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ABSTRACT.

We examine a species of numbers k in the cototient of # such that
k has a divisor p that does not divide n, and n has a divisor q that
does not divide k, called symmetric semicoprimality. Particularly, we
examine a counting function f; (1) = A360480(n) and note the resem-
blance of this function to A051953 =n — ¢(n).

INTRODUCTION.

Consider the cototient of 1, that is, those k < n such that (k, n) > 1.
In other words, if the reduced residue set RRs(n) includes k < n such
that (k, n) = 1, then the cototient is defined as follows:

c(n)={1...n} \ RRS(n).
A051953(n) = | c(n) |
=n—-¢(n).

=n-A1o(n).

[1.1]
[1.2]

Clearly, A051953(n) = 1 for n = p, prime.

Within c(n), we have divisors d | n, therefore we define the neutral
cototient, £(n), the set of k neither coprime to n nor divisors of n, as
follows:

gm)y=cm)\{d:d|n}.
E(n)=|z(n) |
=|A133995(n) |
=n-¢(n) —1(n)+ L.
=n-A1o(n) —As(n) + 1.
= A045763(n).

[1.3]
[1.4]

As consequence of neutrality, k and n are composite, since primes
p either divide n or are coprime to n. Furthermore, for n = p, {(n) = 0.
‘We may distinguish 2 species of n-neutral k based on the square-
free kernel RAD(m) = A7947(m). The case RAD(k) | RAD(n) implies
k is n-regular, meaning that k | n*, € > 0, that is, all prime factors of k
also divide n. The n-regular numbers k are a superset of divisors d |
nt,e=0...1; for k < n, these numbers are listed in row n of A162306.
A162306(n) = { k<n:raD(k) | RAD(n) } [1.5]
{k<n:k|nex0}
={d:d|n}U{k<n:k|n,e>1}
=A027750(n) U A272618(n)
A010846(n) = | A162306(n) |
=|a027750(n) | + | A272618(n) |
=As5(n) + A243822(n)
=1(n) +§ (n).

Nondivisor n-regular k are called semidivisors, and are 1 of the

[1.6]

2 species in the neutral cototient [2], [3]. These are listed in = (n),
that is, row n of A272618. The semidivisor counting function & (1)
=A243822(n).

The other species is n-semicoprime k, k < n, hence we have called
this species a “semitotative” of . These are listed in =, (1), that is, row
nof A272619. The semidivisor counting function § (1) = A243823(n).

g (n) =2(n) \ £ (n)
A272619(n) = A133995(n) \ A272618(n)

[1.7]

We can define the sequence £ (1) from first principles:

g (m)={k:k<nA(kn)>1AraD(k) f RAD(n) } [1.8]
£m=]z,m] [1.9]
= | A133995(n) | - | A272618(n) |
=A243823(n).

SYMMETRIC SEMICOPRIMALITY.

Where coprimality between k and n represents disjunct sets of
prime divisors of k and # and regularity represents one set a subset of
the other, semicoprimality represents an inhabited symmetric differ-
ence. Hence we can have n-semicoprime k, yet k-regular n and vice
versa, while coprimality is always symmetric.

DEFINITION 1: When we have at least 1 prime p such that p | k that
does not divide 1, and at least 1 prime g such that q | n that does not
divide k, we have “symmetric semicoprimality”.

In [2] we present the following symbols:

TABLE A.

k1n kiscoprimeton (k,n)=1

kOn kissemicoprimeton 1< (kn)<MIN  n/(kn)ktn
klln kisregularton 1<(kn)<smIN  k|n:e20
k|n kdividesn 1<(kn)=k k|n:e=0..1
k!n ksemidivides n 1< (kn)<miN  k|n:e>1

Symmetric semicoprimality we express through k 00 n,i.e, k D n
per [2]. These are k and n in the cototient absent divisorship between
their squarefree kernels. Such is implied by the definition of sym-
metric semicoprimality. The existence of 2 species of regular num-
bers (the divisor and the semidivisor) implies corresponding mixed
cototient states:

00 O or |0 Olor 10
Symmetric Lean Mixed
Semicoprimality Divisorship Neutrality

@ @0 ®0

For k < n, it is clear that we cannot have state @, that is k 0| n, since
that would require k > 1, a contradiction. The mixed neutral state @,
i.e, k |0 n, is not at issue, since it is a kind of semidivisor. The lean
divisor state @, k |0 n, is also immaterial, since it is a kind of divisor.
Therefore the category of lean divisorship can be ignored, but we
can’t use n } k as a means to determine symmetric semicoprimality.

For our purposes, we are only interested in disambiguating states
@® and ®.

We have a final step to distinguish symmetric from asymmetric
semitotatives. The set of semitotatives, £ (1), includes both n-semi-
coprime k for which n is k-regular, (i.e,, RaD(1) | RAD(k)) and where
n is k-semicoprime. Therefore the following is necessary to create a
set S of symmetric semitotatives:

S={kea272619(n): RaD(n) { RaD(k) }
={k:k<nA(kn)>1A
raDp(k) { RaD(n) ARAD(n) { RaD(K) }
=A361098(n).
The symmetric semicoprime counting function thus is defined as

[2.1]

follows:

fi(n) = A360480(n) = | A361098(n) | [2.2]
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Figure 1: A map ofconstitutive states in the cototient between k and nforE <36andn
< 36. Black circles are in state @, wﬁi(egray dots represent coprimality (state © ). Red
dots represent divisor states @ ® ®, notably excepting k= 1. Blue represents state @
while ye[[aw represents state ®@. Tina@, magenta represents symmetric semiafivisiﬁi(ity,
state @, which requires rad(k) = rad(n).
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Figure 2: ’Refatiansﬁiﬁ of symmetric n-semicoprime k to “quincunx” numbers and the
cototient ingenem[ Plot k and n for k < 36 and n < 36 at (k, -n). We show “quincunx”
numbers Q(n, k) = [ or(2|K, 3|, 2|n, 3|n) ] in cfarﬁgmy, T k)=[(kn)>1]in
light gray, k coprime to n with a gray dot, and k | n with a black dot. For k @ n : Q(n, k)
=1, we ﬁigﬁ[igﬁt in red, and for k @ n: T(n, k) = 1, we 6igh’[{gﬁt in pink, in both cases
labeling k in each row.

We present some theorems from [2] having to do with semicopri-
mality and its relevant varieties.

SEMICOPRIMALITY

THEOREM S1: Let P={ primep:p |k }and Q={ primeq:q|n}.
Semicoprimality k ¢ nimplies | PN Q | > 0.

kon=|PnQ|>0. [2.3]

PrOOF. The definition of semicoprimality shows 1 < (k, 1), with k
# (k, n) # n, hence semicoprimality is neither coprimality nor di-
visorship and pertains to composites. It is clear that we can find at
least 1 common prime divisor p such that p | k and p | n. The defini-
tion of semicoprimality further shows that there is at least one prime
q such that g | k but does not divide n, proving n-semicoprime k is
n-nonregular. Therefore P N Q # J; it contains at least 1 prime, but
P contains other primes that are not in Q. (Q is not restricted only
to those primes in P; there may be primes that divide n but do not

divide k.) m

Therefore symmetric semicoprimality is both ambidirectional in
magnitude (k S n) and completely ambiguous in terms of number
of distinct prime divisors (w(k) S w(n)).

THEOREM S2: Asymmetric semicoprimality k ¢| n implies P C Q
and w(k) > w(n).
ko!n=a1221(k) > a1221(n).) [2.4]

ProOE. We know (k, n) > 1 since k and n share at least 1 prime divi-
sor p, yet at least 1 prime factor g | k does not divide # via definition
of semicoprime. Such implies k and n both exceed 1. Given n not
semicoprime to k, then we are left with n | k*: ¢ > 0 (with respect
to the context of coprime, semicoprime, and regular relations being
mutually exclusive outside the empty product with domain N). If n |
k,thenn < kand P € Q, hence w(k) > w(n). If n does not divide k, yet
does divide some larger power of k, then, though we cannot speak to
the relative magnitude of k and n, we are left with P C Q, hence w(k)
> w(n), proving the proposition. m

Hence asymmetric semicoprime states are omega-directional.
SYMMETRIC SEMICOPRIMALITY

LEMMA 1.1: Symmetric semicoprimality implies both k and # are
composite.

kOO n=>kear808 Ane ar808. [2.5]

ProoOF: Let (k, n) = g Since 1 < g < k and g < n, k belongs to the
cototient of n yet neither k | n nor n | k. Since primes p must divide
or be coprime to other numbers, k 0¢ 7 is restricted to composite
numbers. B

LEMMA 1.2: Symmetric semicoprimality implies both w(k) and w(n)
exceed 1. This is to say that both k and n are not prime powers.

kOO n=>keAa024619 An€ A024619. [2.6]

PrOOF: A number k semicoprime to 7 is defined as (k, n) > 1 yet
there exists at least 1 prime g such that g | k but q { n. Symmetric
semicoprimality implies | P© Q | > 0. Since k and n are at least divisi-
ble by some common prime p, and since each has atleast 1 prime fac-
tor g not shared with the other, at least 2 prime factors are implied for
both k and n. Hence both have at least 2 distinct prime divisors. B

CoRrOLLARY 1.3: Primes and multus numbers (composite prime
powers) cannot be symmetrically semicoprime.
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The definition of symmetric semicoprimality implies w(n) > 2 with
the following consequences:
A360480(n) > 0 for n € A024619.
A360480(n) =0 forn € A961.
A360480(6) = 0 since k < 6 are prime powers.
The sequence A360480(n) begins as follows:

0, 0,0,0,0,0,0,0,0,1, 0,1, 0, 3, 3, 0, 0, 3,
0,5 5,6,0,6,0,8,0,9,0, 5 0,0,8,11, 7, 10,
o, 13, 10, 13, 0, 12, 0, 16, 13, 17, 0, 16, 0, 18, 14,
20, 0, 19, 11, 21, 16, 23, 0, 19, 0, 25, 19, 0, 13,

RELATION BETWEEN SYMMETRIC SEMICOPRIMALITY
AND THE COTOTIENT.

The sequence A361098 includes the following terms (where O rep-
resents a null row):

10: 6

1. . . . . L.

12: . . . . 10.

13: . . ...
14: 6 . . . 10. 12 .
15: 6 . . . 10. 12 .
16:

7. . . . . L.

8: . . . . 10.

19: . . . . Lo
2: 6 . . . . . 12. 1415. . 18.

21: .. . . . 12, 1415. . 18. . .
2: 6 . . . 10. 12. 14. . . 18. 20.
23: . . . ..
24: . . . . 10.
26: 6 . . . 10. 12. 14. . . 18. 20 . 22 . 24.

14 15 .

[}

1415 . 202122 .

Figures 1 and 3 enlarge the above triangle and lend context. It is
clear there are increasingly many symmetrically #n-semicoprime k as
n increases.

‘We might remark on the “quincunx” pattern of semitotatives of n.

The pattern arises given that of the cototient. Let us define the “quin-
cunx” pattern as follows:

4349207(m) ={ Q(n, k) :k<n},
Qn k) =[2|nV2|kVv3]|nV3|k]. [3.1]

In other words, we have all even or trine k for even or trine n, where
trine signifies m mod 3 =0.
We use the name quincunx for the 5-die pattern *

2

: 7 that forms
part of the plot of A349297(n, k). The sequence A349297 stands at
issue because it comprises a significant part of the cototient; sym-
metrically semicoprime k < n occur in the nondivisor cototient. The
cototient has the pattern described in A349317 as follows:

A349317(n) ={ T(n k) :k<n},

T(nk)=[(n,k)>1]. [3.2]
‘We may write a sequence as follows:
A349298(n) ={ T(n, k) - Q(n, k) :k<n}. (3.3]
Let Q(n) represent the cardinality of A349297(n):
o) = {Q(n k) sk<n} | [3.4]

The first terms of Q(n), arranged mod 6, appear as follows:

o, 1, 1, 2,0, 4,
o, 4, 3, 5,0, 8,
o, 7, 5, 8,0, 12,
o, 10, 7, 11, 0, 16,
o, 13, 9, 14, o0, 20,
o, 16, 11, 17, 0, 24,

“f{qure 3: (We_p[otk in black ifk @ n and k < n and n < 2'°, else white.

’F{qure 4: Log-[og scattery[ot ofA3 60480(n)for n=1..2", ignoring 0Os, sﬁowing
squareﬁ’ee com_posite nin green, n neither squarefree nor_prime_power in blue, witﬁ}mw[-
ucts ofcomﬁosite}:rime}wwers in large [t'gﬁt blue and primorials in magenta.
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T{gure S: Log—[og scutferj:[ot qu3 60480(n)f0r n=1..2% ignoring 0Os, sﬁawing
striations associated with LPF(n). ’This_p[ot strong[y resembles that 0on5 1953(n)for
sufficiently large n.

2 4 2®

T{gure 6: Log—[ag scatferj;[ot qu3 60480(n)f0r n=1..2% ignoring Os, sﬁowirzg
squarefree composite n in green, n neither squurefree nor prime power in blue, with jmu{—
ucts of composite prime powers in large [igﬁt blue and primorials in magenta.

Itis clear that we might define a different way based on congruence
relations, observing the following:

Forn =0 (mod 6), Q(n) = %n,

Forn = 1 (mod 6), Q(n) =0,

Forn = +2 (mod 6), Q(n) =n/2,

Forn = +3 (mod 6), Q(n) = n/3. [3.5]

It is evident from scatterplot that A360840 that it is confined, once
having “matured”, between %5 n and n. The upper bound is a con-
sequence of the defintion of A360840 to be a counting function of
a species of k < n. We have not explored a reason for the apparent
lower bound.

Regarding, we note the following:

2051953(m) =X { [ (k,n)>1]Ak<n}
=X{T(nk)Ak<n}
=X A349317(n). [3.6]
A051953(n) > A045763(n) = A360480(n)
n—¢(n) > E(n) > fi(n)
n—¢m)>n—-¢n) —1n)+ 12 fi(n) [3.7]

The sum of A349298(n) is A051953(n) = n — ¢(n). We find that,
aside from prime powers, A360840 is a near image of A051953 and
A045763. (See Figure 4.)

It seems evident, but remains unproved, that the following is true:

&(n) > fi(n) for n € A024619 [3.8]

From Theorems 4 and 5 in [3], we see that composites outside n =
4 and n = 6 have at least 1 semitotative, and non-prime powers out-
side n = 6 have at least 1 semidivisor k < n. The following table sum-
marizes the findings in [3] regarding the existence of semidivisors
and semitotatives in the reference domain of n of various species.

TABLE 1.

§(n) £,(n) £m)

SPECIES A045763(n) A243822(n) A243823(n)

PRIMES (A40) — — —

n=4 — — —
MULTUS (A246547) >0 — >0
n=6 — 1 1

VARIUS (A120944) >0 >0 >1
TANTUS (A126706) >0 >0 >1

THEOREM 3.1: §(n) > f,(n) for n € A024619. Numbers n that are not
prime powers are such that symmetric semicoprime k < # are not the
only n-neutral k such that k < n.
ProOF: Theorem 5 in [3] shows that there is at least 1 semidivisor k
< n for numbers that are not prime powers. Additionally, Lemma 1.2
shows that all the semitotatives of multus 7 are in state @. B

Hence we have proved [3.8] to be true.

What remains is to explore the following difference:

A360543(n) = §(n) - fi(n) [3-9]
(especially for n € A024619).

This sequence begins as follows:

0,0,0,0,0,1, 0,1, 1, 2,0, 2,0,2,1, 4, 0, 4,
0,2,1,3,0,3,3,3,6,2,0,10, 0,11, 2, 4, 1, 6,
0, 4,2, 4,0, 11,0, 3,3, 4,0, 7,5,7, 2,3, 0, 10,
1, 4, 2, 4, 0, 14, 0, 4, 3, 26, 1, 14, 0, 4, 2, 12, O,
10, 0, 5, 5, 4, 1, 15, 0, 7, 23, 5, 0, 16, 1, 5, 3, 4,
0o, 20, 1, 4, 3, 5, 1, 15, 0, 10, 3, 10, 0, 17, 0, 4, 8,
5, 0, 17, 0, 13, 3, 7, 0, 18, 1, 4, 3, 5, 1, 20, ...
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Excepting n € A961, the records appear to be highly regular in
many cases, and 3-smooth in others. The ratio s20230302(n)/{(n)
appears to converge to ¥ for these records. Therefore the following
seems apparent, though remains to be proved:

f1(n)/&(n) converges to %

forn € A024619 [3.10]

If true, then we venture to suggest that symmetric semicoprimality
is the most common form of semitotative, as seems to be borne by
Figure 3.

For large numbers, accepting for the moment [3.10], then we may
turther see the following for large n € A024619:

(3.11]

This unproved statement suggests that symmetric semicoprimal-
ity (state ), with possible exception of coprimality, is the most
common constitutive state.

A051953(n) = A045763(1) = % A045763(n).

RELATION OF f, (1) WITH THE
SEMITOTATIVE COUNTING FUNCTION.

In the interest of context, the following is the related counting
function f;(1) of mixed-neutral semitotatives:

fimy={k<n:k@n}={k<n:k0|n}

=A243823(n) — A360480(n). [4.1]

Since there are precisely 2 kinds of semitotatives; symmetric (state
@) and mixed-neutral (state ®), we may write the following:

() =fi(n) + f3(n)

A243823(n) = A360480(n) + A360543(n). [4.2]

CONCLUSION.

There are 2 varieties of n-semitotatives k; these are the symmetric
and mixed variety. The former concerns k < n such that prime p | k
but (p, n) = 1, while prime q | n but (g, k) = 1. The latter regards k and
n in cototient such that w(n) | w(k) > w(n), while RaD(n) | RAD(K).
Using constitutive states, these are k D n and k ® n, respectively. We
have shown that these are the only possible constitutive varieties of
semitotative. We generated counting functions f;(n) = A360480(n)
relating to k @D n, and f3(n) = A360543(n) relating to k ® n, both
such that k < n. Hence, £ (n) = fi(n) + f3(n), or in terms of OEIs,
A243823(n) = A360480(n) + A360543(n).

Though k ® n pertains to composite prime powers n > 4 exclu-
sively, while k @ n pertains to squarefree composite n > 6 exclusive-
ly, both appear for certain numbers n € { A360765 N 4360768 }, a
subset of A126706. Outside of these, generally n € A126706 harbors
only k @ n.

The function f;(1) = A360543(n) is focus of a forthcoming paper.

We estimate that for numbers 7 that are not prime powers, the
number of k @ n approaches % of the cototient of n, but this remains
something to ascertain. Given the evident dominance of k @ n over
k ® n, itis not surprising that the scatterplot of A360480 resembles
those of A045763 or A051953. :ﬁ:
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CODE:
[co] Function f(k, n) yields the constitutive state (Svitek number) be-
tween k and n.
conState[j_, k_] :=
Which[j == k, 5, GCD[j, k] == 1, 0, True,
1 + FromDigits[
Map [Which [Mod[##] == 0, 1,

PowerMod [#1, #2, #2] == 0, 2, True,
Permutations[{k, j}]11, 311

0] & Qe # &,

[c1] Calculate R bounded by an arbitrary limit m (ie, calculate
A275280(n); flatten and take union to provide A162306)
regularsExtended[n , m_ : 0] :=
Block[{w , 1lim = If[m <= 0, n, m]},
Sort@ ToExpression@
Function|w,

StringJoin|[
"Block[{n = ", ToString@ lim,
"}, Flatten@ Table[",
StringJoin@

Riffle[Map[ToString@ #1 <> "~" <>
ToStringQ #2 & @@ # &, w], " * "],
", ", Most@ Flatten@ Map[{#, ", "} &, #1],
"11m ] &@
MapIndexed|
Function[p,
StringJoin["{", ToString@ Last@ p,
", 0, Log[",
ToString@ First@ p,
ToString@
InputForm|[
Times Q@ Map[Power Q@ # &,
Take[w, First@ #2 - 1]1]1,
")11" 1 1@ w[[FirstQ@ #2]] &, wll@
Map[{#, ToExpression["p" <>
ToString@ PrimePi@ #]} &, #[[All, 1]] ] &@
FactorInteger@ n];

", al/(r,

[c2] Generate tantus numbers (A126706):

al26706 = Block[{k}, k = 0;
Reap[Monitor[Do[
If[And[#2 > 1, #1 '= #2] & @@
{PrimeOmega[n], PrimeNu[n]},
Sow[n]; Set[k, n] 1,

{n, 2721}], n]1[[-1, -1]11]

(* Tantus *);

[c3] Generate “strong tantus” numbers (A360768):

Select[al26706[[1 ;; 120]], #1/#2 >= #3 & @@
{#1, Times Q@ #2, #2[[2]]} & @@
{#, FactorInteger[#][[All, 1]]} &]

[c4] Generate tantus numbers that have k @ n (A360765):

nn = 2”20},
rad[n_] := rad[n] = Times @@
FactorInteger[n] [[All, 1]];
lcp[n_] := If[0ddQ[n], 2,

P = 2; While[Divisible[n, p], p = NextPrime[pl]; pl;
a = al26706[[1 ;; nn]];
Monitor[ Reap|[

Do[n = a[[jl];

If[rad[n]*1lcp[n] < n,

100-1, -111, 311

Sow[n]], {j, nn}]
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[cs] Generate A360480, the k D n counting function:

rad[x_] := rad[x] = Times @@
FactorInteger[x] [[All, 11];
Table[k = rad[n];
Count[Range[n],
_?(Nor[CoprimeQ[#1, n], Divisible[#2, k],
Divisible[k, #2]] & Q@ {#, rad[#]1} &)1, {n, 88}]

[c6] Generate A360543, the k ® n counting function:

nn = 120;
rad[n_] := rad[n] = Times Q@
FactorInteger[n] [ [All, 1]];
c = Select[Range[4, nn], CompositeQ];
s = Select[Select[Range[4, nn], Not @* SquareFreeQ],
Function[{n, q, r},
AnyTrue [TakeWhile[c, # <= n &],
And[PrimeNul[#] > q,
Divisible[rad[#], r]] &]] @@
{#, PrimeNu[#], rad[#]} &];
Table[If[FreeQ[s, n], O,
Function[{qg, r},
Count[TakeWhile [
c, # <= n &], _?(And[PrimeNu[#] > q,
Divisible[rad[#], r]] &)]] @@
{PrimeNu[n], rad[n]}], {n, nn}]

[c7] faster algorithm for A360543, the k ® n counting function, giv-

en a dataset of A360765 and [C1]:

rad[n_] := rad[n] = Times @@
FactorInteger[n] [[All, 1]];
{{}, {}}~Join~Table[r = Rest@ regularsExtended[n];
t = Rest@ Flatten@
Outer[Plus, rad[n]*Range[0, n/rad[n] - 1],
Select[Range[rad[n]], CoprimeQ[rad[n], #] &]];
Union@ Flatten(@
Table[i j,
{i, r[[1 ;; LengthWhile[r, n/t[[1]] > # &]11},
{i, tI[1 ;; LengthWhile[t, n/i > # &]11}1,
{n, 3, 24}]

CONCERNS SEQUENCES:
A000005: Divisor counting function 7(n).
Aoooo10: Euler totient function ¢(n).
A000040: Prime numbers.
A000961: Prime powers.
Ao0o01221: Number of distinct prime divisors of , w(n).
A006881: Squarefree semiprimes.
A007947: Squarefree kernel of n; RAD(n).
A010846: Regular counting function.
A013929: Numbers that are not squarefree.
A024619: Numbers that are not prime powers.
A045763: Neutral counting function.
A051953: Cototient function: n — ¢(n).

A120944: “Varius” numbers; squarefree composites.

A126706: “Tantus” numbers neither prime power nor squarefree.

A133995: Row n lists n-neutral k such that k < n.

A162306: Row n lists n-regular k such that k < n.

A246547: “Multus” numbers; composite prime powers.
A272618: Row n lists n-semidivisors k such that k < n.
A272619: Row n lists n-semitotatives k such that k < n.
A355432: a(n) = symmetric semidivisor counting function.
A360480: a(n) = symmetric semicoprime counting function.
A360543: a(n) = mixed semicoprime counting function.
A360765: 1€ A126706 : A7947(n) X A053669(n) < h.
A360767: Weakly tantus numbers.

A360768: Strongly tantus numbers.

A360769: Odd tantus numbers.

A361235: a(n) = mixed semidivisor counting function..
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