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Abstract.

This is a brief study of 2 lexically earliest sequences having to do 
with inhabited or uninhabited symmetric differences in the sets of 
prime factors of the immediately preceding 2 terms.

Introduction.
David Sycamore presented a sequence he described as follows:
Let a(1) = 1, a(2) = 2. Let i = a(n–2) and j = a(n–1).
If (i, j) = 1, a(n) = least novel k divisible by (i × j), 
else if (i, j) > 1 we follow one of the two following conditions:
1. If one of i, j divides the other, a(n) = least novel multiple of the 

smallest common prime divisor of i and j.
2. If one does not divide the other, a(n) = least k coprime to both 

i and j. 
We may logically define sequence S20230119 as follows:

a(1) = 1, a(2) = 2. Let i = a(n–2) and j = a(n–1).
Define function c(x) to be true iff a(j) = x for j < n, else false.
For n > 2, we define a(n) according to the following axioms:
Axiom 1: (i, j) = 1 implies ⍃k : (i × j) | k ∧ ¬c(k). 
Axiom 2.1: (i | j ∨ j | i) implies ⍃k : lpf((i, j)) | k ∧ ¬c(k). 
Axiom 2.2: 1 < (i, j) < min(i, j) implies ⍃k : (i × j, k) = 1 ∧ ¬c(k).

Algorithmically, we process the conditions in order as presented. 
Hence we design a function f(x) that applies the above axioms in 
order, and remap this function on the sequence that starts {1, 2}, 
generating Sycamore’s sequence.

The first terms of the sequence appear below:
1, 2, 4, 6, 5, 30, 10, 8, 3, 24, 9, 7, 63, 14, 11, 154, 
22, 12, 13, 156, 26, 16, 15, 240, 18, 17, 306, 34, 20, 
19, 380, 38, 28, 23, 644, 46, 32, 21, 672, 27, 25, 675, 
35, 29, 1015, 58, 31, 1798, 62, 36, 37, 1332, 74, 40, 
33, 1320, 39, 41, 1599, 82, 43, 3526, 86, 42, 47, 1974, 
94, 44, 45, 1980, 48, 49, 2352, 56, 50, 51, 2550, ...

This is a prime divisor restricted lexically earliest sequence 
(PDRLES) or “pearl sequence”. 

 a(n) ≠ a(i) : i < n, [AL]
 a(n) is the smallest possible solution. [ae]

Fundamental Theorem of Lexically Eariest Sequences. 
Let R be the range of f(n) with least element η and let indices i ∈ 

R and n ∈ R such that η ≤ i < n.
Let D be the domain of f(n) and let μ be its least element. Axioms 

[AL] and [AL] imply the partitioning of D by 2 numbers. The first 
is u, the “smallest missing number” such that u ∉ a(1…n–1). The 
second is r = max(a(1…n–1)). 

The saturated range [μ…u–1] ∋ k such that a(i) = k, which implies 
k < u ≤ a(n). The open range [r+1…∞] ∋ k such that a(i) ≠ k, which 
implies a(n) = k iff k also satisfies the other axioms. Finally, the semi-
saturated range [u…r] wherein we must determine the availability 
of k, that is, whether k hasn’t yet appeared in the sequence in addi-
tion to whether k satisfies the other axioms.

Hence we have a smallest missing number u, and as a consequence 
of [AE], equality (state ⑤) is prohibited.

Let’s examine the constitutive properties of input and output of 
f(x) described above:

 i ⓪ j → [A1] → ⍃k : k = m(i × j) ∧ ¬c(k)
 i ②④⑥⑧ j → [A2.1] → ⍃k : k = mp ∧ ¬c(k) : p = lpf((i, j))
 i ①③⑦⑨ j → [A2.2] → ⍃k : (i × j) ⊥ k ∧ ¬c(k) 

Theorem 1: Axiom 1 implies k = m × (i × j) : m ≥ 1.
Proof: (i × j) | k implies that k is an integer multiple of (i × j). Since 
the smallest missing number u = 3 for n = 3, given the lexically earli-
est axioms in a sequence with domain in the naturals, we have some 
least novel k = m × (i × j) : m ≥ 1. ∎

Therefore as to algorithm, we may devise a counter m(x) and set 
it to 1 for all x a priori. Then when we have Axiom 1, for x we check 
c(m(x) x) and if false, set k = m(x) x and increment m(x)++. If some-
how true, we increment m(x)++ until we have ¬c(m(x) x). This guar-
antees a greedy approach that satisfies Axiom 1.

Corollary 1.1: Axiom 1 admits the following constitutive states 
between (i × j) and k: ④⑤⑥. We have (i × j) ⑤ k for k = (i × j), 
i.e., m = 1. Multiplier m such that rad(m) | rad(i × j) implies state 
⑥, otherwise we have state ④, since m in this case introduces prime 
factors q coprime to (i × j) to k.

Observation. Given 2²⁰ terms of the sequence, we observe neither 
(i × j) ⑥ k nor (i × j) ④ k. Axiom 1 is predominantly (i × j) ⑤ k, 
meaning that (i × j) is always novel.

Corollary 1.2. Axiom 1 implies composite k.
Proof. The lexical axiom requires distinct i, j, and k. In the singular 
case of i = 1 and j = 2, (i, j) = 1 hence , we have k = 4 since we cannot 
repeat k = i × j = 1 × 2 = 2 since j = 2. In all other cases, both i and j 
exceed 1 and are thus both products of at least 1 prime each. Hence 
k is always composite following Axiom 1. ∎

Observationally, we see as well that Axiom 1 seems to imply k that 
is not a prime power, outside of a(3) = 4.

We cannot rule out primes resulting from Axiom 2.1. Indeed, it 
seems that, though Axiom 2.1 does not prohibit prime output, the 
same does not yield primes for n ≤ 2²⁰. In that domain, primes result 
from Axiom 2.2 except for given a(2) = 2.

Conjecture 1.3: Axiom 1 implies k = (i × j) for n ≥ 4.

Theorem 3: Axiom 2.1 implies k = m × lpf((i, j)) : m ≥ 1. As proof, 
we operate under similar logic shown in Theorem 1. ∎

We may write (i | j ∨ j | i) instead as (i, j) = min(i, j), which may 
prove a more effective test in algorithm.

Selection Axiom Chain and Repetition.
Lemma 4.1. Invocation of Axiom 2.2 implies invocation of Axiom 1 
immediately thereafter.
Proof. Axiom 2.2 yields a(n) : (a(n–2) × a(n–1), a(n) ) = 1, there-
fore, (a(n–1), a(n)) = 1, and we have Axiom 1. ∎
Lemma 4.2. Invocation of Axiom 1 implies invocation of Axiom 2.1 
immediately thereafter.
Proof. Axiom 1 yields a(n) = m × a(n–2) × a(n–1), i.e., a(n–1) | 
a(n), thus we have Axiom 2.1. ∎
Lemma 4.3. Invocation of Axiom 2.1 prohibits Axiom 1 immediately 
thereafter.

Notes on s20230119 and s20230120
Sequences of David J. Sycamore.

Michael Thomas De Vlieger . St. Louis, Missouri . 24 January 2023



2 Simple Sequence Analysis . Article 20230119.

Proof. Axiom 2.1 yields a(n) = m × p such that p divides both a(n–
2) and a(n–1), therefore a(n–1) is not coprime to a(n), thus we have 
either Axiom 2.1 or Axiom 2.2. ∎
Corollary 4.4. Successive implementations of Axiom 2.1 occur 
when a(n–1) | a(n),  a(n–1) < a(n) (states ④ or ⑥; equality is ruled 
out by the lexical axiom).

Corollary 4.5. a(n–1) neutral to a(n) (i.e., states ①③⑦⑨) im-
plies Axiom 2.1 followed by Axiom 2.2.

Corollary 4.6. Axiom 2.1 is the only axiom that may repeat; it fol-
lows either itself or Axiom 1.

Observation. Axiom 2.1 occurs at most twice in a row for n ≤ 2²⁰. 
Such occurs often after a prime (e.g.: after a(5) = 5) or prime power 
(first instance: a(72) = 49), even a varius number (e.g., after a(324) 
= 221). The usual mode for the second occasion is that the factor 
m delivers the least common prime factor for the second iteration, 
usually 2. However, a(127344) = 84177 followed by 83763, both di-
visible by 3². There are 54236 occasions of duplex Axiom 2.1 for n ≤ 
2²⁰ and all the rest have both terms even. In the same dataset, we see 
(i, j) in {2, 4, 8, 9}.

Theorem 4. Axiom 2.2 implies  Axiom 1 which in turn implies Axi-
om 2.1 in a chain. Proof: Lemmas 4.1, 4.2, and 4.3.

Axiom 2.2 → Axiom 1 → Axiom 2.1
In detail, we have the following:

 i ①③⑦⑨ j → [A2.2] → ⍃k : (i × j) ⓪ k ∧ ¬c(k),
 i ⓪ j → [A1] → ⍃k : (i × j) ②④⑥⑧ k ∧ ¬c(k)
 i ②④⑥⑧ j → [A2.1] → ⍃k : k = mp ∧ ¬c(k) : p = lpf((i, j))

Thereafter, if i and j are completely neutral, then [A2.2], else [A2.1].

Examining a dataset of 2²⁰ terms, we see duplex Axiom 2.1 with 
the constitutive pattern ②① or ②③ between (i × j) and k. Sin-
gleton occasions of Axiom 2.1 furnish states ①, ②, or ③, with the 
first-mentioned the commonest state. Therefore we cannot detect 
the occasion of duplex or repeated Axiom 2.1 through examination 
of the constitutive relation between (i × j) and k.

Proposition 5. Axiom 1 sets records for n > 4. This would prove 
Conjecture 1.3.
We employ an argument thus: Axiom 1 requires a multiple of the 
composite product (i × j). The greedy axiom requires the smallest 
k that satisfies all definitional axioms. Axiom 2.1 requires the least 
product of a prime, while Axiom 2.2 requires the smallest k that is 
coprime to (i × j). Because we have 2 axioms that together often gen-
erate composite multiples, yet the multiples of Axiom 2.1 are those 
smallest multiples of a smallest common prime factor shared by i and 
j, while Axiom 1 requires a multiple of the product (i × j), it seems 
clear that Axiom 1 yields a number larger than Axiom 2.1 given in-
put of similar magnitude. Furthermore, Axiom 2.2 does not require 
a multiple and is often prime. For this reason we presume the propo-
sition true, but the argument is not rigorous.

Axiom 1 requires i ⓪ j, while Axiom 2.1 requires the divisor states 
②④⑥⑧ except ⑤ which is prohibited by the lexical axiom. Axi-
om 2.2 requires the neutral states ①③⑦⑨ between i and j.

Outside of the first 4 terms, we observe the constitutive states 
⓪①②③⑤ between (i × j) and k. State ⓪ strictly pertains to Ax-
iom 2.2 and provided Proposition 5 is true, ⑤ pertains strictly to 
Axiom 1. 

Figure 1: Log-log scatterplot of a(n), n = 1…1024 showing primes in red, multus num-
bers (composite prime powers, A246547) in gold, varius numbers (squarefree composites, 
A120944) in green, tantus (neither squarefree nor prime power, A126706) in dark blue, 
highlighting plenus numbers (products of multus numbers, A286708) in large light blue. 
Powerful numbers A1694 = A246547 ∪ A286708. 

Figure 2: Log-log scatterplot of a(n), n = 1…1024 where red indicates terms that derive 
from Axiom 1, green from Axiom 2.1, and blue from Axiom 2.2.

Figure 3: Log-log scatterplot of a(n), n = 1…65536 showing records in red, local mini-
ma in blue, and terms resulting from Axiom 0 in green. Note the position of a(n) = 4, and 
the infrequency of Axiom 0.
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Exceptions: for n = 3 we have (i × j) ⑥ k through Axiom 1, and 
for n = 4 we have (i × j) ⑦ k through Axiom 2.1, but these states are 
not seen for the remainder of the dataset of 2²⁰ terms. The former 
may only result from Axiom 1 when i = 1, hence it shall never recur 
through that axiom.

If Proposition 5 proves false, then we might see states ④ or ⑥ 
from Axiom 1 in addition to ⑤. The former would arise if m is co-
prime to (i × j). The latter would arise if p | (i × j) and p | m. So long 
as Axiom 1 yields k = (i × j) we have the equality state ⑤.
The Completely Regular Scaling Issue.

The usual scaling issues seen in LES seem to make the complete-
ly regular states ⑥⑧⑨ impossible as n increases. Let us define a 
squarefree kernel as follows:
 κ = rad(n) = ∏

p|n
 p = A7947(n). [1.1]

Recall the definition of completely regular states outside symmet-
ric divisibility (equality) which is prohibited:
 k || n k |¦ n or k ¦| n k ¦¦ n
 Symmetric Mixed Symmetric
 Divisibility Regularity Semidivisibility
 ⑤ ⑥⑧ ⑨

What these states have in common is that rad(k) = rad(n) = κ, 
which implies that, outside of state ⑤ and for k and n that both ex-
ceed 1, k and n are distinct elements of the infinite set (or list) Rκ of 
κ-regular numbers. Given the prime decomposition of κ, we have the 
following set-building formula for Rκ:

 Rκ =  ⊗
p|κ 

{pε : ε ≥ 0}  [1.2]

Suppose we have the term a(n) = k = Rκ(v) resulting from a given 
selection axiom A in the middle of an interval n ± η of terms resulting 
from A. Let r = Rκ(v –1) and r = Rκ(v +1) such that r < k < r.

The scaling issue has to do with the likelihood of finding r or r not 
already in the sequence given the circumstance of selection axiom 
A within the interval n + η, as n increases. This is dependent on the 
density of Rκ in the vicinity of k, and the dilation of η as n increases. 
Usually, it seems that as n increases, Rκ becomes too sparse to furnish 
solutions for selection axiom A, even for primorials κ. Furthermore, 
symmetric semidivisibility implies k and n both tantus numbers (i.e., 
numbers neither squarefree nor prime powers, A126706) neither of 
which divide the other, hence state ⑨ proves rare. 

Consequences of the scaling issue for completely regular relations 
include rarity outside a few early terms if the states appear at all. Nor-
mally the terms in completely regular relation have squarefree kernel 
6, 10, or 30, for example; small even kernels with small prime factors.
Quasirays in Scatterplot.

There are 4 principal features in scatterplot neatly tied to axioms. 
From lowest apparent slope to the highest, we have the following:

Quasiray α resulting from Axiom 2.2. This contains numbers of all 
omega-multiplicity classes. Odd primes appear in quasiray α, along 
with some multus numbers (i.e., composite prime powers).

Quasiray β results from Axiom 2.1 preceded by a prime p ahead of 
Axiom 1, hence contains 2p. Varius numbers (i.e., squarefree com-
posites) dominate the quasiray, though some multus numbers ap-
pear. The ray appears to parallel quasiray α in log-log scatterplot. 

A second quasiray, γ, superposes quasiray α and is comprised of 
terms that result from duplex Axiom 2.1. 

Finally, quasirays δ₁ and δ₂ comprise an echo of quasiray α wrought 
by Axiom 1. Quasiray δ₂ arises when singleton Axiom 2.1 doubles a 
prime. This echo is limited to numbers that are not prime powers.

We summarize the provenance of quasirays in scatterplot below:

 i ①③⑦⑨ j → [A2.2] → ⍃k : (i × j) ⓪ k ∧ ¬c(k), α
 i ⓪ j → [A1] → ⍃k : (i × j) ②④⑥⑧ k ∧ ¬c(k) δ
 i ②④⑥⑧ j → [A2.1] → ⍃k : k = mp ∧ ¬c(k) : p = lpf((i, j)) β
 i ②④⑥⑧ j → [A2.1] → ⍃k : k = mp ∧ ¬c(k) : p = lpf((i, j)) γ
Permutation of Natural Numbers.

We surmise the sequence is a permutation of ℕ for the following 
reasons. The axioms cover coprimality and complementary species 
of the cototient, including neutral and divisor states as input. The 
neutral input axiom [A2.2] yields coprime pairs that instigate [A1] 
which in turn results in a divisor state or a neutral state between i 
and j. Axiom [A1] sets records and the other two axioms fill in the 
gaps, saturating the sequence. Smallest missing u is often prime, if 
not multus; the coprimality axiom [A2.2] admits smallest missing u 
often and is the agent of insurance for a permutation.

Thus, we surmise the sequence is a permutation of ℕ.
Study 2.

Let’s examine a related sequence b(n). 
Let b(n) = n for n ≤ 3 and let i = b(n–2) and j = b(n–1), 
If rad(i) ≠ rad(j) then b(n) is the least novel k divisible by the 

sum of all primes which divide i but not j, and all the primes which 
divide j but not i. If rad(i) = rad(j) then there are no such primes 
and we define b(n) as the least k prime to both i and j.

We can define the sequence S20230120 logically as follows:

b(n) = n for n ≤ 3; let i = b(n–2) and j = b(n–1), 
and define sets S = { p : p | i } and T = { p : p | j }.
Define function c(x) to be true iff b(j) = x for j < n, else false.
For n > 3, we define b(n) according to the following axioms:
Axiom 0: rad(i) = rad(j) implies ⍃k : (i × j, k) = 1 ∧ ¬c(k). 
Axiom 1: rad(i) ≠ rad(j) implies ⍃k : 
for s = ∑ q : q ∈ { S ⊖ T }, k = ms ∧ ¬c(k), where 
S ⊖ T = S △ T = (S \ T) ∪ (T \ S).

The first terms of the sequence appear below:
1, 2, 3, 5, 8, 7, 9, 10, 20, 11, 18, 16, 6, 12, 13, 36, 
54, 17, 22, 30, 19, 29, 48, 34, 40, 44, 32, 33, 64, 80, 
15, 25, 21, 45, 24, 14, 50, 60, 27, 28, 72, 70, 75, 84, 
42, 23, 35, 105, 39, 100, 46, 56, 90, 120, 31, 41, 144, 
92, 26, 108, 96, 37, 126, 49, 55, 69, 168, 128, ...

We note rad(i) = rad(j) = κ signifies symmetric regularity. There 
are three degrees of symmetric regularity shown in the previous sec-
tion; these are symmetric divisibility (⑤), mixed regularity (⑥⑧), 
and symmetric semidivisibility (⑨). From earlier work, we see that 
the latter two cases are restrictive whereas state ⑤ admits any natural 
number. See [2], Mixed Regularity, pp. 5-6. As stated in the previous 
section, state is restricted to i and j both tantus and absent divisibility.

Mixed regularity requires the semidivisor to be composite, further, 
not a prime power. Symmetric semidivisibility is open only to tantus 
numbers (i.e., both numbers neither squarefree nor a prime power).

Therefore Axiom 0 occurs for numbers in the same strongly reg-
ular sequence κRκ. For instance, suppose we have both i ≥ 6 and j ≥ 
6 in the sequence of 3-smooth numbers 6R₆ = {6 × A3586}. Then 
we could see i = j (which is prohibited by the lexical axiom) hence 
state ⑤. This aside, we may have either i | j or j | i, or both i | j and j | 
i. Asymmetric divisibility in regularity arises when all multiplicities 
of the divisor are accommodated by the multiple, that is as follows:

As stated in the previous section, scaling issues normally act 
against the emergence of state ⑨. Also rare but more common for 
early terms in Rκ are states ⑥⑧.
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Figure 4: Log-log scatterplot of a(n), n = 1…1024 showing primes in red, multus num-
bers (composite prime powers, A246547) in gold, varius numbers (squarefree composites, 
A120944) in green, tantus (neither squarefree nor prime power, A126706) in dark blue, 
highlighting plenus numbers (products of multus numbers, A286708) in large light blue. 
Powerful numbers A1694 = A246547 ∪ A286708.

Figure 5: Log-log scatterplot of a(n), n = 1…4096 where the color function indicates the 
constitutive state Sv(j, k).

Therefore in the strongly κ-regular numbers κRκ : lpf(κ) = p, sup-
pose we select an element n > κ. Then for composite n, there is an 
element d : d | n, 1 < d < n, and d ≤ n/p. We know from theorem that 
d : d | n and d ∈ κRκ. All divisors d appear before n in the sequence 
κRκ. Therefore, most of the numbers k ∈ κRκ are not such that k ⑥ 
n, but depending on n/κ as it remains small, we may have saturated 
k ⑥ n for k < n. ∎
Lemma 6.2: Strongly κ-regular n ∈ κRκ : n > κ implies n ⑧ k such that 
k = mn : m ∈ κRκ and m ≥ p where p = lpf(κ). ∎
Proof: We pursue an argument similar to Lemma 6.1.

Corollary 6.3: For all other k ∈ κRκ, we have n ⑨ k.

Theorem 6: Except n itself, (1/p)n < k < pn implies k ⑨ n.
Proof: Consequence of Lemmas 6.1, 6.2, and Corollary 6.3. That 
is, n/p < k < n implies k ⑨ n and n < k < pn implies k ⑨ n, while 
n ⑤ n. ∎
Theorem 7: Squarefree κ and n ∈ κRκ: k > κ implies κ ⑥ k.
Proof. Squarefree n implies n = κ. Since κ is the minimum of κRκ, 
we have κ ⑥ k, because κ divides all elements in κRκ by definition. 
Recall that state ⑨ implies tantus numbers, and that κ is the sole 
squarefree number in κRκ. ∎

Hence, given tantus i and j “in their vicinity”, with same squarefree 
kernel κ, more precisely, within a factor of lpf(κ), we have state ⑨.

In scatterplot we observe the following:
1. Squarefree numbers enter late while non squarefree predomi-

nate early terms. 
2. There appears to be a clustering or dense set of terms around the 

line b(n) = n.
3. The number b(89) = 4 occurs conspicuously late, following 81 

and 162. This attributes to the first emergence of 2 as a factor of the 
latter that does not divide the former. Since b(2) = 2, we have 2m₂ 
where m₂ = 2. ••••
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Axiom 0 can be rewritten as follows:

i ⑥⑧⑨ j implies ⍃k : (i × j) ⊥ k ∧ ¬c(k).

Therefore on account of the “scaling issue” we expect Axiom 0 to 
prove rare. This table relating to k resulting from Axiom 0 shows data 
that pertain to the smallest 2²⁴ terms: 

 n state i j k K
 ------------------------------------------------------
 8 (6) 10 20 11 10
 13 (6) 6 12 13 6
 16 (9) 36 54 17 6
 44 (8) 84 42 23 42
 53 (9) 90 120 31 30
 60 (9) 108 96 37 6
 183 (6) 182 364 59 182
 240 (6) 170 340 71 170
 676 (9) 1456 1274 131 182
 789 (9) 2052 1824 137 114
 5703 (9) 14850 14520 409 330
 6032 (9) 15392 12506 421 962
 7437 (9) 20580 20160 439 210
 56182 (9) 158400 159720 1277 330

We note that many of these strongly regular relations that trigger 
Axiom 0 concern state ⑨, having declared the state rare.

Lemma 6.1: Strongly κ-regular n ∈ κRκ : n > κ implies d ⑥ n : d ≤ n/p 
where p = lpf(κ).
Proof: Consider nontrivial divisors d of a composite number n. Let 
D be the largest nontrivial divisor of n. Since 2 is the smallest prime, 
then D ≤ n/2. More precisely, if p = lpf(n), then D = n/p. Further-
more, if rad(D) | rad(n) = κ, then p = lpf(κ), hence D = n/p.
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Code:
[c1] Generate S20230119:

nn = 2^20; c[_] = False; q[_] = 1;
Array[Set[{a[#], c[#]}, {#, True}] &, 2];
i = a[1]; j = a[2]; u = 3;
Monitor[Do[If[CoprimeQ[i, j],
   (k = q[#]; While[c[k #], k++]; k *= #; 
     While[c[# q[#]], q[#]++]) &[i j],
   If[Or[Divisible[i, j], Divisible[j, i]],
    (k = q[#]; While[c[k #], k++]; k *= #; 
       While[c[# q[#]], q[#]++]) &
       [FactorInteger[GCD[i, j]][[1, 1]]],
     k = u; While[Nand[! c[k], CoprimeQ[#, k]], k++] &[
     i j] ] ];
  Set[{a[n], c[k], i, j}, {k, True, j, k}];
  If[k == u, While[c[u], u++]], {n, 3, nn}], n];
Array[a, nn]

[c2] Generating function:
nn = 2^20; c[_] = False; q[_] = 1;
f[n_] := FactorInteger[n][[All, 1]];
Array[Set[{a[#], c[#]}, {#, True}] &, 3];
Set[{i, j, S, T}, 
    {a[2], a[3], f[a[2]], f[a[3]]}]; 
Set[{ri, rj}, {Times @@ S, Times @@ T}]; u = 4;
Monitor[Do[If[S == T,
   k = u; While[Nand[! c[k], CoprimeQ[#, k]], k++] &[
     i j],
  (k = q[#]; While[c[k #], k++]; k *= #; 
     While[c[# q[#]], q[#]++]) &[
    Total@ SymmetricDifference[S, T] ] ];
  Set[{a[n], c[k], i, j}, {k, True, j, k}];
  Set[{S, T}, {T, f[j]}];
  Set[{ri, rj}, {Times @@ S, Times @@ T}];
  If[k == u, While[c[u], u++]], {n, 4, nn}], n];
Array[a, nn]

Concerns sequences:
A007947: Squarefree kernel of n; rad(n).
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