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Abstract.

This work relates the totient ratio and the sequence A036998.

Introduction.
We have partitions λ ⊢ n and we are concerned with part t ∈ λT : k ⊥ 

n. For prime n = p, k < p are such that (k, p) = 1, and for all n, k = ±1 
(mod n) are such that k ⊥ n since 2 is the smallest prime, etc.

Define the partition counting function restricted to distinct re-
duced residues t (that is, totatives t) of n, pϕ(n) to be the number of 
distinct totative-restricted partitions λT.

Let the set of reduced residues of n, C(n) = {t : t ⊥ n ∧ t < n}. The 
Euler totient function ϕ(n) = | C(n) |.

Therefore, for prime p we expect many λT ⊢ p, since there are many 
residues t (mod p) such that t ⊥ p, but for highly divisible, even better 
still, primorials, the reduced residue system is minimized. Consider-
ing combinations λT of t ∈ C(n), we expect pϕ(n) to get large quickly. 
Therefore we aim to define both a lower and upper bound.

If we allow λT with repetition, we obtain the following for n = 7:
(6, 1), 
(5, 2), (5, 1, 1), 
(4, 3), (4, 2, 1), (4, 1, 1, 1), 
(3, 3, 1), (3, 2, 2), (3, 2, 1, 1), (3, 1, 1, 1, 1),
(2, 2, 2, 1), (2, 2, 1, 1, 1), (2, 1, 1, 1, 1, 1), 
(1, 1, 1, 1, 1, 1, 1)

With restriction to distinct reduced residues, we have this:
(6, 1), (5, 2), (4, 3), (4, 2, 1).

Thus, pϕ(7) = 4.
The sequence pϕ = OEIS A036998 by Wouter Meeussen in the late 

1990s. The first terms of this sequence begin as follows:
1, 0, 1, 1, 2, 1, 4, 2, 3, 2, 11, 2, 17, 3, 5, 5, 37, 
3, 53, 5, 12, 7, 103, 5, 70, 10, 42, 11, 255, 4, 339, 
23, 59, 22, 130, 11, 759, 32, 115, 22, 1259, 10, 1609, 
44, 94, 64, 2589, 22, 1674, 40, 385, 84, 5119, 30, 1309, 
79, 665, 162, 9791, 18, 12075, 217, 556, 276, 3511, 35, 
22249, 272, 1845, 62, 32991, 77, 40025, 496, 854, 468, 
14108, 68, 70487, 236 , 5331, 833, 101697, 67, 20502, 
1070, 7342, 735, 173681, 60, 48280, 1292, 11276, 1737, 
45803, 232, 345855, 880, 9787, 658, ...

Figure 1 is a log log scatterplot of pϕ(n) for n = 1…1000.
There is a generating function for pϕ(n) based on the reduced resi-

due system C(n) = { k : k ⊥ n ∧ k < n }:

G(pϕ(n), z) = ∏
k ∈ C(n)

(1+zk) 

Hence for n = 12, we have 

G(pϕ(12), z) = (1+z) × (1+z⁵) × (1+z⁷) × (1+z¹¹) = 2.

We see that the totative-restricted partitions λT of 12 are of com-
plementary totatives, i.e., (11, 1) and (7, 5), which we might also 
represent as ±1 and ±5, respectively.

This method does not generate the partitions λT.

Theorem 1. The partition (T, 1) is one of those counted by the par-
tition counting function restricted to distinct totatives, pϕ(n).
Proof. For all n, k = ±1 (mod n) are coprime to n, since 2 is the 
smallest prime. Since T mod n = –1 by definition, we have T+1 = n. ∎

In this way (1, T) forms a pair of “complementary totatives”.

Theorem 2. The “complementary totatives” are counted by the par-
tition counting function restricted to distinct totatives, pϕ(n).
Proof: We can construct the reduced residue system C(n) of n by a 
sieve process on the ring n/ℤn (i.e., k mod n : 0 ≤ k ≤ n – 1) by which 
we delete all k = mp for some p | n, leaving those k : k ⊥ n. This way 
it is clear that there is a symmetric arrangement of reduced residues 
±t. Then it is clear that we have (t, n – t) and the sum of those parts is 
obviously n. This theorem is a generalization of Theorem 1. ∎
Theorem 3. pϕ(n) ≥ ⌊ϕ(n)/2⌋.
Proof. This relies on the immediately preceding theorem. This 
theorem implies that each totative (reduced residue) t has a com-
plementary residue t’ = (n – t) such that t + t’ = n. We know that 
there cannot be t = n/2 else 2 | n thus 2 × t = n, hence t | n and is not 
coprime to n, contradicting definition of t. This said, we have C(2) = 
{1}, and such does not sum to 2. n = 1 is a special case since C(1) = 
{1} and 1 does sum to 1. ∎
Corollary 3.1: Set s = n. For t ∈ C(n), i.e., t such that t ⊥ n ∧ t < n, 
(s – t) ⊥ n implies (s – t) ∈ C(n).

Corollary 3.2: Beginning candidate λc with totative t₁, we add a 
totative t₂ < (n – t₁).  

k
∑
j=1

 (tj) < n implies addition of t(k+1)< tk to candi-
date partition λc such that the sum 

k+1
∑
j=1

 (tj) ≥ n. 
k+1
∑
j=1 

(tj) = n implies λT is 
complete, while the sum 

k+1
∑
j=1 

(tj) > n indicates dropping tk = ti, where 
ti is the i-th totative in C(n). In the latter case, we replace ti with t(i+1) 
and start the process anew until we have exhausted all t ∈ C(n). By 
this process we find all λT that sum to n. This is an inductive extension 
of Theorem 3 and Corollary 3.1.

Corollary 3.3. Set s = n, and for each successive strictly decreasing 
part tk in λT, such that tk ∈ C(n), we perform s –= tk, that is we set s = (s 
– tk). The emergence of s ⊥ n such that s > n/2 implies λT is complete.

Algorithms.
There is a generating function for pϕ(n) based on the reduced resi-

due system C(n) = { k : k ⊥ n ∧ k < n }:

G(pϕ(n), z) = ∏
k ∈ C(n)

(1+zk) 

Hence for n = 12, we have 

G(pϕ(12), z) = (1+z) × (1+z⁵) × (1+z⁷) × (1+z¹¹) = 2.

We see that the totative-restricted partitions λT of 12 are of com-
plementary totatives, i.e., (11, 1) and (7, 5), which we might also 
represent as ±1 and ±5, respectively.

This method does not generate the partitions λT.
Using Theorem 3 and corollaries 3.1-3.3, we may write an algo-

rithm that furnishes all partitions λT that sum to n. 
For computation of pϕ(n), given the magnitude of the function 

even for pϕ(346) > 10¹², therefore it seems that G(pϕ(n), z) is the 
best method for computation of the function pϕ(n), and we will not 
have an easy solution to compute, for example, pϕ(P(6)), aside from 
any approximations we might make taking into consideration qua-
si-curves evident in log-log scatterplot.  
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Conjecture 4: Numbers r in A244052 should predominate local 
minima. This is because these numbers set records for the “regular 
counting function”, RCF(n). 

Define an n-regular k as one that is a product limited to the primes 
p | n; k = 1 is regular to all n, since 1 | n. Divisors are a special case 
of n-regular k, since divisors are products limited to primes p | n. In 
other words, k | nε : ε ≥ 0. We may express n-regular k as k ∥ n.

Define regular counting function as follows:

RCF(n) = A010846(n) = | {k : k ∥ n ∧ k < n} |.

Remark: n-regular k > 1 implies k noncoprime to n, since by defini-
tion, (k, n) > 1. However, n-regular k are only one species of numbers 
k such that (k, n) > 1. We find also n-semicoprime k such that (k, n) 
> 1, with prime q | k such that q ⊥ n. We may express n-semicoprime 
k as k ◊ n. We can also define a function as follows:

sCF(n) = A243823(n) = | {k : k ◊ n ∧ k < n} |

Therefore, we have the following equation:

n = ϕ(n) + RCF(n) + sCF(n) – 1

Hence richness in n-regular k < n occurs at the expense of ϕ(n) + 
sCF(n). The sequence A244052 begins as follows:

1, 2, 4, 6, 10, 12, 18, 24, 30, 42, 60, 84, 90, ...

We observe A244052 ⊂ A2110.
A similar and stronger case might be made for primorials P(n) =  

A2110(n), since the primorials minimize the totient ratio ϕ(n)/n.

Totient Ratio and A036998.
Define “totient ratio” f(n) = ϕ(n)/n = A076512(n)/A109395(n). 

This rational sequence begins as follows: 

1, ½, ⅔, ½, 4/5, ⅓, 6/7, ½, ⅔, 2/5, 10/11, ⅓, 12/13, 3/7, 8/15, ½, 16/17, ⅓, …

We examine the relationship of this function and A036998. 
There is a sort of “axial” structure evident in the scatterplot that 

should associate with the “central” trajectory in the plot (Figure 2).
The distribution away from the axis of the plot seems to have to do 

with the totient ratio since we observe n = 2ε : ε > 1 occur roughly in 
the center of the spread. Below is a table pertaining to n = 2ε.

Table 1.
   n             a(n)
-------------------------------------------
   1               1
   2               0
   4               1
   8               2
  16               5
  32              23
  64             276
 128           11564
 256         2824974
 512      8304924928
1024 824068326214949
2048 11870723791729251777241
4096 195321031346209256918890884699755

Terms a(pε) for powers pε : ε > 1 and odd p appear “north” of this 
center. We also notice that a(n) : 6 | n appear south of the center. 
The lower bound seems to contain the primorials, the subject of the 
following Table 2:

Table 2.

Figure 1: Log-log scatterplot of a(n), n = 1…2310 showing primes in red, multus 
numbers (composite prime powers, A246547) in gold, varius numbers (squarefree com-
posites, A120944) in green, tantus (neither squarefree nor prime power, A126706) in blue, 
highlighting plenus numbers (products of multus numbers, A286708) in large blue, and 
primorials (A2110) in dark blue. Powerful numbers A1694 = A246547 ∪ A286708. We 
have labeled numbers in A244052 in blue.
We are interested in “axial quasicurves” which can be seen in green down the apparent 
center of the graph between the red primes and the blue local near-minima.

Figure 2: Log-log scatterplot of a(n), n = 1…2310 with a color function applied that in-
dicates φ(n)/n, where red = 0 and magenta = 1; the smallest values in the plot are around 
⅛. Cyan represents φ(n)/n = ½.

n P(n) phi(P(n)) a(P(n)) 
--------------------------------------------------------------------------------
1 2 1 0
2 6 2 1
3 30 8 4
4 210 48 1155
5 2310 480 112880439714286
6 30030 5760 45963985270000790854411681190284230666988396740410386843
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The totient ratio (graphed in Figure 4) seems relevant to the scat-
terplot since the partition function restricted to totatives (pϕ(n)) in-
volves the reduced residue system C(n).

The sequence A307540 (see Figure 3) lists squarefree numbers κi 
with gpf(κi) = pi from least to greatest ϕ(κi)/κi. We consider only 
squarefree numbers since the totient ratio only regards prime fac-
tors and not their multiplicities. Hence, a nonsquarefree m such that 
rad(m) = A7947(m) = κ has ϕ(m)/m = ϕ(κ)/κ.

We can produce a plot (i, ϕ(κi)/κi) and notice this has a particular 
arrangement of squarefree kernels κ that seem to map to the plot of 
A036998. In this plot, concerning row i of A307540, we see  the func-
tion ϕ(κi)/κi which is maximized in prime κi = pi and minimized in κi 
= P(i) = A2110(i).

Consider squarefree κ ∈ A5117 and let Rκ = ⊗
p|κ 

{pε : ε ≥ 0} be the 
κ-regular numbers. It is clear that r ∈ Rκ is such that rad(r) | κ. 

Examples:
 R₆ = ⊗

p|6 
{pε : ε ≥ 0} 

 = {2δ : δ ≥ 0} ⊗
 
{3ε : ε ≥ 0} 

 = {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, …}
 = A3586.
 R₁₀ = ⊗

p|10 
{pε : ε ≥ 0} 

 = {2δ : δ ≥ 0} ⊗
 
{5ε : ε ≥ 0} 

 = {1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, …}
 = A3592.
Then strongly κ-regular numbers r ∈ κRκ are such that rad(r) = κ.

 6R₆ = ⊗
p|6 

{pε : ε ≥ 0} × 6

 = {2δ : δ ≥ 0} ⊗
 
{3ε : ε ≥ 0} × 6

 = {6, 12, 18, 24, 36, 48, 54, 72, 96, 108, …}
 = 6 × {A3586}. 

It is evident that multiplication of Rκ by κ guarantees κ | r for all r.

Proposition: For n of similar magnitude, pϕ(n) varies according to 
ϕ(n)/n. What this means to say is that pϕ(n) is a sort of remapping of 
the graph of ϕ(n)/n. Therefore we can define a “curve” attributable 
to the following:

ϕ(n)/n = ½ (powers of 2), 
ϕ(n)/n = ⅓ (strongly 6-regular numbers 6 R₆), 
ϕ(n)/n = ⅔ (powers of 3), 
ϕ(n)/n = 4/5 (powers of 5), 
ϕ(n)/n = 4/15 (strongly 15-regular numbers 15 R₁₅), etc.

The proposition remains to be proved. It would show that r ∈ 
κRκ, presented in their order and transformed by pϕ(r), trace a qua-
si-curve in the scatterplot of A036998 that appeared “parallel” so to 
speak, to the quasi-curve of a(n) : n = 2ε for ε > 1. This would then 
explain the “axial” quasi-curves in the log-log scatterplot of A036998.

This proposition also seems to support the conjecture that the 
highly regular numbers (A244052) comprise locally small terms, but 
A2110 comprise the local minima of A036998.

Conclusion.
We have drawn a few connections between A036998 and numbers 

of certain multiplicative species, including the totient ratio ϕ(n)/n. 
It appears that there is a map between the totient ratio and A036998 
examining features of the plot (n, ϕ(n)/n) and that of A036998. 
We may be able to write bounds and describe curves pertaining to  
ϕ(n)/n associated with certain squarefree kernels κ and thereby esti-
mate the value of A036998(n) such that rad(n) = κ.  ••••

Figure 3: Plot squarefree κi with gpf(κi) = pi. at (i, φ(κi)/κi), where i increases to the 
right and 0 < φ(κi)/κi < 1 increases from bottom. Labels indicate prime factors of κi. 
Primorials appear at bottom in red; primes appear at top in blue.

Figure 4: Plot n at (n, φ(n)/n) for n = 1…2¹⁵, where n increases to the right and 
0 < φ(n)/n < 1 increases from bottom. Color scheme matches Figure 1, except that magen-
ta highlights numbers in A244092. 
This is tantamount to plotting A076512(n)/A109395(n).
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Code:
[c1] Syntactically short and naïve algorithm:

Table[
  Count[IntegerPartitions[n, All, 
    Select[Range[n], 
     CoprimeQ[#, n] &]], 
       _?(# == Reverse@ Union@ # &)], {n, 50}]

[c2] Generating function:
Table[Coefficient[
  Series[Times @@ ((1 + z^#) & /@ 
    Select[Range[q], Coprime[#, q] &]), {z, 0, q}],  
 z^q], {q, 2^8}]

Concerns OEIS sequences:
A002110: Primorials P(n): products of the smallest n primes.
A003586: Numbers of the form 2i × 3j, i ≥ 0, j ≥ 0.
A003592: Numbers of the form 2i × 5j, i ≥ 0, j ≥ 0.
A005117: Squarefree numbers.
A007947: Squarefree kernel of n; rad(n).
A010846: Regular counting function rcf(n).
A036998: Totative-restricted partition counting function pϕ(n).
A076512: Numerator of ϕ(n)/n.
A109395: Denominator of ϕ(n)/n.
A120944: “Varius” numbers; squarefree composites.
A126706: “Tantus” numbers neither prime power nor squarefree.
A243823: Semitotative counting function scf(n).
A244052: Highly regular numbers.
A246547: “Multus” numbers; composite prime powers pε : ε ≥ 1.
A307540: Row i lists squarefree numbers κi with gpf(κi) = pi from 

least to greatest ϕ(κi)/κi.
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2023 0127: Extension of A036998 dataset to 2310 terms.


