The Symmetric Semicoprime Counting Function

Michael Thomas De Vlieger • St. Louis, Missouri • 22 February 2023.

Abstract.

We examine a species of numbers k in the cototient of n such that k has a divisor p that does not divide n, and n has a divisor q that does not divide k, called symmetric semicoprimality. Particularly, we examine a counting function $f_{1}(n)=\mathrm{A} 36048 \mathrm{O}(n)$ and note the resemblance of this function to A051953 $=n-\phi(n)$.

Introduction.

Consider the cototient of n, that is, those $k<n$ such that $(k, n)>1$. In other words, if the reduced residue set $\operatorname{RRS}(n)$ includes $k<n$ such that $(k, n)=1$, then the cototient is defined as follows:

$$
\begin{aligned}
c(n) & =\{1 \ldots n\} \backslash \operatorname{RRS}(n) . \\
53(n) & =|c(n)| \\
& =n-\phi(n) . \\
& =n-\mathrm{A} 1 \mathrm{O}(n) .
\end{aligned}
$$

$$
[1.1]
$$

$$
\operatorname{Ao51953}(n)=|c(n)|
$$

Clearly, $\operatorname{A051953}(n)=1$ for $n=p$, prime.
Within $c(n)$, we have divisors $d \mid n$, therefore we define the neutral cototient, $\Xi(n)$, the set of k neither coprime to n nor divisors of n, as follows:

$$
\begin{aligned}
\Xi(n) & =c(n) \backslash\{d: d \mid n\} . \\
\xi(n) & =|\Xi(n)| \\
& =|\operatorname{A133995}(n)| \\
& =n-\phi(n)-\tau(n)+1 . \\
& =n-\operatorname{A1O}(n)-\operatorname{A5}(n)+1 . \\
& =\operatorname{AO} 45763(n) .
\end{aligned}
$$

$$
[1.3]
$$

As consequence of neutrality, k and n are composite, since primes p either divide n or are coprime to n. Furthermore, for $n=p, \xi(n)=0$.

We may distinguish 2 species of n-neutral k based on the squarefree kernel $\operatorname{RAD}(m)=\operatorname{A7947}(m)$. The case $\operatorname{RAD}(k) \mid \operatorname{RAD}(n)$ implies k is n-regular, meaning that $k \mid n^{\varepsilon}, \varepsilon \geq 0$, that is, all prime factors of k also divide n. The n-regular numbers k are a superset of divisors $d \mid$ $n^{\varepsilon}, \varepsilon=0 \ldots 1$; for $k \leq n$, these numbers are listed in row n of A162306.

$$
\begin{align*}
\operatorname{A162306}(n) & =\{k \leq n: \operatorname{RAD}(k) \mid \operatorname{RAD}(n)\} \tag{1.5}\\
& =\left\{k \leq n: k \mid n^{\varepsilon}, \varepsilon \geq 0\right\} \\
& =\{d: d \mid n\} \cup\left\{k<n: k \mid n^{\varepsilon}, \varepsilon>1\right\} \\
& =\operatorname{AO} 27750(n) \cup \operatorname{A2} 2618(n) \\
\operatorname{Ao10846(n)} & =|\operatorname{A162306}(n)| \\
& =|\operatorname{AO2} 27750(n)|+|\operatorname{A2} 26618(n)| \\
& =\operatorname{A5}(n)+\operatorname{A243822(n)} \\
& =\tau(n)+\xi_{D}(n) . \tag{1.6}
\end{align*}
$$

Nondivisor n-regular k are called semidivisors, and are 1 of the 2 species in the neutral cototient [2], [3]. These are listed in $\Xi_{D}(n)$, that is, row n of A272618. The semidivisor counting function $\xi_{D}(n)$ $=\mathrm{A} 243822(n)$.
The other species is n-semicoprime $k, k<n$, hence we have called this species a "semitotative" of n. These are listed in $\Xi_{T}(n)$, that is, row n of A272619. The semidivisor counting function $\xi_{T}(n)=$ A243823 (n).

$$
\begin{aligned}
\Xi_{T}(n) & =\Xi(n) \backslash \Xi_{D}(n) \\
\mathrm{A} 272619(n) & =\mathrm{A} 133995(n) \backslash \mathrm{A} 272618(n)
\end{aligned}
$$

$$
[1.7]
$$

We can define the sequence $\Xi_{T}(n)$ from first principles:

$$
\begin{array}{rlrl}
\Xi_{T}(n) & =\{k: k<n \wedge(k, n)>1 \wedge \operatorname{RAD}(k) \nmid \operatorname{RAD}(n)\} & & {[1.8]} \\
\xi_{\mathrm{T}}(n) & =\left|\Xi_{\mathrm{T}}(n)\right| & & {[1.9]} \tag{1.9}\\
& =\mid \operatorname{A133995(n)|-|\operatorname {A272618(n)}|} & \\
& =\operatorname{A243823(n).} &
\end{array}
$$

Symmetric Semicoprimality.

Where coprimality between k and n represents disjunct sets of prime divisors of k and n and regularity represents one set a subset of the other, semicoprimality represents an inhabited symmetric difference. Hence we can have n-semicoprime k, yet k-regular n and vice versa, while coprimality is always symmetric.
Definition 1: When we have at least 1 prime p such that $p \mid k$ that does not divide n, and at least 1 prime q such that $q \mid n$ that does not divide k, we have "symmetric semicoprimality".
In [2] we present the following symbols:
Table A.
$k \perp n \quad k$ is coprime to $n \quad(k, n)=1$
$k \diamond n \quad k$ is semicoprime to $n \quad 1<(k, n)<\operatorname{MIN} \quad n /(k, n) \nVdash n$
$k \| n \quad k$ is regular to $n \quad 1 \leq(k, n) \leq \operatorname{MIN} \quad k \mid n^{\varepsilon}: \varepsilon \geq 0$
$k \mid n \quad k$ divides n
$1 \leq(k, n)=k \quad k \mid n^{\varepsilon}: \varepsilon=0 \ldots 1$
$k: n \quad k$ semidivides n

$$
1<(k, n)<\operatorname{MIN} \quad k \mid n^{\varepsilon}: \varepsilon>1
$$

Symmetric semicoprimality we express through $k \diamond \diamond n$, i.e, k (1) n per [2]. These are k and n in the cototient absent divisorship between their squarefree kernels. Such is implied by the definition of symmetric semicoprimality. The existence of 2 species of regular numbers (the divisor and the semidivisor) implies corresponding mixed cototient states:

$\Delta \Delta$	$\diamond \mid$ or \rangle	$\Delta \mid$ or \rangle
Symmetric	Lean	Mixed
Semicoprimality	Divisorship	Neutrality
(1)	(2) (4)	(3) (7)

For $k<n$, it is clear that we cannot have state (2), that is $k \diamond \mid n$, since that would require $k>n$, a contradiction. The mixed neutral state (7), i.e., $k\rangle \diamond n$, is not at issue, since it is a kind of semidivisor. The lean divisor state (4), $k \mid \nabla n$, is also immaterial, since it is a kind of divisor. Therefore the category of lean divisorship can be ignored, but we can't use $n \nmid k$ as a means to determine symmetric semicoprimality.
For our purposes, we are only interested in disambiguating states (1) and (3).

We have a final step to distinguish symmetric from asymmetric semitotatives. The set of semitotatives, $\Xi_{T}(n)$, includes both n-semicoprime k for which n is k-regular, (i.e., $\operatorname{RAD}(n) \mid \operatorname{RAD}(k))$ and where n is k-semicoprime. Therefore the following is necessary to create a set S of symmetric semitotatives:

$$
\begin{align*}
S= & \{k \in \operatorname{A2} 22619(n): \operatorname{RAD}(n) \nmid \operatorname{RAD}(k)\} \tag{2.1}\\
= & \{k: k<n \wedge(k, n)>1 \wedge \\
& \operatorname{RAD}(k) \nmid \operatorname{RAD}(n) \wedge \operatorname{RAD}(n) \nmid \operatorname{RAD}(k)\} \\
= & \operatorname{A36109}(n) .
\end{align*}
$$

The symmetric semicoprime counting function thus is defined as follows:

$$
\begin{equation*}
f_{1}(n)=\operatorname{A} 360480(n)=|\operatorname{A} 361098(n)| \tag{2.2}
\end{equation*}
$$

Figure 1: \mathcal{A} map of constitutive states in the cototient between k and n for $k \leq 36$ and n ≤ 36. Black circles are in state (1), while gray dots represent coprimality (state (0)). Red dots represent divisor states (4) (5) (6), notably excepting $k=1$. Bfue represents state (3) while yellow represents state (7). Finally, magenta represents symmetric semidivisibility, state (9, which requires $\operatorname{rad}(k)=\operatorname{rad}(n)$.

Figure 2: Refationship of symmetric n-semicoprime k to "quincunx" numbers and the cototient in general. Plot k and n for $k \leq 36$ and $n \leq 36$ at $(k,-n)$. We show "quincunx" numbers $\mathcal{Q}(n, k)=[\operatorname{OR}(2|k, 3| k, 2|n, 3| n)]$ in dark gray, $\mathcal{T}(n, k)=[(k, n)>1]$ in light gray, k coprime to n with a gray dot, and $k \mid n$ with a black dot. For $k(1) n: \mathcal{Q}(n, k)$ $=1$, we highlight in red, and for k (1) $n: \mathcal{T}(n, k)=1$, we highlight in pink, in 6oth cases labeling k in each row.

We present some theorems from [2] having to do with semicoprimality and its relevant varieties.

SEMICOPRIMALITY

Theorem S1: Let $P=\{$ prime $p: p \mid k\}$ and $Q=\{\operatorname{prime} q: q \mid n\}$. Semicoprimality $k \diamond n$ implies $|P \cap Q|>0$.

$$
\begin{equation*}
k \diamond n \Rightarrow|P \cap Q|>0 \tag{2.3}
\end{equation*}
$$

Proof. The definition of semicoprimality shows $1<(k, n)$, with k $\neq(k, n) \neq n$, hence semicoprimality is neither coprimality nor divisorship and pertains to composites. It is clear that we can find at least 1 common prime divisor p such that $p \mid k$ and $p \mid n$. The definition of semicoprimality further shows that there is at least one prime q such that $q \mid k$ but does not divide n, proving n-semicoprime k is n-nonregular. Therefore $P \cap Q \neq \varnothing$; it contains at least 1 prime, but P contains other primes that are not in Q. (Q is not restricted only to those primes in P; there may be primes that divide n but do not divide k.)

Therefore symmetric semicoprimality is both ambidirectional in magnitude $(k \lessgtr n)$ and completely ambiguous in terms of number of distinct prime divisors $(\omega(k) \lessgtr \omega(n))$.

Theorem S2: Asymmetric semicoprimality $k \diamond_{1} n$ implies $P \subset Q$ and $\omega(k)>\omega(n)$.

$$
k \diamond, n \Rightarrow \operatorname{A} 1221(k)>\operatorname{A} 1221(n) .)
$$

Proof. We know $(k, n)>1$ since k and n share at least 1 prime divisor p, yet at least 1 prime factor $q \mid k$ does not divide n via definition of semicoprime. Such implies k and n both exceed 1 . Given n not semicoprime to k, then we are left with $n \mid k^{\varepsilon}: \varepsilon>0$ (with respect to the context of coprime, semicoprime, and regular relations being mutually exclusive outside the empty product with domain \mathbb{N}). If $n \mid$ k, then $n<k$ and $P \subset Q$, hence $\omega(k)>\omega(n)$. If n does not divide k, yet does divide some larger power of k, then, though we cannot speak to the relative magnitude of k and n, we are left with $P \subset Q$, hence $\omega(k)$ $>\omega(n)$, proving the proposition.

Hence asymmetric semicoprime states are omega-directional.

SYMMETRIC SEMICOPRIMALITY

Lemma 1.1: Symmetric semicoprimality implies both k and n are composite.

$$
\begin{equation*}
k \diamond \diamond n \Rightarrow k \in \mathrm{~A} 28 \mathrm{O} 8 \wedge n \in \mathrm{~A} 28 \mathrm{O} 8 \tag{2.5}
\end{equation*}
$$

Proof: Let $(k, n)=g$. Since $1<g<k$ and $g<n, k$ belongs to the cototient of n yet neither $k \mid n$ nor $n \mid k$. Since primes p must divide or be coprime to other numbers, $k \diamond \diamond n$ is restricted to composite numbers.

Lemma 1.2: Symmetric semicoprimality implies both $\omega(k)$ and $\omega(n)$ exceed 1 . This is to say that both k and n are not prime powers.

$$
\begin{equation*}
k \diamond \diamond n \Rightarrow k \in \mathrm{AO} 24619 \wedge n \in \mathrm{AO} 24619 \tag{2.6}
\end{equation*}
$$

Proof: A number k semicoprime to n is defined as $(k, n)>1$ yet there exists at least 1 prime q such that $q \mid k$ but $q \nmid n$. Symmetric semicoprimality implies $|P \ominus Q|>0$. Since k and n are at least divisible by some common prime p, and since each has at least 1 prime factor q not shared with the other, at least 2 prime factors are implied for both k and n. Hence both have at least 2 distinct prime divisors.
Corollary 1.3: Primes and multus numbers (composite prime powers) cannot be symmetrically semicoprime.

The definition of symmetric semicoprimality implies $\omega(n) \geq 2$ with the following consequences:

```
A36048o \((n)>0\) for \(n \in\) AO24619.
A360480 \((n)=0\) for \(n \in\) A961.
A360480(6) \(=0\) since \(k<6\) are prime powers.
```

The sequence A360480(n) begins as follows:
$0,0,0,0,0,0,0,0,0,1,0,1,0,3,3,0,0,3$, $0,5,5,6,0,6,0,8,0,9,0,5,0,0,8,11,7,10$, $0,13,10,13,0,12,0,16,13,17,0,16,0,18,14$,
$20,0,19,11,21,16,23,0,19,0,25,19,0,13, \ldots$

Relation between Symmetric Semicoprimality and the Cototient.

The sequence A361098 includes the following terms (where 0 represents a null row):

Figure 3: We plot k in 6lack if k (1) n and $k<n$ and $n \leq 2^{10}$, else white.

Figures 1 and 3 enlarge the above triangle and lend context. It is clear there are increasingly many symmetrically n-semicoprime k as n increases.
We might remark on the "quincunx" pattern of semitotatives of n. The pattern arises given that of the cototient. Let us define the "quincunx" pattern as follows:

$$
\begin{align*}
\operatorname{A349297}(n) & =\{\mathcal{Q}(n, k): k \leq n\}, \\
\mathcal{Q}(n, k) & =[2|n \vee 2| k \vee 3|n \vee 3| k] . \tag{3.1}
\end{align*}
$$

In other words, we have all even or trine k for even or trine n, where trine signifies $m \bmod 3 \equiv 0$.

We use the name quincunx for the 5-die pattern " \because " that forms part of the plot of A349297 (n, k). The sequence A349297 stands at issue because it comprises a significant part of the cototient; symmetrically semicoprime $k<n$ occur in the nondivisor cototient. The cototient has the pattern described in A349317 as follows:

$$
\begin{align*}
\text { A349317(n) } & =\{T(n, k): k \leq n\} \\
T(n, k) & =[(n, k)>1] \tag{3.2}
\end{align*}
$$

We may write a sequence as follows:

$$
\operatorname{A349298}(n)=\{T(n, k)-\mathcal{Q}(n, k): k \leq n\}
$$

Let $Q(n)$ represent the cardinality of A349297(n):

$$
\begin{equation*}
Q(n)=|\{Q(n, k): k \leq n\}| \tag{3.4}
\end{equation*}
$$

The first terms of $Q(n)$, arranged $\bmod 6$, appear as follows:

$$
\begin{array}{llllll}
0, & 1, & 1, & 2, & 0, & 4, \\
0, & 4, & 3, & 5, & 0, & 8, \\
0, & 7, & 5, & 8, & 0, & 12, \\
0, & 10, & 7, & 11, & 0, & 16, \\
0, & 13, & 9, & 14, & 0, & 20, \\
0, & 16, & 11, & 17, & 0, & 24,
\end{array} \ldots
$$

Figure 4: $\mathcal{L o g}$-log scatterplot of A36048o(n) for $n=1 \ldots 2^{15}$, ignoring 0 s, showing squarefree composite n in green, n neither squarefree nor prime power in 6 (ue, with products of composite prime powers in large light 6lue and primorials in magenta.

Figure 5: $\log -l o g$ scatterplot of A36048o(n) for $n=1 \ldots 2^{15}$, ignoring 0 s, showing striations associated with LPF(n). This plot strongly resembles that of AO5 1953(n) for sufficiently large n.

Figure 6: $\log -\log$ scatterplot of A36048o(n) for $n=1 \ldots 2^{15}$, ignoring 0 s, showing squarefree composite n in green, n neither squarefree nor prime power in 6 lue, with products of composite prime powers in large light blue and primorials in magenta.

It is clear that we might define a different way based on congruence relations, observing the following:

$$
\begin{align*}
& \text { For } n \equiv 0(\bmod 6), Q(n)=2 / 3 n \\
& \text { For } n \equiv \pm 1(\bmod 6), Q(n)=0 \\
& \text { For } n \equiv \pm 2(\bmod 6), Q(n)=n / 2 \\
& \text { For } n \equiv \pm 3(\bmod 6), Q(n)=n / 3 \tag{3.5}
\end{align*}
$$

It is evident from scatterplot that A360840 that it is confined, once having "matured", between $2 / 3 n$ and n. The upper bound is a consequence of the defintion of A360840 to be a counting function of a species of $k \leq n$. We have not explored a reason for the apparent lower bound.

Regarding, we note the following:

$$
\begin{align*}
\operatorname{Ao51953}(n) & =\sum\{[(k, n)>1] \wedge k \leq n\} \\
& =\sum\{T(n, k) \wedge k \leq n\} \\
& =\sum \operatorname{A349317}(n) \tag{3.6}\\
\operatorname{Ao51953}(n) & >\operatorname{Ao45763}(n) \geq \operatorname{A36048O}(n) \\
n-\phi(n) & >\xi(n) \geq f_{1}(n) \\
n-\phi(n) & >n-\phi(n)-\tau(n)+1 \geq f_{1}(n) \tag{3.7}
\end{align*}
$$

The sum of A349298(n) is AO51953(n) $=n-\phi(n)$. We find that, aside from prime powers, A360840 is a near image of AO5 1953 and A045763. (See Figure 4.)

It seems evident, but remains unproved, that the following is true:

$$
\begin{equation*}
\xi(n)>f_{1}(n) \text { for } n \in \operatorname{AO} 24619 \tag{3.8}
\end{equation*}
$$

From Theorems 4 and 5 in [3], we see that composites outside $n=$ 4 and $n=6$ have at least 1 semitotative, and non-prime powers outside $n=6$ have at least 1 semidivisor $k<n$. The following table summarizes the findings in [3] regarding the existence of semidivisors and semitotatives in the reference domain of n of various species.

TABLE 1.

	$\xi(n)$ AO45763(n)	$\xi_{d}(n)$ A243822 (n)	$\xi_{t}(n)$ SPECIES
PRIMES (A40)	-	-	-
$n=4$	-	-	-
MULTUS (A246547)	>0	-	>0
$n=6$	-	1	1
VARIUS (A120944)	>0	>0	>1
TANTUS (A126706)	>0	>0	>1

THEOREM 3.1: $\xi(n)>f_{1}(n)$ for $n \in$ A024619. Numbers n that are not prime powers are such that symmetric semicoprime $k<n$ are not the only n-neutral k such that $k<n$.
Proof: Theorem 5 in [3] shows that there is at least 1 semidivisor k $<n$ for numbers that are not prime powers. Additionally, Lemma 1.2 shows that all the semitotatives of multus n are in state (3).

Hence we have proved [3.8] to be true.
What remains is to explore the following difference:

$$
\begin{gather*}
\text { A360543 }(n)=\xi(n)-f_{1}(n) \tag{3.9}\\
\text { (especially for } n \in \operatorname{AO} 24619)
\end{gather*}
$$

This sequence begins as follows:
$0,0,0,0,0,1,0,1,1,2,0,2,0,2,1,4,0,4$,
$0,2,1,3,0,3,3,3,6,2,0,10,0,11,2,4,1,6$,
$0,4,2,4,0,11,0,3,3,4,0,7,5,7,2,3,0,10$,
$1,4,2,4,0,14,0,4,3,26,1,14,0,4,2,12$,
10,
$0,5,5,4,1,15,0,7,23,5,0,16,1,5,3,4$,
$0,20,1,4,3,5,1,15,0,10,3,10,0,17,0,4,8$,
$5,0,17,0,13,3,7,0,18,1,4,3,5,1,20, \ldots$
$0,0,0,0,0,1,0,1,1,2,0,2,0,2,1,4,0,4$,
$0,2,1,3,0,3,3,3,6,2,0,10,0,11,2,4,1,6$,
, 4, 2, 4, 0, 11, 0, 3, 3, 4, 0, 7, 5, 7, 2, 3, 0, 10,
$1,4,2,4,0,14,0,4,3,26,1,14,0,4,2,12,0$, $0,20,1,4,3,5,1,15,0,10,3,10,0,17,0,4,8$,
$5,0,17,0,13,3,7,0,18,1,4,3,5,1,20, \ldots$

Excepting $n \in$ A961, the records appear to be highly regular in many cases, and 3 -smooth in others. The ratio S20230302(n)/ $\xi(n)$ appears to converge to $1 / 6$ for these records. Therefore the following seems apparent, though remains to be proved:

$$
\begin{gathered}
f_{1}(n) / \xi(n) \text { converges to } 5 / \% \\
\text { for } n \in \text { AO24619 }
\end{gathered}
$$

[3.10]
If true, then we venture to suggest that symmetric semicoprimality is the most common form of semitotative, as seems to be borne by Figure 3.

For large numbers, accepting for the moment [3.10], then we may further see the following for large $n \in$ A024619:

$$
\operatorname{AO} 51953(n) \approx \operatorname{AO} 45763(n) \approx 6 / 5 \operatorname{A045763}(n) . \quad[3.11]
$$

This unproved statement suggests that symmetric semicoprimality (state (1)), with possible exception of coprimality, is the most common constitutive state.

Relation of $f_{1}(n)$ with the

Semitotative Counting Function.

In the interest of context, the following is the related counting function $f_{3}(n)$ of mixed-neutral semitotatives:

$$
\begin{align*}
f_{3}(n) & =\{k<n: k \text { (3) } n\}=\{k<n: k \diamond \mid n\} \\
& =\operatorname{A} 243823(n)-\operatorname{A3} 3048 \mathrm{O}(n) . \tag{4.1}
\end{align*}
$$

Since there are precisely 2 kinds of semitotatives; symmetric (state (1)) and mixed-neutral (state (3), we may write the following:

$$
\begin{align*}
\xi_{T}(n) & =f_{1}(n)+f_{3}(n) \\
\operatorname{A} 243823(n) & =\operatorname{A} 36048 \mathrm{O}(n)+\operatorname{A3} 60543(n) . \tag{4.2}
\end{align*}
$$

Conclusion.

There are 2 varieties of n-semitotatives k; these are the symmetric and mixed variety. The former concerns $k<n$ such that prime $p \mid k$ but $(p, n)=1$, while prime $q \mid n$ but $(q, k)=1$. The latter regards k and n in cototient such that $\omega(n) \mid \omega(k)>\omega(n)$, while $\operatorname{RAD}(n) \mid \operatorname{RAD}(k)$. Using constitutive states, these are k (1) n and k (3) n, respectively. We have shown that these are the only possible constitutive varieties of semitotative. We generated counting functions $f_{1}(n)=$ A360480 (n) relating to $k(1) n$, and $f_{3}(n)=$ A360543 (n) relating to $k(3) n$, both such that $k<n$. Hence, $\xi_{T}(n)=f_{1}(n)+f_{3}(n)$, or in terms of oeis, A243823 (n) $=\mathrm{A} 360480(n)+\mathrm{A} 360543(n)$.

Though k (3) n pertains to composite prime powers $n>4$ exclusively, while $k(1) n$ pertains to squarefree composite $n>6$ exclusively, both appear for certain numbers $n \in\{$ A360765 \cap A360768 $\}$, a subset of A126706. Outside of these, generally $n \in$ A126706 harbors only k (1) n.
The function $f_{3}(n)=\operatorname{A3} 60543(n)$ is focus of a forthcoming paper.
We estimate that for numbers n that are not prime powers, the number of k (1) n approaches $5 / 6$ of the cototient of n, but this remains something to ascertain. Given the evident dominance of $k(1) n$ over k (3) n, it is not surprising that the scatterplot of A360480 resembles those of A045763 or AO5 1953. 殸

Appendix.

References:

[1] N. J. A. Sloane, The Online Encyclopedia of Integer Sequences, retrieved February 2023.
[2] Michael Thomas De Vlieger, Constitutive Basics, Simple Sequence Analysis, 20230125.
[3] Michael Thomas De Vlieger, Constitutive State Counting Function, Simple Sequence Analysis, 20230226.
[4] Michael Thomas De Vlieger, The Symmetric Semidivisor Counting Function, Simple Sequence Analysis, 20230216.

Code:
[co] Function $f(k, n)$ yields the constitutive state (Svitek number) between k and n.

```
conState[j_, k_] :=
    Which[j == k, 5, GCD[j, k] == 1, 0, True,
        1 + FromDigits[
        Map[Which[Mod[##] == 0, 1,
            PowerMod[#1, #2, #2] == 0, 2, True, 0] & @@ # &,
            Permutations[{k, j}]], 3]]
```

[C1] Calculate \boldsymbol{R}_{α} bounded by an arbitrary limit m (i.e., calculate A275280(n); flatten and take union to provide A162306)
regularsExtended[n_, m_: 0] :=
$\operatorname{Block}[\{\mathrm{w}, \lim =\mathrm{If}[\mathrm{m}<=0, \mathrm{n}, \mathrm{m}]\}$,
Sort@ ToExpression@
Function [w,
StringJoin [
"Block[\{n = ", ToString@ lim,
"\}, Flatten@ Table[",
StringJoin@
Riffle[Map[ToString@ \#1 <> "^" <> ToString@ \#2 \& @@ \# \&, w], " * "], ", ", Most@ Flatten@ Map[\{\#, ", "\} \&, \#], "]]"] \&@ MapIndexed [Function [p,

StringJoin["\{", ToString@ Last@ p,
", 0, Log[",
ToString@ First@ p, ", n/(",
ToString@ InputForm [

Times @@ Map[Power @@ \# \&, Take[w, First@ \#2 - 1]]],
")]\}"]]@ w[[First@ \#2]] \&, w]]@
Map[\{\#, ToExpression["p" <> ToString@ PrimePi@ \#]\} \&, \#[[All, 1]]] \&@ FactorInteger@ n];
[C2] Generate tantus numbers (A126706):
a126706 $=$ Block $[\{k\}, k=0$; Reap [Monitor [Do [

If [And[\#2 > 1, \#1 ! = \#2] \& @@ \{PrimeOmega[n], PrimeNu[n]\},
Sow[n]; Set[k, n]],
\{n, 2^21\}], n]] [[-1, -1]]] (* Tantus *);
[C3] Generate "strong tantus" numbers (A360768):

```
Select[a126706[[1 ; ; 120]], #1/#2 >= #3 & @@
        {#1, Times @@ #2, #2[[2]]} & @@
        {#, FactorInteger[#][[All, 1]]} &]
[C4] Generate tantus numbers that have \(k\) (3) \(n\) (A360765):
```

```
nn = 2^20},
```

nn = 2^20},
rad[n_] := rad[n] = Times @@
rad[n_] := rad[n] = Times @@
FactorInteger[n][[All, 1]];
FactorInteger[n][[All, 1]];
lcp[n_] := If[OddQ[n], 2,
lcp[n_] := If[OddQ[n], 2,
p = 2; While[Divisible[n, p], p = NextPrime[p]]; p];
p = 2; While[Divisible[n, p], p = NextPrime[p]]; p];
a = a126706[[1 ;; nn]];
a = a126706[[1 ;; nn]];
Monitor[Reap[
Monitor[Reap[
Do[n = a[[j]];
Do[n = a[[j]];
If[rad[n]*lcp[n] < n, Sow[n]], {j, nn}]
If[rad[n]*lcp[n] < n, Sow[n]], {j, nn}]
][[-1, -1]], j]]

```
        ][[-1, -1]], j] ]
```

[C5] Generate A360480, the k (1) n counting function:

```
rad[x_] := rad[x] = Times @@
        FactorInteger[x][[All, 1]];
Table[k = rad[n];
        Count[Range[n],
            _?(Nor[CoprimeQ[#1, n], Divisible[#2, k],
                        Divisible[k, #2]] & @@ {#, rad[#]} &)], {n, 88}]
```

[c6] Generate A360543, the k (3) n counting function:

```
nn = 120;
rad[n_] := rad[n] = Times @@
        FactorInteger[n][[All, 1]];
c = Select[Range[4, nn], CompositeQ];
s = Select[Select[Range[4, nn], Not @* SquareFreeQ],
            Function[{n, q, r},
            AnyTrue[TakeWhile[c, # <= n &],
            And[PrimeNu[#] > q,
                    Divisible[rad[#], r]] &]] @@
                    {#, PrimeNu[#], rad[#]} &];
Table[If[FreeQ[s, n], 0,
        Function[{q, r},
            Count[TakeWhile[
            c, # <= n &], _?(And[PrimeNu[#] > q,
                    Divisible[rad[#], r]] &)]] @@
                    {PrimeNu[n], rad[n]}], {n, nn}]
```

[C7] faster algorithm for A360543, the k (3) n counting function, given a dataset of A360765 and [C1]:
$\operatorname{rad}[n]]:=\operatorname{rad}[n]=$ Times @@
FactorInteger[n][[All, 1]];
\{\{\}, \{\}\}~Join~Table[r = Rest@ regularsExtended[n]; t = Rest@ Flatten@

Outer[Plus, $\operatorname{rad}[n] *$ Range $0, \mathrm{n} / \mathrm{rad}[\mathrm{n}]-1]$, Select[Range[rad[n]], CoprimeQ[rad[n], \#] \&]]; Union@ Flatten@

Table[i j,
$\{i, r[[1 ;$ LengthWhile[r, n/t[[1]] > \# \&]]]\}, \{j, t[[1 ; ; LengthWhile[t, n/i > \# \&]]]\}],
$\{n, 3,24\}]$

A120944: "Varius" numbers; squarefree composites.
A126706: "Tantus" numbers neither prime power nor squarefree.
A133995: Row n lists n-neutral k such that $k<n$.
A162306: Row n lists n-regular k such that $k \leq n$.
A246547: "Multus" numbers; composite prime powers.
A272618: Row n lists n-semidivisors k such that $k<n$.
A272619: Row n lists n-semitotatives k such that $k<n$.
A355432: $a(n)=$ symmetric semidivisor counting function.
A360480: $a(n)=$ symmetric semicoprime counting function.
A360543: $a(n)=$ mixed semicoprime counting function.

A360767: Weakly tantus numbers.
A360768: Strongly tantus numbers.
A360769: Odd tantus numbers.
A361235: $a(n)=$ mixed semidivisor counting function..
Document Revision Record:
2023 0226: Draft 1.
2023 0227: Draft 2.
2023 0306: Final.

Concerns sequences:

Aooooo 5: Divisor counting function $\tau(n)$.
A0000 10: Euler totient function $\phi(n)$.
A000040: Prime numbers.
Aooo961: Prime powers.
A001221: Number of distinct prime divisors of $n, \omega(n)$.
A006881: Squarefree semiprimes.
A007947: Squarefree kernel of $n ; \operatorname{RAD}(n)$.
A010846: Regular counting function.
AO13929: Numbers that are not squarefree.
A024619: Numbers that are not prime powers.
A045763: Neutral counting function.
AO5 1953: Cototient function: $n-\phi(n)$.

