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Abstract.
We explore properties of numbers k < n such that both share a 

squarefree kernel, yet k does not divide n. The smallest example of 
such is k = 12, n = 18. We determine the sort of prime decomposi-
tion that k and n must have so as to enjoy this rare relationship. Ex-
amination of a counting function and records transform follow. The 
problem touches upon odd prime p-smooth numbers and the nature 
of the tensor product of prime divisor power ranges bounded by n, 
which relates to OEIS A010846.

Introduction.
Define an n-regular number k to be a product limited to primes p 

such that p | n. Let rad(n) = A7947(n) = κ be the squarefree kernel 
of n. We note that n-regularity is determined without regard to mul-
tiplicity ε of prime power factors pε | n. It is easy to see that n-regular 
k are such that rad(k) | rad(n). Furthermore, n-regular k are ele-
ments of set Rκ = { k : rad(k) | rad(n) } where κ = rad(n). We may 
also express this as follows:

 Rκ =  ⊗
p|κ  

{ pε : ε ≥ 0 }. [1.1]

This expression implies | Rκ | = ℵ₀ for κ > 1, since | {pε : ε ≥ 0} | = ℵ₀. 
A consequence of restricting k to p | n allows the following:

 Rκ = { k : k | nε : ε ≥ 0 }. [1.2]

It is clear from [1.2] that 1 ∈ Rκ, since 1 | nε : ε = 0. There are 2 species 
of n-regular k. Since multiplicity ε of prime power factors pε | n, we 
define these species with regard to n such that rad(n) = κ, rather 
than κ.
 Divisors: Dn = { d : d | nε : 0 ≤ ε ≤ 1 } [1.3]
 Semidivisors: Ðn = { k : k | nε : ε > 1 } [1.4]

The divisor counting function τ(n) = A5(n) is defined as follows:

 τ(n) = | Dn | = ∏
pε|n

 (ε+1). [1.5]

Since Ðn = Rκ\ Dn, | Ðn | = ℵ₀.
We can construct a “regular counting function” that employs the 

bound n as follows:

 θ(n) = | { k : k | nε : ε ≥ 0 ∧ 1 ≤ k ≤ n } |
 = | A162306(n) |
 = A010846(n) [1.6]

The bound n, though not as natural for n-regular k as it is for divi-
sors of n, is justified by the fact that n itself is n-regular. The computa-
tion of θ(n) is most efficiently achieved through an algorithm related 
to [1.1]. (Usage of θ comes from Granville.) Define “the semidivisor 
counting function” ð(n) to be the following:

  ð(n) = | { k : k | nε : ε > 1 ∧ 1 ≤ k ≤ n } |
 = θ(n) – τ(n)
 = A010846(n) – a5(n)
 = A243822(n) [1.7]

Consider a symmetric or completely regular relation k ∥ n, that is, 
k is n-regular, and n is k-regular. We may say that k and n are “coregu-
lar”. It is clear that this relation has the following property:
 rad(k) = rad(n) = κ  [1.8]

We recognize that within coregular relations, we may have three 
species. These are symmetric divisibility (i.e., equality, k = n), mixed 
regularity wherein 1 term divides the other, and symmetric semidi-
visibility, a relation with no divisor relation. An example of symmet-
ric divisibility is the relationship between 12 and 18.
The Symmetric Semidivisor Counting Function.

Define f(n) to be the “symmetric semidivisor counting function” 
as follows:

 f(n) = | { k : k ¦¦ n ∧ 1 < k < n } |.  [2.1]

Therefore the sequence a(n) = A355432(n) = { f(n) ↦ ℕ } begins:
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,2,0,0,0,4,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,0,2,0,2,0,0,0,0,0,0,0,4,
0,0,0,1,0,0,0,0,0,0,0,1,...

Code [C2] generates the sequence.
We know from theorems in [1] that we might rewrite the constitu-

tive expression k ¦¦ n, that is, k ⑨ n, as follows:

 k ¦¦ n → rad(k) = rad(n) ∧ k | n ∧ n | k. [2.2]

Symmetric semidivisorship is a special case of coregularity. Con-
sequently, rad(k) = rad(n) = κ. Therefore it is clear that both k, n ∈ 
κRκ. We also have shown that symmetric semidivisorship pertains to 
k and n that are both not prime powers, that is, both k, n ∈ A024619. 
Therefore, for n ∈ A961, a(n) = 0 and k : k ∈ A961 do not satisfy k ¦¦ n.

We might most succinctly generate a(n) thus:

1.  Generate Rκ bounded by M for κ ∈ A024619 ∧ κ = M, where M 
is the largest n we want to compute.

2.  For n : n ∈ A961, a(n) = 0.
3.  For n : n ∈ A024619, 

 a(n) = | { k : k ∈ Rκ ∧ 1 < k < n ∧ (k | n ⊽ n | k) |. [2.3]

4.  Let p = lpf(κ). For k : k ∈ Rκ ∧ k > n/p, (k | n ⊽ n | k).

This should serve as cogent pseudocode.
It is evident that a(n) < θ(n) for the following reason:

 { k : k ¦¦ n ∧ 1 < k < n } ⊂ { k : k ∥ n ∧ 1 < k < n }.
 { k : k ¦¦ n ∧ 1 < k < n } ⊂ A162306(n). [2.4]

This, since A010846(n) = | A162306(n) |.
We know that 1 is not an element of the former, but is in the latter, 

so that the former is a proper subset of the latter.
Furthermore, a(n) ≤ A243822(n). An interesting proposition 

would regard the question of any n such that a(n) = A243822(n). We 
might try n = 18, and see the following:

 { k : rad(k) | rad(n) ∧ k | n ∧ n | k ∧ 1 < k < n } 
 = { k : k ∈ Rκ ∧ k | n ∧ n | k ∧ 1 < k < n }
 = A162306(n) \ A027750(n)
 = A162306(n) ∩ A173540(n)
 = A272618(n)
 = {4, 8, 12, 16}. 

 This, since A272618(n) = A162306(n) \ A027750(n) = A162306(n) ∩ 
A173540(n). Of these, only 12 does not divide 18, thus the following: 
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 a(n) = | A272618(n) \ { k : rad(k) ≠ rad(n) } |
 a(n) = | {12} | = 1.

In this case the sole symmetric semidivisor is 12, and we see the 
rest of the 18-regular numbers are composite prime powers. There-
fore we would need to show the following is true for numbers n that 
are not prime powers:

 { k : k ∈ A246547(n) ∧ k ∈ A162306(n) } = ∅. [2.5]

Let’s return to the notion of Rκ, the infinite set of κ-regular num-
bers where κ = rad(n). Example: for squarefree κ = 6, we have R₆ = 
A3586, the “3-smooth numbers”:

 R₆ = ⊗
p|6 

{pε : ε ≥ 0} 

 = {2δ : δ ≥ 0} ⊗
 
{3ε : ε ≥ 0} 

 = {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, …}
 = A3586.

It is clear that for n such that rad(n) = κ, we may select any k ∈ R₆, 
and have the relation rad(k) | rad(n). We may also have the inverse 
rad(n) | rad(k), which is certainly true for k = n and for not all but 
infinitely many k > n.
Coregular Numbers.

It is clear that rad(k) = rad(n) = κ is a special case of the above. 
This case implies both k and n are in the set {κRκ}, i.e., both k and n 
are κ-coregular. 

Lemma 2.1: For κ = 1, R₁ = {1}.
Proof: For k > 1, at least 1 prime p | k, and all primes are coprime to 
1, therefore, k such that k > 1 is nonregular to 1. ∎
Lemma 2.2: For κ = p prime, prime powers comprise pRp.
Proof: For κ = p prime, Rp = { pε : ε ≥ 0 }, hence pRp = Rp\ {1}, and 
all terms are prime powers. ∎
Lemma 2.3: For composite κ, the first term of κRκ is κ, while the re-
maining terms are neither prime powers nor squarefree (i.e., a “tan-
tus” number, k ∈ A126706).
Proof: The empty product 1 is n-regular for all n because 1 | n. 
Therefore, the first term in κRκ is κ × Rκ(1) = κ × 1. With κ ∈ A120944 
since κ is by definition squarefree, the sequence κRκ begins with 
squarefree κ followed by numbers k of the form mκ, where m ∈ Rκ 
and m > 1, as consequence of [1.1]. Therefore, aside from the small-
est term, k is neither squarefree nor prime power. ∎ 

Corollary 2.4: The second-smallest number k in κRκ is clearly the 
product pκ, where p = lpf(κ) = A020736(κ), since p is the successor 
of 1 in Rκ.

Theorem 2: The infinite sequence κRκ, squarefree κ > 1, consists 
of prime powers for prime κ, otherwise, the first term is squarefree 
composite κ followed by tantus numbers (i.e., k ∈ A126706). Proof 
supplied by Lemmas 2.2 and 2.3.

We are concerned with the finite set defined below:

 Sn = { k ∈ {κRκ} : k ≤ n ∧ k ∤ n}. [2.6]

This set Sn represents {κRκ} truncated after the appearance of n. 
Therefore we arrive at the following equation:

 a(n) = | Sn |. [2.7]

Lemma 3.1: a(n) = 0 for prime powers n = pε.
Proof: rad(k) = rad(n) = p prime implies k = pδ and n = pε such 
that δ ≤ ε. Then pδ | pε, leaving Sn = ∅, hence a(n) = | Sn | = 0. ∎

Lemma 3.2: a(n) = 0 for squarefree n.
Proof: rad(k) = rad(n) = n implies k = n. All numbers divide 
themselves, leaving Sn = ∅, hence a(n) = | Sn | = 0. ∎
Theorem 3.3: a(n) ≥ 0 for tantus n (i.e., n ∈ A126706).
Proof: Consequence of Lemmas 3.1 and 3.2.

Lemma 3.4: a(n) = 0 for n = rad(n) × lpf(n) and ω(n) > 1.
Proof: In the sequence κRκ, only κ < n by Corollary 2.4, and κ | n by 
definition of squarefree kernel. Thus Sn = ∅, hence a(n) = | Sn | = 0. ∎
Theorem 3.5: Let prime p = lpf(n) and q be the second smallest 
prime divisor of n. Let pε be the largest power of p such that pε | n. Let 
rad(n) = κ, and let n/κ = m. For all n ∈ A126706 such that the ratio 
n/κ < q, a(n) = 0.

Proof: Consider n = pδqQ where p and q are as defined and Q is a 
product of primes greater than q. Clearly, n = p(δ–1)κ. Recalling Lem-
ma 2.3, we may divide κRκ/κ and cancel κ to obtain Rκ. The first term 
of Rκ, i.e, Rκ(1), is the empty product 1, followed by lpf(κ) = p and 
all powers pi such that i ≤ ε. After pε, we have q. Hence we have the 
following power range of p bounded by q:

  P = { pi : 0 ≤ i ≤ ε },
 = { pi : 0 ≤ i ≤ ⌊logp q⌋ } [2.8]

It is sure that we do not have any interposing products pq, since 
pq > q, yet pε < q. It is immaterial whether we have multiplicity for 
q that exceeds 1, since this only makes for larger products in Rκ. By 
same token, any larger prime and any multiplicity of these primes 
that exceeds 1 also only makes larger products that do not interpose 
amid terms of P. Within P, all terms divide pε. Therefore, all terms in 
κP divide n, leaving Sn = ∅, thus a(n) = | Sn | = 0. ∎

Consequently, we may partition A126706 into 2 subsequences:

A “weak tantus” sequence t of numbers k that are neither 
prime powers nor squarefree semiprimes, where pε ≤ p⌊logp q⌋ 
such that p = lpf(n). For n ∈ t, a(n) = 0. Code [C4] generates 
the sequence t. This sequence A360767 begins as follows:
12, 20, 28, 40, 44, 45, 52, 56, 60, 63, 68, 76, 84, 88, 
92, 99, 104, 116, 117, 124, 132, 136, 140, 148, 152, 
153, 156, 164, 171, 172, 175, 176, 184, 188, 204, 207, 
208, 212, 220, 228, 232, 236, 244, 248, 260, 261, 268, 
272, 275, 276, 279, 280, 284, 292, 296, 297, 304, 308, 
315, 316, 325, 328, 332, 333, 340, 344, 348, 351, ...

A “strong tantus” sequence T of numbers k that are neither 
prime powers nor squarefree semiprimes, where pε > p⌊logp q⌋. 
(See Figure 2 in the Appendix for a curious pattern that aris-
es in A126706 amid strong and weak tantus numbers.) For n 
∈ t, a(n) > 0. Code [C5] generates T. This sequence A360768 
begins as follows:
18, 24, 36, 48, 50, 54, 72, 75, 80, 90, 96, 98, 100, 
108, 112, 120, 126, 135, 144, 147, 150, 160, 162, 168, 
180, 189, 192, 196, 198, 200, 216, 224, 225, 234, 240, 
242, 245, 250, 252, 264, 270, 288, 294, 300, 306, 312, 
320, 324, 336, 338, 342, 350, 352, 360, 363, 375, ...

The sequence below comprises the first terms of { f(n) ↦ T }:
1, 1, 1, 2, 2, 4, 2, 1, 1, 1, 4, 2, 2, 4, 1, 1, 1, 1, 
3, 1, 3, 2, 8, 1, 2, 1, 7, 2, 1, 2, 5, 2, 1, 1, 3, 3, 
1, 6, 1, 1, 5, 5, 4, 5, 1, 1, 4, 8, 3, 3, 1, 2, 1, 4, 
2, 3, 5, 10, 2, 1, 3, 3, 1, 1, 1, 6, 1, 3, 7, 1, 1, 7, 
3, 14, 3, 6, 3, 2, 1, 1, 2, 7, 2, 1, 1, 2, 2, 8, 4, 6, 
4, 8, 1, 1, 2, 1, 6, 9, 2, 1, 6, 2, 3, 1, 7, 1, 3, ...

Generate the above sequence using Code [C7].
Appendix Figure 1 is an example of the pattern of symmetric semi-

divisors k such that k < n for k, n in 6R₆.
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Highly Symmetrically Semidivisible Numbers.
Let’s examine the records transform r of A355432. The list r of re-

cord setters, A360589, begins with the following terms: 
1, 18, 48, 54, 162, 384, 486, 1350, 1458, 2250, 2430, 
3750, 6000, 6750, 7290, 11250, 12150, 14580, 15000, 
15360, 18750, 21870, 30720, 33750, 36450, 37500, 43740, 
56250, 61440, 65610, 93750, 122880, 168750, ...

Code [C10] generates the sequence.
Observation 4.1: r(i) = A055932(j), given n ≤ 2²² terms of 
A355432, essentially for i ≤ 80. Appendix Table A lists r(1…80) 
along with several parameters described under Table 1. The num-
bers in A055932 are products of the smallest primes p such that no 
nondivisor prime q < p.

The above observation, if true, implies the following:

 r ⊂ { T ∩ A055932 }. [4.1]

Confinement of r to sequence A055932 implies the following:

 k, n ∈ RA2110(j) such that j > 1. [4.2]

This statement is tantamount to saying that records in A355432 ap-
pear in sequences of the p-smooth numbers, where p is odd. In other 
words, sequences of numbers k where odd p is the largest prime fac-
tor. In OEIS, many such sequences of p-smooth numbers appear for 
small primes p:

A3586: R₆ = RA2110(2) = 3-smooth numbers.
A051037: R₃₀ = RA2110(3) = 5-smooth numbers.
A2473: R₂₁₀ = RA2110(4) = 7-smooth numbers.
A051038: R₂₃₁₀ = RA2110(5) = 11-smooth numbers.
A080197: R₃₀₀₃₀ = RA2110(6) = 13-smooth numbers.
A080681: R₅₁₀₅₁₀ = RA2110(7) = 17-smooth numbers.
A080682: R₉₆₉₉₆₉₀, = RA2110(8) = 19-smooth numbers.
A080683: R₂₂₃₀₉₂₈₇₀ = RA2110(9) = 23-smooth numbers.

Observation 4.2: For n ≤ 2²²,  n ∈ r have ω(n) ≤ 4. Table 1 is a list of 
the smallest terms that have ω distinct prime factors:

Table 1.

 i n A067255(n) j a(n)
 ------------------------------------------------
 1 1 0 1 0
 2 18 1.2 8 1
 8 1350 1.3.2 65 16
 40 360150 1.1.2.4 554 168
 182 507310650 1.2.2.1.5 5468 1524
 601 289898148540 2.1.1.1.1.7 31947 8191

In the table we list the index i, followed by r(i) = n, where 
A355432(n)  = a(n) is the number of symmetric semidivisors k < n. 
Furthermore, a(n) = A055932(j). We employ “multiplicity notation” 
A067255(n), which merely notes multiplicities of prime power fac-
tors of n where the first multiplicity pertains to 2, the second to 3, the 
third to 5, and generally the k-th pertains to prime(k).

Thus n = 18 = 2¹ × 3² = r(2) = A055932(8); A355432(18) = 1.
The parenthetic fifth line is a projection given Observation 4.1. We 

expect a term n with ω(n) = 7, and don’t have any reason to suspect 
that there are any limits against higher numbers of distinct prime fac-
tors for “highly symmetrically semidivisible numbers” n ∈ r. 

Theorem 4: A360589 ⊂ A055932.
Proof: Theorems in the last section show that A355432(n) = 0 for 
“strong tantus” numbers, which are in A126706, and that A055932 
contains prime powers and squarefree numbers that do not appear 
in A126706 by definition.

The numbers in A055932 are products of the smallest primes p 
such that no nondivisor prime q < p. The proposition thus implies 
that n ∈ A360589 are such that n = m × A2110(j) where m ∈ RA2110(j). 
This follows from [1.1] bounded by n and log n / log p for all p | n.

The following sequence is a different ordering of A162306(n) relat-
ed to the definition of Rκ bounded by n, by vectorizing the tensor in 
order of prime divisor p:

 A275280(n) = { k = { ⊗
p|κ  

{ pε : ε ≥ 0 }} ∧ k ≤ n }.

 A010846(n) = θ(n) 
 = | A275280(n) | 
 = | A162306(n) |  [4.3]

 In the ω(n)-orthosimplex defined by A275280(n), the origin is the 
empty product, the axes contain prime powers, etc., but for strongly 
tantus n, tantus numbers k reside in the interior where multiplici-
ty of at least 1 prime divisor exceeds 1. There is an encrustation of 
nontantus numbers that requires sufficiently large n to reach a sig-
nificant number of nondivisor strong tantus k. Hence, as n increases, 
there are proportionately more tantus numbers in A275280(n). For 
numbers n that conserve κ, larger n tend to proportionally enrich the 
polytope A275280(n).

Consider 2 large strong tantus numbers that are “comparable” in 
that they are the largest strongly κ-regular numbers less than n:

M = pεqδ, p < q, and n = pdre, q < r, 
where the multiplicities are conserved between the 2 numbers. Since 
log n / log q > log n / log r, we have more tantus numbers in M than 
in n. This implies that the distinct primes that produce n are a set of 
the smallest consecutive primes, that is, κ is in A2110.

The only numbers that might supersede products of m × A2110(j) 
at sufficient scale are numbers of the form m × A2110(j+1).

We would like to write a more rigorous proof of Theorem 4.
Code [C11] generates record setters A360589 and records A360912 

much more efficiently based on Theorem 4. 

Some Open Questions:
1.  Is there a simpler or more rigorous proof of Theorem 4?
2.  What is the smallest instance of 17-smooth n that sets a 

record in A355432?
3.  What is the reason for the pattern of weak and strong tan-

tus numbers (i.e., A126706) seen in Figure 1.
4. We have not proved that A355432(n) < A243822(n), 

though it seems to follow from the nature of n such that 
A355432(n) > 0.

Conclusion.
We have identified numbers n for which we have at least 1 num-

ber k such that rad(k) = rad(n), yet k does not divide n. These are 
the “strong tantus” numbers n ∈ A360768. A symmetric semidivisor 
counting function was defined in A355432. We explored the records 
transform, attempting to show the sort of numbers in A360589 that 
set records in A355432. These numbers are in A055932, which im-
plies that we need only search the odd prime p-smooth numbers for 
candidates.  ••••
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Appendix.
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Code:
[c1] Calculate Rκ bounded by an arbitrary limit m (i.e., calculate 

A275280(n); flatten and take union to provide A162306)
regularsExtended[n_, m_ : 0] := 
  Block[{w , lim = If[m <= 0, n, m]}, 
   Sort@ ToExpression@
     Function[w, 
       StringJoin[
         "Block[{n = ", ToString@ lim, 
         "}, Flatten@ Table[", 
         StringJoin@
           Riffle[Map[ToString@ #1 <> "^" <> 
             ToString@ #2 & @@ # &, w], " * "], 
         ", ", Most@ Flatten@ Map[{#, ", "} &, #], 
         "]]" ] &@ 
       MapIndexed[
         Function[p, 
           StringJoin["{", ToString@ Last@ p, 
             ", 0, Log[", 
             ToString@ First@ p, ", n/(", 
             ToString@
               InputForm[
                 Times @@ Map[Power @@ # &, 
                   Take[w, First@ #2 - 1]]], 
             ")]}" ] ]@ w[[First@ #2]] &, w]]@
       Map[{#, ToExpression["p" <> 
         ToString@ PrimePi@ #]} &, #[[All, 1]] ] &@ 
       FactorInteger@ n];

[c2] Generate A355432 (needs [C1]):
A355432 = Block[{a, c, f, k, s, t, nn}, 
  nn = 2^20; c[_] = 0;
  f[n_] := f[n] = n regularsExtended[n, Floor[nn/n]];
  s = Select[Range[nn], 
    And[CompositeQ[#], SquareFreeQ[#]] &];
  Monitor[
    Do[Set[t[ s[[i]] ], f@ s[[i]]], {i, Length[s]}], 
  i];
  Monitor[
    Do[k = t[ s[[j]] ]; 
      Map[Function[m, 
        Set[c[m], 
          Count[TakeWhile[k, # <= m &], 
            _?(Mod[m, #] != 0 &)]]], k], {j, Length[s]}],   
  j];
  Array[c, nn] ];

[c3] Generate tantus numbers (A126706):
a126706 = Block[{k}, k = 0;
   Reap[Monitor[Do[
       If[And[#2 > 1, #1 != #2] & @@ 
         {PrimeOmega[n], PrimeNu[n]}, 
        Sow[n]; Set[k, n] ],
       {n, 2^21}], n]][[-1, -1]]] (* Tantus *);

[c4] Generate “weak tantus” numbers (A360767):
Select[a126706[[1 ;; 120]], #1/#2 < #3 & @@ 
  {#1, Times @@ #2, #2[[2]]} & @@ 
  {#, FactorInteger[#][[All, 1]]} &] 

[c5] Generate “strong tantus” numbers (A360768):
Select[a126706[[1 ;; 120]], #1/#2 >= #3 & @@ 
  {#1, Times @@ #2, #2[[2]]} & @@ 
  {#, FactorInteger[#][[All, 1]]} &] 

[c6] Select strongly tantus terms of a sequence:
stantusSelect[w_List] := 
 Select[
  Select[w, 
    Nor[PrimePowerQ[#], SquareFreeQ[#]] &], 
  #1/#2 >= #3 & @@ 
  {#1, Times @@ #2, #2[[2]]} & @@ 
  {#, FactorInteger[#][[All, 1]]} &];

[c7] Generate { f(n) ↦ T }, effectively eliminating 0’s from A355432 :
A355432[[#]] & /@ 
 Select[a126706[[1 ;; 2^10]], 
   #1/#4 >= #3 & @@ 
   {#1, #2[[1]], #2[[2]], Times @@ #2} & @@ 
   {#, FactorInteger[#][[All, 1]]} &]

[c8] Generate a table of A360589 and corresponding values in 
A355432:

With[{s = A355432}, 
  Map[{FirstPosition[s, #][[1]], #} &, 
   Union@ FoldList[Max, s]]] // TableForm

[c9] Function that generates A055932:
A055932[n_, l_ : 0, o_ : 0] := 
  Block[{lim, ww, dec},
  dec[x_] := Apply[Times, 
    MapIndexed[Prime[First@ #2]^#1 &, x]];
  Set[{lim, ww},
   If[l < 1,
    {Product[Prime@ i, {i, n}], 
      NestList[Append[#, 1] &, {1}, n - 1]},
    {n, NestList[Append[#, 1] &, {1}, # - 1]} &[
       -2 + Length@ 
       NestWhileList[NextPrime@ # &, 
         1, Times @@ {##} <= n &, All] ] ] ];
  {{{Boole[o == 0]}}}~Join~Map[Block[{w = #, k = -1},
      Sort@
         Apply[Join, {{If[o > 0, #, dec@ #] &@
             ConstantArray[1, Length@ w]}, 
           If[Length@ # == 0, #, #[[1]]] }] &@
         Reap[Do[
           If[# <= lim,
             Sow[If[o > 0, w, #]]; k = -1,
             If[k <= -Length@ w, Break[], k--]] &@
               dec@ Set[w,
                If[k == -1,
                  MapAt[# + 1 &, w, k],
                  PadRight[#, Length@ w, 1] &@
                    Drop[MapAt[# + Boole[i > 1] &, 
                      w, k], k + 1] ]], 
           {i, Infinity}] ][[-1]] ] &, ww]]

[c10] Generate A360589 and a360912 via A355432 
 (syntactically concise version):

Set[{a360589, a360912}, 
 With[{s = A355432[[1 ;; 2^16]]}, 
  Transpose@
  Map[{FirstPosition[s, #][[1]], #} &, 
   Union@ FoldList[Max, s] ] ] ]

[c11] Efficiently generate A360589 and a360912:
Set[{a360589, a360912}, 
  Block[{a, c, f, k, s, t, pp, nn}, 
   nn = 2^20; pp = 5; c[_] = 0;
   f[n_] := f[n] = n regularsExtended[n, Floor[nn/n]];
   s = Rest@ FoldList[Times, Prime@ Range[pp]];
   Monitor[
    Do[Set[t[s[[i]]], f@ s[[i]]], {i, Length[s]}], i];
   Transpose@
    Sort@ Reap[
       Monitor[Do[k = t[s[[j]]]; 
         Map[Function[m, 
           If[# > 0, Sow[{m, #}]] &@
            Count[TakeWhile[k, # <= m &], 
             _?(Mod[m, #] != 0 &)]], k], 
         {j, Length[s]}], j]][[-1, -1]] ] ];
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Concerns sequences:
A000040: Prime numbers.
A000961: Prime powers.
A001221: Number of distinct prime divisors of n, ω(n).
A002473: R₂₁₀ = RA2110(4) = 7-smooth numbers.
A003586: R₆ = RA2110(2) = 3-smooth numbers.
A005117: Squarefree numbers.
A007947: Squarefree kernel of n; rad(n).
A013929: Numbers that are not squarefree.
A024619: Numbers that are not prime powers.
A051037: R₃₀ = RA2110(3) = 5-smooth numbers.
A051038: R₂₃₁₀ = RA2110(5) = 11-smooth numbers.
A080197: R₃₀₀₃₀ = RA2110(6) = 13-smooth numbers.
A080681: R₅₁₀₅₁₀ = RA2110(7) = 17-smooth numbers.
A080682: R₉₆₉₉₆₉₀, = RA2110(8) = 19-smooth numbers.
A080683: R₂₂₃₀₉₂₈₇₀ = RA2110(9) = 23-smooth numbers.
A120944: “Varius” numbers; squarefree composites.
A126706: “Tantus” numbers neither prime power nor squarefree.
A162306: Truncation of Rκ: row n = { k ∈ Rκ : k ≤ n }, rad(n) = κ .
A275280: { k = { ⊗

p|κ  
{ pε : ε ≥ 0 }} ∧ k ≤ n }.

A355432: a(n) = symmetric semidivisor counting function.
A359929: Row n lists symmetric semidivisors of A360768(n).
A360589: Record setters in A355432.
A360767: Weakly tantus numbers.
A360768: Strongly tantus numbers.
A360912: Records in A355432.

Document Revision Record:
2023 0219: Draft 1. 2023 0222: Draft 2.
2023 1025: Minor edits to align with notation in later papers.

This work is dedicated to my son Karl  
on the occasion of his 16th birthday.

Table A.
 i = index in A360589. 
 j = index in A055932. 
 n = index in A355432.
 i r(i) = n A067255(n) j a(n) i
 --------------------------------------------
 1 1 0 1 0 1
 2 18 1.2 8 1 2
 3 48 4.1 13 2 3
 4 54 1.3 14 4 4
 5 162 1.4 25 8 5
 6 384 7.1 37 10 6
 7 486 1.5 42 14 7
 8 1350 1.3.2 65 16 8
 9 1458 1.6 67 21 9
 10 2250 1.2.3 81 23 10
 11 2430 1.5.1 85 26 11
 12 3750 1.1.4 99 33 12
 13 6000 4.1.3 122 34 13
 14 6750 1.3.3 127 39 14
 15 7290 1.6.1 131 44 15
 16 11250 1.2.4 154 51 16
 17 12150 1.5.2 161 52 17
 18 14580 2.6.1 172 54 18
 19 15000 3.1.4 174 55 19
 20 15360 10.1.1 176 58 20
 21 18750 1.1.5 190 67 21
 22 21870 1.7.1 201 70 22
 23 30720 11.1.1 229 76 23
 24 33750 1.3.4 237 77 24
 25 36450 1.6.2 244 80 25
 26 37500 2.1.5 248 83 26
 27 43740 2.7.1 261 84 27
 28 56250 1.2.5 286 95 28
 29 61440 12.1.1 296 98 29
 30 65610 1.8.1 304 104 30
 31 93750 1.1.6 345 119 31
 32 122880 13.1.1 381 124 32
 33 168750 1.3.5 426 133 33
 34 182250 1.6.3 436 134 34
 35 187500 2.1.6 443 142 35
 36 196830 1.9.1 450 148 36
 37 245760 14.1.1 486 153 37
 38 281250 1.2.6 509 160 38
 39 328050 1.8.2 536 164 39
 40 360150 1.1.2.4 554 168 40
 41 375000 3.1.6 564 169 41
 42 393660 2.9.1 573 172 42
 43 425250 1.5.3.1 588 174 43
 44 430080 12.1.1.1 589 178 44
 45 459270 1.8.1.1 602 186 45
 46 468750 1.1.7 607 191 46
 47 504210 1.1.1.5 622 197 47
 48 590490 1.10.1 659 201 48
 49 648270 1.3.1.4 680 210 49
 50 656250 1.1.6.1 682 217 50
 51 765450 1.7.2.1 718 223 51
 52 833490 1.5.1.3 738 229 52
 53 860160 13.1.1.1 746 235 53
 54 918540 2.8.1.1 762 236 54
 55 918750 1.1.5.2 763 243 55
 56 1008420 2.1.1.5 787 252 56
 57 1071630 1.7.1.2 804 253 57
 58 1152480 5.1.1.4 824 255 58
 59 1181250 1.3.5.1 832 262 59
 60 1275750 1.6.3.1 852 266 60
 61 1286250 1.1.4.3 853 273 61
 62 1312500 2.1.6.1 860 276 62
 63 1377810 1.9.1.1 872 284 63
 64 1512630 1.2.1.5 902 294 64
 65 1720320 14.1.1.1 941 303 65
 66 1800750 1.1.3.4 954 309 66
 67 1944810 1.4.1.4 979 314 67
 68 1968750 1.2.6.1 984 319 68
 69 2016840 3.1.1.5 991 320 69
 70 2296350 1.8.2.1 1032 333 70
 71 2500470 1.6.1.3 1062 340 71
 72 2521050 1.1.2.5 1066 350 72
 73 2755620 2.9.1.1 1096 353 73
 74 3010560 12.1.1.2 1130 358 74
 75 3025260 2.2.1.5 1132 364 75
 76 3214890 1.8.1.2 1154 373 76
 77 3281250 1.1.7.1 1163 386 77
 78 3529470 1.1.1.6 1188 397 78
 79 4033680 4.1.1.5 1242 402 79
 80 4133430 1.10.1.1 1252 415 80

Figure 1: Pattern of symmetric semidivisors shown in large black dots, versus divisors 
in gray, for k and n both in the sequence κRκ such that κ = 6, i.e., OEIS a3586. Numbers 
that are strong tantus are printed in red, in row and column that springs from the gray dot 
“southwest” of the diagonal index. The exponents of 2 and 3 appear in black to the right of 
the index. Sorting lexically by A067255(n), we see a pattern shared by numbers of similar 
prime power decomposition, incrementing only one of the exponents.
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Figure 2: OEIS A126706 is the sequence of tantus numbers: neither prime power nor squarefree. Consider 2 smallest prime factors p and q, p < q, and define a “strong tantus” number n 
to be such that pε > q. Define a sequence b(n) that is a characteristic function of n such that A126706(n) is a strong tantus number, where white represents weak and black strong tantus 
numbers. This is an image of b(1…1032256), 1032256 = 1016², exhibiting a curious interference pattern (the reason for 1016 terms per row). Perhaps the rarefaction delimiated by 
compression features to make “sand ripple” shapes pertains to congruence relations with numbers in the cototient of 6 or 12. The ripples are still not explained.


