353  30030
7 4591 510510

Given 5000 terms of the sequence it would seem indeed that the 
sticky factors are primorials.

Primorials in the Sequence.
Do primorials define the phases in this sequence?
We study the occasion of primorials P(ℓ) in a. 
Table 2 lists positions of the smallest primorials in the sequence.

ℓ	 			n											P(ℓ)
---------------------------
0    1         1
1    2         2
2    6         6
3   22        30
4   60       210
5  178      2310
6  508     30030
7 1477    510510
8 2687   9699690
9 4807 223092870

In brief, a(m) = P(ℓ) such that m < nδ and δ = ℓ. In other words, 
primorial P(ℓ) appears well before the corresponding phase δ = ℓ. 
Now we do not see P(ℓ) | a(n) for some time as n increases, since 
i+P(ℓ) scrambles the prime divisors of s. It is only whereupon pℓ di-
vides both i and j that we have divisibility of by a larger primorial 
P(ℓ) for n ≤ 6903.

Theorem 3. Let j < k < ℓ be indices of primes pj < pk < pℓ, respective-
ly. Suppose pj | a(nj) and pj | a(nj+1). Then pℓ | a(nℓ) and pℓ | a(nℓ+1), 
nj < nℓ while pk ∤ a(nℓ) and pk ∤ a(nℓ+1) implies primorials P(1…k) 
cannot enter the sequence unless they already appear.
Proof. Suppose a(nj+1) is divisible by all primes smaller than pj 
in addition to pj. In this case, a(nj…nℓ) may harbor primorials P at 
least as large as P(j), since P(j)= Q, the sticky factor, and Q | P. It 
is clear that smaller primorials are missing prime factors that Q has, 
therefore they cannot enter the sequence after a(nj+1). Also clear 
is the fact that while we have successive sticky primes p in order of 
the primes, we have successive sticky factors Q that are successive 
primorials. Whereupon we have a break and have sticky prime pℓ 
ahead of pk, primorial P(k) can never enter, since it doesn’t have the 
necessary factor pℓ. Primorial P(k) may not enter even when the next 
sticky prime is pk, since it still lacks the necessary factor pℓ. Primorials 
P(M), M > ℓ, may indeed appear until the emergence of pN, N > M. ∎
Corollary 3.1. Primorials P(ℓ), ℓ ≥ δ can enter the sequence only 
when the sticky prime factor Qδ is itself a primorial.

Corollary 3.2. Primes q > 2 may enter the sequence iff δ = 0. In 
other words, once we have a sticky prime p, all other primes cannot 
enter the sequence. For n ≥ 7, p₁ = 2, hence a(n) for n ≥ 5 is even. 

Corollary 3.3. Composite prime powers qε : ε > 1 may enter the 
sequence iff δ ≤ 1. When the sequence is unrestrained, any number 
may enter, however the greedy approach to Axiom 1 limits the num-
ber of composite prime powers in this phase. Once we have p₁ = 2, 
only composite prime powers of 2ε : ε > 1 may appear. When p₂ = 
3 appears at n = 44, no prime power may appear, since such would 
either have to be a power of 2 or of 3, and thereby lack the other 
necessary prime divisor. 

Corollary 3.4. Squarefree semiprimes q₁q₂ : q₁ < q₂ may enter the 
sequence iff δ ≤ 1. When the sequence is unrestrained, any number 
may enter, however the greedy approach to Axiom 1 limits the num-
ber of squarefree semiprimes in this phase. Once we have p₁ = 2, only 
even squarefree semiprimes 2q may appear. When p₂ = 3 appears at 
n = 44, only 6 can appear, however a(6) = 6. Once we have 3 sticky 
primes, semiprimes cannot appear because they lack 1 necessary 
prime factor, and the number of sticky primes is nondecreasing as 
n increases. 

Corollary 3.2 implies the only primes in the sequence are 2, 3, 
abd 5. As a consequence of Corollary 3.3, the only composite prime 
powers in the sequence are 4, 8, and 16. Corollary 3.4 implies the 
number of squarefree semiprimes is finite; they are all even:

6, 10, 14, 34, 26, 22, 46, 58, 74, 82, 
134, 206, 94, 214, 194, 262, 278

Therefore, it is possible that not all primorials are in the sequence. 
Indeed, we cannot find P(10) in the smallest 2²⁶ terms. It is clear 
that this primorial will never appear because for δ = 8 we have the 
following:

  Q₈= 15825810 = 2 × 3 × 5 × 7 × 11 × 13 × 17 × 31.
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We will return to the question of phases after introducing another 
aspect of this sequence.

Constitutive Analysis.
There are 3 classes of constitutive relations between 2 integers k 

and n [2]. These may be examined in a set-theoretic manner, as they 
pertain to the set of prime divisors of k and n. These classes are useful 
in analyzing the behavior of sequences with axioms that constrain 
output multiplicatively.

Let the squarefree kernel K = rad(k), product of the set K of dis-
tinct prime divisors of k and let N = rad(n), of the set N of distinct 
prime divisors of n. 

The first and easiest to understand on account of its familiarity is 
the relationship of coprimality. If (k, n) = 1, i.e., K ∩ N = ∅, then 
we say k is coprime to n, or n-coprime. Borrowing Knuth’s notation, 
we write k ⊥ n. Coprimality is symmetric, that is, k ⊥ n implies n ⊥ k.

The second is more obscure, but includes divisors d | n. We say k is 
regular to n (or k is n-regular) iff k is indivisible by primes q that do 
not divide n. We write it this way so as to include the empty product 
k = 1, since 1 | n, but we may think of k instead as a product limited 
to the primes p | n. Set theoretically, we have K ⊆ N. We can also 
write k | nε : ε ≥ 0. Written this way, we see that this class includes 
divisors d | nε : 0 ≤ ε ≤ 1. Then it is clear that there are nondivisor 
n-regular k, which we call “semidivisors” and write k ¦ n. Generally 
we write n-regular k as k ∥ n in resonance with Knuth’s notation for 
coprimality. It is clear that k | n implies n | k iff k = n. Similarly, k ∥ n 
implies n ∥ k iff K = N. Thus, k ¦ n implies n ¦ k iff K = N and neither 
term divides the other.

Finally, the last class is semicoprimality, written k ◊ n, or k is semi-
coprime to n. This includes k that is a product of at least 1 prime p 
| n and at least 1 prime q coprime to n, implying composite k. The 
n-semicoprime k is such that (k, n) > 1 and not equal to either k or 
n, K ∩ N ≠ ∅. Symmetric semicoprimality (k ◊ n and n ◊ k) has K 
include at least one prime that does not divide n, and N include at 
least one prime that does not divide k. An example of this is 6 ◊ 10 
and 10 ◊ 6. Oftentimes we have K ⊃ N, e.g., 2p ◊ p, p > 2.

Though there are 3 major classes of constitutive relation, we may 
regard divisibility and semidivisibility as distinct, therefore we have 
coprimality (⊥) which is always symmetric, semicoprimality (◊), di-
visibility (|), and semidivisibility (¦), the last 3 only conditionally 
symmetric. Therefore, for example, we may more accurately write 2p 
◊ p, p > 2 as 2p ◊| p, p > 2, because p | 2p. We may express 6 | 12 more 
accurately by 6 |¦ 12, since 12 semidivides 6 (i.e.,12 | 6²).

We may assign symbols to the various non-coprime binary rela-
tions. If k ⊥ n, then the state is ⓪. For noncoprime (open) relations, 
we have the following:

k ◊ n k | n k ¦ n
n ◊ k ① ④ ⑦
n | k ② ⑤ ⑧
n ¦ k ③ ⑥ ⑨

Therefore, k ⑤ n means that k | n and n | k, implying k = n, while 
k ⑧ n means that k ¦ n and n | k , which is the inverse of k ⑥ n. 
We remark that the “neutral” states ①③⑦⑨ apply to k and n both 
composite, since primes must either divide or be coprime to other 
numbers, and these states do not include either relation.

For our purposes we are interested in the set S of prime divisors of 
s (which is equal to that of its squarefree kernel κ = rad(n)) and set 
K of prime divisors of k. 

Theorem 4: Axiom 1 implies the sequence is completely κ-regular. 
Proof: a(n) = m κ for some integer multiple m, therefore κ | a(n), 
i.e., S ⊆ K. ∎
Theorem 4.1: Squarefree κ prohibits κ ¦ k. 
Proof: Semidivisibility requires multiplicity of at least one prime 
power divisor exceeding 1. Since κ is squarefree by definition, we 
cannot have κ ¦ k. Furthermore, κ ¦ k is ruled out by Axiom 1. ∎

Theorems 4 and 4.1 show that we are limited to κ | k (④⑤⑥).

Theorem 4.2: κ ⑤ k implies novel κ. 
Proof: Axiom 1 demands k = m κ where m is the smallest that yields 
a product m κ unprecedented in the sequence. If κ = k, then m = 1 
and a(n) = 1κ, and it is clear that a(n) is the first appearance of a num-
ber k : κ | k. ∎

State ⑤ also signifies κ = k.

Theorem 4.3: κ ④ k implies m ∦ κ. 
Proof: Again we reflect on Axiom 1. For each occasion of κ, m in-
crements. These m are either κ-regular or κ-nonregular. If is even, 
then m = 1 and even m are κ-regular and, through k = m κ, S = K. 
For m that is κ-nonregular, we introduce some prime factor q ⊥ κ 
to k, thus S ⊂ K. Theorem 4 shows that we are restricted to κ ∥ k, 
particularly, κ | k. Among the 3 variants associated with κ | k, we have 
κ |◊ k = κ ④ k. ∎
Corollary 4.4: κ ⑥ k implies m ∥ κ, m > 1. 

Generally, terms that derive from state ⑤ seem to arrive earlier 
than the other two states. Terms from state ④ appear along trajec-
tories divisible by primorials or “infill” primes that are missing from 
the sticky factor P. Looking at a dataset records seen in the first 2²⁰ 
terms, 900 records derive from ⑥, 225 from ⑤, and only 21 from 
④. The latter state more rarely sets records as n increases.

Theorem 4.5: Let a(nδ) = μpδ, where pδ is the δ-th sticky prime. We 
observe both κδ ④ a(nδ) and μ = κ for all δ ≤ 162, n ≤ 2²⁶, as demon-
strated below.

	δ						n													a(n-1)							rad(s(n))																			a(n)	m(n)
-----------------------------------------------------------------------
	1						5																	4															3		(4)																	6				2
	2					42															138														26		(4)																78				3
	3				114															510													114		(4)															570				5
	4				471														7560												2130		(4)													14910				7
	5			1994											1741740											14070		(4)												154770			11
	6			2353												840840										168630		(4)											2192190			13
	7			4591									203182980									3273270		(4)										55645590			17
	8			6904									807116310								30120090		(4)									933722790			31
	9			9612							42397344990							933722790		(4)							35481466020			38
10		10165						172896974250						8720021310		(4)						200560490130			23
11		15922				31225193549550				283551037770		(4)				36578083872330		129
12		20530		6108540006679110		33604255915230		(4)		1377774492524430			41

Proof: The equality μ = κ implies the following:
a(nδ) = μpδ = κpδ.

and that though pδ | a(nδ–1), sδ = (a(nδ–2)+ a(nδ–1)) is not divisi-
ble by pδ. In order to have a new phase, we need a new sticky prime, 
which means we need 2 consecutive terms divisible by a new sticky 
prime p. 

We know that prime p either divides s or it does not. Suppose p | 
a(n–1) and p | s. Then by Theorem 1, subsequent terms are indeed 
likewise divisible by p. However, a prime p that divides an addend 
and a sum implies p | a(n–2), therefore p cannot be newly sticky. By 
Corollary 4.4, if a(n) = pκ, then we must have p | κ, which implies κ 
⑥ k. Since Theorem 4.2 rules out state ⑤, we are left with a(n) = κp, 
κ ④ κp.

We can have κ ④ κp without p a new sticky prime. This frequently 
occurs on account of p ⊥ a(n–1); indeed p either divides a(n–1) or it 
does not. Since we have covered the following cases:
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Figure 3: Log-log scatterplot of a(n), n = 1…4096 showing the constitutive states of s(n) and a(n). Red represents s(n) |◊ a(n) or state ④, gold represents s(n) |¦ a(n) or state ⑥, and 
green represents s(n) = a(n) or state ⑤. We highlight phase transitions in large cyan.

Figure 4: Log-log scatterplot of a(n), n = 1…2²⁰, using the same color scheme as Figure 3.
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p | a(n–1) and p ⊥ s, 
p ⊥ a(n–1) and p | s, 
p | a(n–1) and p | s, 

we have covered all possible cases that apply to the emergence of a 
new sticky prime p. Therefore the proposition is true, κδ ④ a(nδ) = 
κδpδ. ∎

Extended Study of Phases.
Define a function A287352(n) as the first differences of the indices 

of prime divisors of n with multiplicity. Hence, if we have a number 
like n = 84 = 2 × 2 × 3 × 7, we have prime indices 1.1.2.4, which 
would be registered as 1,0,1,2. We abbreviate that as 1.0.1.2. Since 
we are dealing with squarefree kernels, or the presence or absence of 
a distinct prime divisor, we dispense with any zeros.

In this sequence it is evident that we are often dealing with a run 
of numbers divisible by a primorial P(ℓ). As regards A287352(n), we 
would have a series of ℓ 1s.

We might compactify this primorial in such notation by writing 
“1^ℓ”. For instance, the number below can be compactified as shown 
after the number:

4940321356659258570 
=  2 ×  3 ×  5 ×  7 × 11 × 13 × 17 × 19 × 23 × 
  31 × 37 × 41 × 43 × 47 × 233
= 1^9.2.1^4.36

Therefore we might compactify the unwieldy decimal expansion 
of rad(k) via A287352(rad(k)). An extended list of a(nδ) = Qδ ap-
pears in Appendix Table A. Following is an abridged list of the first 
16 sticky factors, Q:

		δ	 n	 A287352(P(δ))	 								Decimal	P(δ)
--------------------------------------------------
  1     5 1                    2
  2    42 1^2                    6
  3   114 1^3                   30
  4   471 1^4                  210
  5  1994 1^5                 2310
  6  2353 1^6                30030
  7  4591 1^7               510510
  8  6904 1^7.4             15825810
  9  9612 1^8.3            300690390
 10 10165 1^9.2           6915878970
 11 15922 1^9.2.3         297382795710
 12 20530 1^9.2^2.1       12192694624110
 13 23372 1^9.2^2.1^2      573056647333170
 14 26742 1^9.2.1^4    21203095951327290
 15 34375 1^15   614889782588491410
 16 39302 1^16 32589158477190044730

From the extended Table A, it seems likely that P(16) is the last 
primorial such that P is the greatest common factor of adjacent terms.

We can find the following primorials P(ℓ) in the sequence:
	ℓ	 				n
-----------
 1     2
 2     6
 3    22
 4    60
 5   178
 6   508
 7  1477
 8  2687
 9  4807
10     -
11 10166
12 11322
13     -
14 20994
15 23567
16 27026
17 35431
18 43358

Per Theorem 3 and Corollary 3.1, in the light of Table A, these are 
likely the only primorials in the sequence.

Open questions. 
The rate of emergence of sticky primes abates as n increases. Do 

all primes become sticky? If so, what are the implications for the se-
quence when we have an infinite number of sticky primes? How are 
there any terms that follow the sequence? Is the sequence infinite?

The “gaps” in the sticky factor are filled in for δ = 15…16. Does this 
happen again, or are there too many gaps as n increases? This is the 
same question as “will there ever be another chance for primorials to 
enter the sequence?”

Conclusion.
We have shown that 2 consecutive terms divisible by a “sticky” 

prime p imply subsequent terms must also be divisible by p. Con-
sequently, the number of primes, composite prime powers, and 
squarefree semiprimes in the sequence are finite. These sticky primes 
do not necessarily arise in order, therefore not all primorials appear 
in the sequence. There is a constitutive pattern in the sequence that 
accompanies the sticky primes; since p | a(n–1) but not the sum s =  
a(n–2)+a(n–1), we have rad(s) | a(n) = p rad(s).  ••••
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Code:

[c1] Generate terms of the sequence:
nn	=	2^6;	c[_]	=	False;	q[_]	=	1;	t	=	2;
f[n_]	:=	Times	@@	FactorInteger[n][[All,	1]];	
Array[Set[{a[#],	c[#]},	{#,	True}]	&,	t];	
Set[{i,	j,	k},	{a[t	-	1],	a[t],	f[a[t	-	1]	+	a[t]]}];
Monitor[
		Do[m	=	q[k];
				While[c[k	m],	m++];
				m	*=	k;	While[c[k	q[k]],	q[k]++];
				Set[{a[n],	c[m],	i,	j,	k},	
						{m,	True,	j,	m,	f[j	+	m]}],	
		{n,	3,	nn}],	n];
	Array[a,	nn]

Concerns sequences:

A002110: Product of the smallest n primes, P(n).
A007947: Squarefree kernel of n; rad(n).
A339557: a(n).

Document Revision Record:

2023 0111 2300: Version 1
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Figure 5: Illustration of the prime divisors of the δ-th sticky factor, δ = 1…20. 

Figure 5: Bitmap of the prime divisors of the δ-th sticky factor, δ = 1…162. 

	Table	A:	Extended	data	for	phase	transitions	in	A359557.
		δ	 n	 A287352(P(δ))	 			Decimal	P(δ)
----------------------------------------------------------
  1        5 1                    2
  2       42 1^2                    6
  3      114 1^3                   30
  4      471 1^4                  210
  5     1994 1^5                 2310
  6     2353 1^6                30030
  7     4591 1^7               510510
  8     6904 1^7.4             15825810
  9     9612 1^8.3            300690390
 10    10165 1^9.2           6915878970
 11    15922 1^9.2.3         297382795710
 12    20530 1^9.2^2.1       12192694624110
 13    23372 1^9.2^2.1^2      573056647333170
 14    26742 1^9.2.1^4    21203095951327290
 15    34375 1^15   614889782588491410
 16    39302 1^16 32589158477190044730
 17    53538 1^16.11                  ...
 18    69757 1^16.4.7
 19    89995 1^16.3.1.7
 20    96260 1^16.3.1.7.1
 21   108911 1^16.3.1.4.3.1
 22   129634 1^16.3.1.4.3.1.6
 23   144879 1^16.3.1.2^2.3.1.6
 24   177605 1^16.3.1.2^2.1.2.1.6
 25   199537 1^16.3.1.2.1^3.2.1.6
 26   232930 1^16.2.1^2.2.1^3.2.1.6
 27   246327 1^16.2.1^7.2.1.6
 28   275596 1^25.2.1.6
 29   303470 1^25.2.1.2.4
 30   331535 1^25.2.1.2^3
 31   383137 1^25.2.1.2^3.8
 32   414878 1^28.2^3.8
 33   452277 1^30.2^2.8
 34   509216 1^30.2^2.1.7
 35   572672 1^30.2^2.1.7.9
 36   621108 1^30.2^2.1.7.5.4
 37   672487 1^30.2^2.1.7.4.1.4
 38   703926 1^30.2^2.1.4.3.4.1.4
 39   790370 1^30.2^2.1.4.3.1.3.1.4
 40   889469 1^30.2.1^3.4.3.1.3.1.4
 41   943629 1^30.2.1^3.4.3.1^2.2.1.4
 42  1027898 1^35.4.3.1^2.2.1.4
 43  1142474 1^35.4.3.1^2.2.1.4.26
 44  1243271 1^35.4.3.1^2.2.1.4.11.15
 45  1344569 1^35.2^2.3.1^2.2.1.4.11.15
 46  1402640 1^35.2^2.3.1^5.4.11.15
 47  1489891 1^35.2^2.1.2.1^5.4.11.15
 48  1560938 1^37.2.1.2.1^5.4.11.15
 49  1636210 1^40.2.1^5.4.11.15
 50  1702618 1^40.2.1^6.3.11.15
 51  1791701 1^40.2.1^6.3.11^2.4
 52  1990426 1^48.3.11^2.4
 53  2054075 1^49.2.11^2.4
 54  2240090 1^49.2.7.4.11.4
 55  2347911 1^49.2.7.3.1.11.4
 56  2442747 1^49.2.6.1.3.1.11.4
 57  2760572 1^49.2.6.1.3.1.10.1.4
 58  2911467 1^49.2.3^2.1.3.1.10.1.4
 59  3218241 1^49.2.3^2.1.3.1.6.4.1.4
 60  3396481 1^49.2^2.1.3.1.3.1.6.4.1.4
 61  3739388 1^49.2.1^3.3.1.3.1.6.4.1.4
 62  3852882 1^54.3.1.3.1.6.4.1.4
 63  4005756 1^54.3.1.3.1.4.2.4.1.4
 64  4222102 1^54.2.1^2.3.1.4.2.4.1.4
 65  4555098 1^54.2.1^2.2.1^2.4.2.4.1.4
 66  4696704 1^58.2.1^2.4.2.4.1.4
 67  4866669 1^62.4.2.4.1.4
 68  5020017 1^62.4.2^3.1.4
 69  5210967 1^62.3.1.2^3.1.4
 70  5498631 1^62.3.1.2^3.1.4.35
 71  5875202 1^62.3.1.2^3.1.4.10.25
 72  6094356 1^62.3.1.2^3.1.4.10.13.12
 73  6299956 1^62.3.1.2^2.1^3.4.10.13.12
 74  6543080 1^62.3.1^3.2.1^3.4.10.13.12
 75  6952357 1^62.2.1^4.2.1^3.4.10.13.12
 76  7178231 1^62.2.1^4.2.1^3.4.10.3.10.12
 77  7420465 1^62.2.1^4.2.1^3.4.10.3.10.2.10
 78  7778834 1^62.2.1^9.4.10.3.10.2.10
 79  8150882 1^62.2.1^9.4.10.3.10.2.3.7
 80  8427085 1^62.2.1^9.4.10.3.2.8.2.3.7
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 81  8976340 1^62.2.1^9.4.7.3^2.2.8.2.3.7
 82  9211549 1^62.2.1^9.4.7.3^2.2.5.3.2.3.7
 83  9769844 1^62.2.1^9.4.7.3^2.2.5.3.1^2.3.7
 84 10033286 1^62.2.1^9.2^2.7.3^2.2.5.3.1^2.3.7
 85 10316990 1^62.2.1^9.2^2.7.3.2.1.2.5.3.1^2.3.7
 86 10516883 1^62.2.1^9.2^2.7.3.2.1.2.4.1.3.1^2.3.7
 87 10687296 1^62.2.1^9.2.1^2.7.3.2.1.2.4.1.3.1^2.3.7
 88 11042812 1^62.2.1^9.2.1^2.2.5.3.2.1.2.4.1.3.1^2.3.7
 89 11387530 1^73.2.1^2.2.5.3.2.1.2.4.1.3.1^2.3.7
 90 12117940 1^73.2.1^2.2.5.3.2.1.2.4.1.3.1^2.3.7.18
 91 12547330 1^73.2.1^2.2.5.3.2.1.2.4.1.3.1^2.3.5.2.18
 92 12742038 1^73.2.1^4.5.3.2.1.2.4.1.3.1^2.3.5.2.18
 93 13058335 1^73.2.1^4.5.3.2.1.2.4.1.3.1^2.3.5.2.11.7
 94 13365371 1^73.2.1^5.4.3.2.1.2.4.1.3.1^2.3.5.2.11.7
 95 13636415 1^73.2.1^5.2^2.3.2.1.2.4.1.3.1^2.3.5.2.11.7
 96 14101127 1^73.2.1^5.2^2.3.2.1.2.4.1.3.1^2.3.5.2.11.7.3
 97 14724105 1^73.2.1^5.2^2.3.2.1.2.4.1.3.1^2.3.2.3.2.11.7.3
 98 14891178 1^73.2.1^5.2^2.3.2.1^3.4.1.3.1^2.3.2.3.2.11.7.3
 99 15184509 1^73.2.1^5.2^3.1.2.1^3.4.1.3.1^2.3.2.3.2.11.7.3
100 15514061 1^73.2.1^7.2^2.1.2.1^3.4.1.3.1^2.3.2.3.2.11.7.3
101 16282338 1^73.2.1^7.2^2.1.2.1^3.4.1.3.1^2.3.2.3.2.11.7.2.1
102 16881956 1^73.2.1^7.2^2.1.2.1^3.4.1.2.1^3.3.2.3.2.11.7.2.1
103 17228214 1^73.2.1^7.2.1^3.2.1^3.4.1.2.1^3.3.2.3.2.11.7.2.1
104 17592980 1^73.2.1^7.2.1^3.2.1^4.3.1.2.1^3.3.2.3.2.11.7.2.1
105 18186030 1^73.2.1^7.2.1^3.2.1^4.3.1.2.1^3.3.2.3.2.11.7.2.1.50
106 18845268 1^73.2.1^7.2.1^3.2.1^4.3.1.2.1^4.2^2.3.2.11.7.2.1.50
107 19417180 1^73.2.1^7.2.1^3.2.1^4.3.1.2.1^4.2^2.3.2^2.9.7.2.1.50
108 20295197 1^73.2.1^7.2.1^3.2.1^4.3.1.2.1^4.2^2.3.2^2.9.7.2.1.50.15
109 20617011 1^82.2.1^3.2.1^4.3.1.2.1^4.2^2.3.2^2.9.7.2.1.50.15
110 21291006 1^82.2.1^3.2.1^4.3.1.2.1^4.2^2.3.2^2.9.7.2.1.8.42.15
111 22104149 1^82.2.1^3.2.1^4.3.1.2.1^4.2^2.3.2^2.9.4.3.2.1.8.42.15
112 22818193 1^82.2.1^3.2.1^4.3.1.2.1^4.2^2.3.2^2.9.4.2.1.2.1.8.42.15
113 23367755 1^82.2.1^3.2.1^4.3.1.2.1^4.2^2.3.2^2.9.4.2.1.2.1.8.33.9.15
114 24085122 1^82.2.1^3.2.1^4.3.1.2.1^4.2^2.3.2^2.4.5.4.2.1.2.1.8.33.9.15
115 24498483 1^82.2.1^3.2.1^4.3.1.2.1^4.2^2.3.2^2.4.5.4.2.1.2.1.8.11.22.9.15
116 24935798 1^82.2.1^3.2.1^4.3.1.2.1^4.2^2.3.2^2.4.5.1.3.2.1.2.1.8.11.22.9.15
117 25608809 1^82.2.1^3.2.1^5.2.1.2.1^4.2^2.3.2^2.4.5.1.3.2.1.2.1.8.11.22.9.15
118 26107809 1^82.2.1^3.2.1^5.2.1.2.1^4.2^2.3.2^2.1.3.5.1.3.2.1.2.1.8.11.22.9.15
119 26673228 1^87.2.1^5.2.1.2.1^4.2^2.3.2^2.1.3.5.1.3.2.1.2.1.8.11.22.9.15
120 27541487 1^87.2.1^5.2.1.2.1^4.2^2.3.2^2.1.3.5.1.3.2.1.2.1.8^2.3.22.9.15
121 28400122 1^87.2.1^5.2.1.2.1^4.2^2.3.2^2.1.3.5.1.3.2.1.2.1.8^2.3.22.9.1.14
122 28757505 1^87.2.1^5.2.1.2.1^4.2.1^2.3.2^2.1.3.5.1.3.2.1.2.1.8^2.3.22.9.1.14
123 29830387 1^87.2.1^5.2.1.2.1^4.2.1^2.3.2^2.1.3.5.1.3.2.1.2.1.8.5.3^2.22.9.1.14
124 30382362 1^87.2.1^5.2.1.2.1^4.2.1^2.3.2^2.1.3.5.1.3.2.1.2.1.8.4.1.3^2.22.9.1.14
125 30824197 1^87.2.1^5.2.1.2.1^4.2.1^2.3.2^2.1.3.5.1.3.2.1.2.1.8.2^2.1.3^2.22.9.1.14
126 31569544 1^87.2.1^5.2.1.2.1^4.2.1^2.3.2^2.1.3.5.1.3.2.1.2.1.8.2^2.1.3^2.10.12.9.1.14
127 32210273 1^87.2.1^5.2.1^7.2.1^2.3.2^2.1.3.5.1.3.2.1.2.1.8.2^2.1.3^2.10.12.9.1.14
128 32946711 1^87.2.1^5.2.1^7.2.1^2.3.2^2.1.3.5.1.3.2.1.2.1.8.2^2.1.3.2.1.10.12.9.1.14
129 34470176 1^87.2.1^5.2.1^7.2.1^2.3.2^2.1^2.2.5.1.3.2.1.2.1.8.2^2.1.3.2.1.10.12.9.1.14
130 35049555 1^94.2.1^7.2.1^2.3.2^2.1^2.2.5.1.3.2.1.2.1.8.2^2.1.3.2.1.10.12.9.1.14
131 36071317 1^94.2.1^7.2.1^2.3.2^2.1^2.2.5.1.3.2.1.2.1.8.2^2.1.3.2.1.6.4.12.9.1.14
132 37381817 1^94.2.1^7.2.1^2.3.2^2.1^2.2.5.1.3.2.1.2.1.8.2^2.1.3.2.1.6.4.12.9.1.14.6
133 37800533 1^94.2.1^7.2.1^2.3.2^2.1^4.5.1.3.2.1.2.1.8.2^2.1.3.2.1.6.4.12.9.1.14.6
134 38935172 1^94.2.1^7.2.1^2.3.2^2.1^4.5.1.3.2.1.2.1.8.1^2.2.1.3.2.1.6.4.12.9.1.14.6
135 39687117 1^103.2.1^2.3.2^2.1^4.5.1.3.2.1.2.1.8.1^2.2.1.3.2.1.6.4.12.9.1.14.6
136 40845076 1^103.2.1^2.3.2^2.1^4.5.1.3.2.1.2.1.8.1^2.2.1.3.2.1.6.4.12.9.1.12.2.6
137 41594779 1^103.2.1^2.3.2^2.1^4.5.1.3.2.1.2.1.8.1^2.2.1.3.2.1.4.2.4.12.9.1.12.2.6
138 42586367 1^103.2.1^2.3.2^2.1^4.5.1.3.2.1.2.1.8.1^2.2.1.3.2.1.4.2.4.12.1.8.1.12.2.6
139 43492540 1^103.2.1^2.3.2^2.1^4.3.2.1.3.2.1.2.1.8.1^2.2.1.3.2.1.4.2.4.12.1.8.1.12.2.6
140 44069546 1^103.2.1^2.3.2^2.1^4.3.2.1^2.2^2.1.2.1.8.1^2.2.1.3.2.1.4.2.4.12.1.8.1.12.2.6
141 44561936 1^103.2.1^2.3.2^2.1^4.3.2.1^2.2^2.1.2.1.7.1^3.2.1.3.2.1.4.2.4.12.1.8.1.12.2.6
142 45149055 1^103.2.1^2.3.2.1^6.3.2.1^2.2^2.1.2.1.7.1^3.2.1.3.2.1.4.2.4.12.1.8.1.12.2.6
143 45955721 1^103.2.1^2.3.2.1^6.3.2.1^2.2^2.1.2.1.3.4.1^3.2.1.3.2.1.4.2.4.12.1.8.1.12.2.6
144 46739504 1^103.2.1^2.3.2.1^6.3.2.1^4.2.1.2.1.3.4.1^3.2.1.3.2.1.4.2.4.12.1.8.1.12.2.6
145 47403070 1^103.2.1^2.3.2.1^7.2^2.1^4.2.1.2.1.3.4.1^3.2.1.3.2.1.4.2.4.12.1.8.1.12.2.6
146 48464579 1^103.2.1^2.3.2.1^7.2^2.1^7.2.1.3.4.1^3.2.1.3.2.1.4.2.4.12.1.8.1.12.2.6
147 48790892 1^107.3.2.1^7.2^2.1^7.2.1.3.4.1^3.2.1.3.2.1.4.2.4.12.1.8.1.12.2.6
148 49396660 1^107.3.2.1^7.2^2.1^7.2.1.3.4.1^3.2.1.3.2.1.4.2.3.1.12.1.8.1.12.2.6
149 50354546 1^107.3.2.1^7.2^2.1^7.2.1.3.4.1^3.2.1.3.2.1.4.2.3.1.5.7.1.8.1.12.2.6
150 51034611 1^107.3.2.1^7.2^2.1^7.2.1.3.4.1^3.2.1.3.2.1.4.2.3.1.2.3.7.1.8.1.12.2.6
151 51889451 1^107.3.2.1^7.2^2.1^7.2.1.3.4.1^3.2.1.3.2.1.4.2.3.1^3.3.7.1.8.1.12.2.6
152 52783440 1^107.3.2.1^7.2^2.1^7.2.1.3.4.1^3.2.1.3.2.1.4.2.3.1^3.3.7.1.2.6.1.12.2.6
153 54854079 1^107.3.2.1^7.2^2.1^7.2.1.3.1.3.1^3.2.1.3.2.1.4.2.3.1^3.3.7.1.2.6.1.12.2.6
154 56475218 1^107.3.2.1^9.2.1^7.2.1.3.1.3.1^3.2.1.3.2.1.4.2.3.1^3.3.7.1.2.6.1.12.2.6
155 57109585 1^107.3.2.1^9.2.1^10.3.1.3.1^3.2.1.3.2.1.4.2.3.1^3.3.7.1.2.6.1.12.2.6
156 58525354 1^107.3.2.1^9.2.1^10.3.1.3.1^3.2.1.3.2.1.4.2.3.1^3.3.7.1.2.6.1.12.2.3^2
157 59556588 1^107.3.2.1^9.2.1^10.3.1.3.1^3.2.1.3.2.1.4.2.3.1^3.3.5.2.1.2.6.1.12.2.3^2
158 60504726 1^107.3.2.1^9.2.1^10.3.1.2.1^4.2.1.3.2.1.4.2.3.1^3.3.5.2.1.2.6.1.12.2.3^2
159 61762523 1^107.3.2.1^9.2.1^10.3.1.2.1^4.2.1.3.2.1.4.2.3.1^3.3.5.2.1.2.3^2.1.12.2.3^2
160 63153476 1^107.3.2.1^9.2.1^10.3.1.2.1^4.2.1.3.2.1.4.2.3.1^3.3.1.4.2.1.2.3^2.1.12.2.3^2
161 63777117 1^107.3.1^11.2.1^10.3.1.2.1^4.2.1.3.2.1.4.2.3.1^3.3.1.4.2.1.2.3^2.1.12.2.3^2
162 65306860 1^107.3.1^11.2.1^10.3.1.2.1^4.2.1.3.2.1^2.3.2.3.1^3.3.1.4.2.1.2.3^2.1.12.2.3^2


