The Semitotative Counting Function and Species.

Michael Thomas De Vlieger · St. Louis, Missouri · 8 March 2023.

Abstract.

Consider $k, n \in \mathbb{N}$ and define *n*-semicoprime *k* to be such that sets of prime divisors of *k* and that of *n* meet, yet $p \mid k$ but does not divide *n*. It is clear that semicoprimality requires both *k* and *n* composite. We consider k < n, thus *k* a semitotative of *n*. We describe symmetric and nonsymmetric varieties of the semitotative. This paper expands on an earlier work regarding symmetric semitotatives.

INTRODUCTION.

Consider the cototient of *n*, that is, those k < n such that (k, n) > 1. In other words, if the reduced residue set RRS(n) includes k < n such that (k, n) = 1, then the cototient is defined as follows:

$$c(n) = \{1...n\} \setminus \text{RRS}(n).$$
[1.1]
A051953(n) = | c(n) | [1.2]
= n - \phi(n).
= n - A10(n). [1.1]

Clearly, $Ao_{51953}(n) = 1$ for n = p, prime.

Within c(n), we have divisors $d \mid n$, therefore we define the neutral cototient, z(n), the set of k neither coprime to n nor divisors of n, as follows:

$$\begin{aligned} \Xi(n) &= c(n) \setminus \{ d : d \mid n \}. \\ \xi(n) &= \mid \Xi(n) \mid \\ &= \mid A_{133995}(n) \mid \\ &= n - \phi(n) - \tau(n) + 1. \\ &= n - A_{10}(n) - A_{5}(n) + 1. \\ &= A_{045763}(n). \end{aligned}$$

As consequence of neutrality, *k* and *n* are composite, since primes *p* either divide *n* or are coprime to *n*. Furthermore, for n = p, $\xi(n) = 0$.

We may distinguish 2 species of *n*-neutral *k* based on the squarefree kernel RAD(*m*) = A7947(*m*). The case RAD(*k*) | RAD(*n*) implies *k* is *n*-regular, meaning that *k* | n^{ϵ} , $\varepsilon \ge 0$, that is, all prime factors of *k* also divide *n*. The *n*-regular numbers *k* are a superset of divisors *d* | n^{ϵ} , $\varepsilon = 0 \dots 1$; for $k \le n$, these numbers are listed in row *n* of A162306.

$$A162306(n) = \{ k \le n : RAD(k) \mid RAD(n) \}$$
[1.5]

$$= \{ k \le n : k \mid n^{\epsilon}, \epsilon \ge 0 \}$$

$$= \{ d : d \mid n \} \cup \{ k < n : k \mid n^{\epsilon}, \epsilon > 1 \}$$

$$= A027750(n) \cup A272618(n)$$

$$A010846(n) = | A162306(n) |$$

$$= | A027750(n) | + | A272618(n) |$$

$$= A5(n) + A243822(n)$$

$$= \tau(n) + \xi_{n}(n).$$
[1.6]

Nondivisor *n*-regular *k* are called semidivisors, and are 1 of the 2 species in the neutral cototient [2], [3]. These are listed in $\Xi_p(n)$, that is, row *n* of A272618. The semidivisor counting function $\xi_p(n) = A243822(n)$.

The other species is *n*-semicoprime *k*, k < n, hence we have called this species a "semitotative" of *n*. These are listed in $\Xi_{T}(n)$, that is, row *n* of A272619. The semidivisor counting function $\xi_{T}(n) = A243823(n)$.

$$\Xi_{r}(n) = \Xi(n) \setminus \Xi_{D}(n)$$

$$A272619(n) = A133995(n) \setminus A272618(n)$$

$$[1.7]$$

We can define the sequence $\Xi_r(n)$ from first principles:

$$\begin{split} \Xi_{T}(n) &= \{ k : k < n \land (k, n) > 1 \land \text{RAD}(k) \nmid \text{RAD}(n) \} & [1.8] \\ \xi_{T}(n) &= | \Xi_{T}(n) | & [1.9] \\ &= | A133995(n) | - | A272618(n) | \\ &= A243823(n). \end{split}$$

Semicoprimality.

Where coprimality between k and n represents disjunct sets of prime divisors of k and n and regularity represents one set a subset of the other, semicoprimality represents an inhabited symmetric difference. Hence we can have n-semicoprime k, yet k-regular n and vice versa, while coprimality is always symmetric.

DEFINITION 1: When we have at least 1 prime p such that $p \mid k$ that does not divide n, and at least 1 prime q such that $q \mid n$ that does not divide k, we have "symmetric semicoprimality".

In [2] we present and explain the following symbols:

TABLE A.

$k \perp n$	<i>k</i> is coprime to <i>n</i>	(k, n) = 1	
$k \Diamond n$	<i>k</i> is semicoprime to <i>n</i>	$1 < (k, n) < \min$	n/(k,n) mid n
$k \parallel n$	k is regular to n	$1 \le (k, n) \le \min(k, n)$	$k \mid n^{\varepsilon} : \varepsilon \ge 0$
$k \mid n$	k divides n	$1 \leq (k,n) = k$	$k \mid n^{\varepsilon} : \varepsilon = 0 \dots 1$
$k \mid n$	k semidivides n	$1 < (k, n) < \min$	$k \mid n^{\varepsilon} : \varepsilon > 1$

Hence, writing $k \parallel \Diamond n$ signifies k regular to n, but n semicoprime to k, while $k \Diamond \Diamond n$ indicates symmetric semicoprimality.

The following table summarizes basic relations between *k* and *n*. Let $P(m) = \{ \text{ prime } p : p \mid m \}.$

TABLE B.

<u>Relation</u>	Setwise	<u>Kernelwise</u>
$k \perp n$	$P(n) \cap P(k) = \emptyset$	$\operatorname{rad}(k) \perp \operatorname{rad}(n)$
$k \diamond \diamond n$	$P(n) \ominus P(k) \neq \emptyset:$ $P(k) \setminus P(n) \neq \emptyset \land$ $P(n) \setminus P(k) \neq \emptyset$	$\operatorname{rad}(k) mid \operatorname{rad}(n) \wedge$ $\operatorname{rad}(n) mid \operatorname{rad}(k)$
$k \diamond \parallel n$	$P(n) \ominus P(k) \neq \emptyset:$ $P(k) \setminus P(n) \neq \emptyset \land$ $P(n) \setminus P(k) = \emptyset$	$\operatorname{rad}(k) mid \operatorname{rad}(n) \wedge$ $\operatorname{rad}(n) \operatorname{rad}(k)$
$k \parallel \Diamond n$	$P(n) \ominus P(k) \neq \emptyset:$ $P(k) \setminus P(n) = \emptyset \land$ $P(n) \setminus P(k) \neq \emptyset$	$\operatorname{rad}(k) \operatorname{rad}(n) \land$ $\operatorname{rad}(n) \nmid \operatorname{rad}(k)$
k n	P(k) = P(n)	$\operatorname{RAD}(k) = \operatorname{RAD}(n) = \varkappa$

Coprimality is always symmetric, as is the cototient. Within cototient, we have the following relations:

$\diamond \diamond$	◊ or ◊	
Symmetric	Mixed	Symmetric
Semicoprimality	Cototient	Regularity

In this work we are concerned only with symmetric semicoprimality $(\Diamond \Diamond)$ and mixed semicoprimality $(\Diamond \parallel)$. The other two relations are forms of regularity. The existence of 2 species of regular numbers (the divisor and the semidivisor) implies corresponding mixed cototient states [2]:

$\diamond \diamond$	◊ or ◊	\$¦ or ¦\$
Symmetric	Lean	Mixed
Semicoprimality	Divisorship	Neutrality
1	24	37

We express symmetric semicoprimality symbolically via $k \diamond \diamond n$, i.e, k 1 n per [2]. These are k and n in the semicoprime cototient absent divisorship between their squarefree kernels.

For k < n, it is clear that we cannot have state ②, that is $k \diamond | n$, since that would require k > n, a contradiction. The mixed neutral state ⑦, i.e., $k | \diamond n$, is not at issue, since it is a kind of semidivisor. The lean divisor state ④, $k | \diamond n$, is also immaterial, since it is a kind of divisor. Therefore the category of lean divisorship can be ignored, but the test $n \nmid k$ is insufficient as a means to determine symmetric semicoprimality. This leaves us with ① ($k \diamond \diamond n$) or ③ ($k \diamond | n$).

Thus, for our purposes, we are only interested in disambiguating states ① and ③, the former corresponding to symmetric semicoprimality and the latter to mixed or nonsymmetric semicoprimality. We are only interested in cases k < n.

DEFINITION 2: When we have at least 1 prime p such that $p \mid k$ that does not divide n, yet all primes q that divide n also divide k, we have "nonsymmetric semicoprimality".

DEFINITION 3: An "*n*-semitotative" is *k* such that k < n and $k \diamond n$. This term resonates with the term "totative" applied to a reduced residue t < n such that (t, n) = 1. Therefore, we may call k 1 n a symmetric semitotative, and k 3 n a nonsymmetric semitotative.

The set of semitotatives, $\varepsilon_r(n)$, potentially includes both *n*-semicoprime *k* for which *n* is *k*-regular, (i.e., RAD(*n*) | RAD(*k*)) and where *n* is *k*-semicoprime. Therefore the following is necessary to create a set S_1 of symmetric semitotatives:

$$S_1 = \{ k \in A272619(n) : RAD(n) \nmid k \}$$

$$= \{ k : k < n \land (k, n) > 1 \land$$

$$RAD(k) \nmid n \land RAD(n) \nmid k \}$$

$$[2.1]$$

We also define a set *S*₃ of nonsymmetric semitotatives:

$$S_{3} = \{ k \in A272619(n) : RAD(n) \mid k \}$$

$$= \{ k : k < n \land (k, n) > 1 \land$$

$$\omega(k) > \omega(n) \land RAD(n) \mid k \}$$
[2.2]

The symmetric semicoprime counting function f_1 thus is defined as follows:

$$f_1(n) = A_360480(n) = \left| S_1 \right|$$
 [2.3]

The nonsymmetric semicoprime counting function thus is defined as follows:

The sequence A272619 lists the following semidivisors k < n for nonsquarefree $n = 8 \dots 28$ (where 0 in OEIS represents a null row):

6;

۰.	υ,									
9:	6;									
10:	6;									
12:	10;									
14:	6,	10,	12;							
15:	6,	10,	12;							
16:	6,	10,	12,	14;						
18:	10,	14,	15;							
20:	6,	12,	14,	15,	18;					
21:	6,	12,	14,	15,	18;					
22:	6,	10,	12,	14,	18,	20;				
24:	10,	14,	15,	20,	21,	22;				
25:	10,	15,	20;							
26:	6,	10,	12,	14,	18,	20,	22,	24;		
27:	6,	12,	15,	18,	21,	24;				
28:	6,	10,	12,	18,	20,	21,	22,	24,	26;	

DISTINGUISHING SPECIES OF SEMITOTATIVES.

We introduce means by which we may distinguish symmetric from nonsymmetric semitotatives.

We present some theorems from [2] and [3] having to do with semicoprimality and its relevant varieties. General proofs regarding semicoprimality precede proofs pertaining to the species of semito-tatives and omega-multiplicity classes of *n* to which they pertain.

SEMICOPRIMALITY

THEOREM 1.1: *n*-semicoprime *k* implies both *k* and *n* are composite. PROOF: The definition of *n*-semicoprime *k* implies (k, n) > 1 and $k \nmid n$. Primes *p* must either divide another number or be coprime to that number. Therefore, *n*-semicoprime *k* cannot be prime. Furthermore, *n* cannot be prime since all k < n are coprime to *n*, but n-semicoprime *k* implies *k* and *n* are in cototient.

THEOREM 1.2: *n*-semicoprime *k* implies *k* is not a prime power. PROOF: By definition, *n*-semicoprime *k* is such that *k* and *n* share at least 1 prime factor *p*, yet there is at least one prime factor *q* such that $q \mid k$ but $q \nmid n$. Therefore, at minimum, k = pq, $p \neq q$.

COROLLARY 1.3: Set p = LPF(n) = A020639(n), the least prime factor of n, and set q = A053669(n), the smallest prime that is coprime to n. The number k = pq is the smallest number semicoprime to n.

COROLLARY 1.4: For odd n, k = 2p is the smallest semicoprime number, where p = LPF(n) = A020639(n).

COROLLARY 1.5: For prime n = p, *n*-semicoprime *k* is such that k > p.

NONSYMMETRIC SEMICOPRIMALITY

LEMMA 2.1: Numbers k, n such that $k \diamond | n$ imply both k and n are composite. In other words, if k or n are prime, $k \diamond | n$ is impossible. PROOF. We have shown $k \diamond n$ implies both k and n are composite. We therefore show that this is true when n is a semidivisor of k. n | k implies composite n since 1 < (k, n) < n by definition of semidivisor n | k as nondivisor regular $n | k^{\epsilon} : \epsilon > 1$. Hence k and n are neutral in both directions, while a prime must either divide or be coprime to another number. Therefore both k and n are composite.

LEMMA 2.2: Numbers k, n such that $k \diamond | n \text{ imply } \omega(k) > \omega(n)$. PROOF: $k \diamond n$ implies that k is divisible by Q > 1 such that (Q, n) = 1, yet n is regular to k, meaning that n is a product of primes p | k and no prime $q \nmid k$. Further, n does not divide k, yet RAD(n) | k, and it is clear that $\omega(k) > \omega(n)$.

COROLLARY 2.3: For *k*, *n* such that $k \diamond | n, k$ cannot be a prime power. Mixed neutrality and $n = p^{\epsilon}$ implies *n* such that $p^{(\epsilon-j)} | k \land j > 0$.

SYMMETRIC SEMICOPRIMALITY

COROLLARY 3.1: Symmetric semicoprimality implies both k and n are composite. Consequence of Theorem 1.1.

LEMMA 3.2: Symmetric semicoprimality implies both $\omega(k)$ and $\omega(n)$ exceed 1. This is to say that both *k* and *n* are not prime powers.

PROOF: A number *k* semicoprime to *n* is defined as (k, n) > 1 yet there exists at least 1 prime *q* such that $q \mid k$ but $q \nmid n$. Symmetric semicoprimality implies $\mid P \ominus Q \mid > 0$. Since *k* and *n* are at least divisible by some common prime *p*, and since each has at least 1 prime factor *q* not shared with the other, at least 2 prime factors are implied for both *k* and *n*. Hence both have at least 2 distinct prime divisors.

COROLLARY 3.3: Primes and multus numbers (composite prime powers) cannot be symmetrically semicoprime.

Semitotatives and Omega-Multiplicity Classes.

We now examine the three remaining omega-multiplicity classes regarding the existence of symmetric or nonsymmetric semitotatives. Let's recapitulate these classes that were described in [2]:

We divide natural numbers $n \in \mathbb{N}$ into 5 categories based upon prime decomposition of n. The number n is said to be squarefree iff $\omega(n) = \Omega(n)$. The number n is said to be prime iff $\omega(n) = \Omega(n) = 1$, and a prime power iff $\omega(n) = 1$. The empty product n = 1 occupies a category all to itself, therefore, we may hold that there are actually 4 nontrivial categories. We further distinguish numbers instead with M(n) = the largest multiplicity in n, meaning the largest exponent ε such that any prime power $p^{\varepsilon} \mid n$.

	IABLE D.	
	M(n) = 1	M(n) > 1
	multus	tantus
$\omega(n)>1$	8, 27, 125	12, 75, 216
	A246547	A126706
	prime	varius
$\omega(n)=1$	2, 17, 101	6, 35, 210
	A40	A120944

Multus numbers are composite prime powers $n \in A246547$, while varius numbers are squarefree composites $n \in A120944$. Numbers that are neither squarefree nor prime powers are called tantus and appear in A126706. Numbers that are both squarefree and prime powers are prime.

We define a subset of tantus numbers for which all prime power factors $p^{\epsilon} \mid n$ such that $\epsilon > 1$. This is tantamount to the powerful numbers A1694 without prime powers A961, i.e., A1694 \ A961. We call these **plenus** ("full") numbers (A286708). Another way to think of plenus numbers is as a product of multus numbers, or varius numbers where each prime divisor is raised to some power $\epsilon > 1$.

Multus

Lemma 4.1: Semitotatives $k \diamond n$, k < n, for multus $n \in A246547$ are never symmetric.

PROOF: An *n*-semitotative *k* is *n*-semicoprime, with k < n. The definition of *n*-semicoprime *k* requires a prime $p \mid k$ that does not divide *n*, yet (k, n) > 1. Symmetric semicoprimality has prime $q \mid n$ such that *q* does not divide *k*, yet (k, n) > 1. We have to show that *n* is *k*-semicoprime, however, such implies $\omega(n) > 1$. (See [2], Lemma 1.2)

VARIUS

LEMMA 4.2: For varius n > 6, all semitotatives are symmetric.

PROOF: There are 2 constitutive species of semitotatives; symmetric $k \oplus n$ and nonsymmetric $k \oplus n$. Therefore to prove the proposition, we need to show that squarefree n does not semidivide k. The expression $n \mid k$ implies $RAD(n) \mid RAD(k)$, but $n \nmid k$. The latter is true since k < n, but the former implies RAD(n) = RAD(k), that is, all primes $q \mid n$ also divide k, contradicting $k \diamond n$. We note k < 6 are prime powers, therefore, there are no semitotatives for n = 6.

TANTUS

LEMMA 4.3: For tantus *n*, there exists at least 1 symmetric semitotative $k \bigoplus n$.

PROOF: Set p = LPF(n) = A020639(n) and set q = A053669(n), the smallest prime that is coprime to n. It is clear pq ① n for all $n \in A126706$ by definition of "semicoprime". Now we attempt to show pq < n for some $n \in A126706$. For n = A126706(1) = 12, we have $pq = 2 \times 5 = 10$; 10 < 12. If we set p > 2, supposing $p^2 | n$ in order to

minimize *n* so as to force *pq* to exceed *n*, then q = 2, and we are only making larger *n*. It becomes clear that to maximize *q* but retaining p = 2 and $p^2 | n$, we require $n = 2P(i) = 2 \times A_{2,1,1,0}(i)$, i > 1. Through induction on *i*, it is clear that pq < 2P(i).

We note that for n = 12, 10 is the sole semitotative; there are none of the mixed neutral variety k ③ n. We do see that for n = 45, we have k = 30, thus k ③ n.

LEMMA 4.4: There exists k such that k < n and k (3) n for odd $n \in A_{126706}$. Odd tantus n have nonsymmetric semitotatives k.

PROOF: Break the expression k ③ n into components $k \diamond n$ and $n \mid k$. We may rewrite the latter component as $RAD(n) \mid RAD(k)$, where, per the former component, $RAD(k) = q \times RAD(n)$ and q coprime to n. If n is odd, then we can produce the state via $k = 2\varkappa$, where $\varkappa = RAD(n)$. Since n is tantus, $n \ge p\varkappa$ such that $p \mid \varkappa$ and p > 2. Therefore it is clear that $2 < p\varkappa \le n$.

THEOREM 4.5: Certain even tantus numbers *n* have both symmetric $(k \oplus n)$ and nonsymmetric semitotatives $(k \otimes n)$.

PROOF: Define the set of *k*-regular numbers \mathbf{R}_{x} , where $\mathbf{x} = \text{RAD}(k)$, to be as follows: $\mathbf{R}_{x} = \bigotimes \{\mathbf{x}^{\varepsilon}, c > 0\}$

$$\mathbf{R}_{\mathbf{x}} = \bigotimes_{p \mid \mathbf{x}} \{ p^{\varepsilon} : \varepsilon \ge 0 \}.$$
 [3.5]

All numbers $m \in \mathbf{R}_{x}$ are such that $\operatorname{RAD}(m) \mid x$. Therefore, $n \mid k$ implies $k, n \in \mathbf{R}_{x}$ and hence $\operatorname{RAD}(n) \mid x$. Since we restrict numbers in \mathbf{R}_{x} to primes $p \mid x$, to construct $k (\mathfrak{D}, n, k < n, \operatorname{it} is sufficient merely to find <math>n \in \mathbf{R}_{x}$ such that n > k and $\omega(n) < \omega(k)$.

We pursue a strategy akin to Theorem 1.1, setting q = Ao53669(n)and resetting \varkappa instead to RAD(n) to guarantee RAD(n) | k. Therefore, $q\varkappa < n$ implies k ③ n and k < n. The smallest case is k = 30, n = 36.

It is clear that such tantus numbers *n* have $k \oplus n$ and k < n, via Lemma 4.3. Hence, the proposition is true.

HEAVY TANTUS NUMBERS

We thus define the sequence of "heavy tantus" numbers A360765 \subset A126706 containing tantus numbers that have mixed semitotatives k ③ n and k < n that begins with the following numbers:

36, 40, 45, 48, 50, 54, 56, 63, 72, 75, 80, 88, 96, 98, 99, 100, 104, 108, 112, 117, 135, 136, 144, 147, 152, 153, 160, 162, 171, 175, 176, 184, 189, 192, 196, 200, 207, 208, 216, 224, 225, 232, 240, 242, 245, 248, ...

It is clear that these numbers *n* comprise the only subclass that harbors both nonsymmetric and symmetric semitotatives k < n.

THEOREM 4.6. Distinct $m, n \in A_{3}60765$ such that both have same squarefree kernel \varkappa implies that mixed semicoprime k pertains to both m and n, and symmetric semicoprime k pertains to both m and n. PROOF: Suppose we have 2 distinct numbers $m, n \in A_{3}60765$ such that RAD $(m) = RAD(n) = \varkappa$ and n < m. It is clear that RAD $(m) = RAD(n) = \varkappa$ implies $\omega(m) = \omega(n) = Q$. Therefore, if we have k < n such that $k \circledast n$, we know that $\varkappa \mid RAD(k)$ (which itself implies cototient), and $\omega(k) > Q$. Hence, if we have $k \circledast n$, then we have $k \circledast m$ and vice versa.

LEMMA 4.7: A286708 \subset A360765. In other words, plenus numbers *n* that are products of at least 2 composite prime powers p^{ε} such that $\varepsilon > 1$ (i.e., $n \in A286708$) have $\varkappa q < n$ where $\varkappa = RAD(n) = A7947(n)$ and q = LPC(n) = A053669(n).

PROOF: The proposition is true since $q < \kappa$, hence $\kappa q < m\kappa^2$, $m \ge 1$.

COROLLARY 4.8: Powerful numbers n > 1 (i.e., $n \in A1694$) have nonsymmetric semitotatives k ③ n. Consequence of Lemmas 4.3 and 4.7, and the following:

$$1694 = A246547 \cup A286708 \cup \{1\}$$
 [4.8]

Simple Sequence Analysis · The Semitotative Counting Function and Species.

Figure 1: A map of constitutive states in the cototient between k and n for $k \le 36$ and $n \le 36$. Green circles are in state (1) and blue represents state (3), while gray dots represent coprimality (state (3)). Red dots represent divisor states (4)(5)(5), notably excepting k = 1. Yellow represents state (7). Finally, magenta represents symmetric semidivisibility, state (3), which requires rad(k) = rad(n).

Figure 2: Relationship of symmetric n-semicoprime k to "quincunx" numbers and the cototient in general. Plot k and n for $k \le 36$ and $n \le 36$ at (k, -n). We show "quincunx" numbers Q(n, k) = [OR(2|k, 3|k, 2|n, 3|n)] in dark gray, T(n, k) = [(k, n) > 1] in light gray, k coprime to n with a gray dot, and $k \mid n$ with a black dot. For $k \odot n : Q(n, k) = 1$, we highlight in red, and for $k \odot n : T(n, k) = 1$, we highlight in pink, in both cases labeling k in each row. For $k \odot n : Q(n, k) = 1$, we highlight in light $g \in T(n, k) = 1$, we highlight in light $g \in T(n, k) = 1$, we highlight in light $g \in T(n, k) = 1$, we highlight in light $g \in T(n, k) = 1$.

COUNTING FUNCTIONS f_1 AND f_3 . The sequence S_1 lists symmetric semitotatives k 1 n:

	- 1		 01		 //				 				• •		•			
10:	6																	
11:																		
12:				10														
13:																		
14:	6			10	12													
15:	6			10	12													
16:																		
17:																		
18:				10			14	15										
19:																		
20:	6				12		14	15		18								
21:	6				12		14	15		18								
22:	6			10	12		14			18		20						
23:																		
24:				10			14	15				20	21	22				
25:																		
26:	6	•	•	10	12	•	14			18	•	20	•	22	•	24	•	

The sequence S_3 lists symmetric semitotatives $k \Im n$:

	1			9			1									_	-				
8:	6																				
9:	6																				
10:																					
11:																					
12:																					
13:		•		•			•														
14:		•		•			•		•												
15:		•		•			•		•												
16:	6	•	•	•	10	•	12	•	14	•	•										
17:		•		•			•		•												
18:	•	•	•	•	•	•	•	•	•	•	·	•	·								
19:	·	·	·	·	·	•	·	•	·	·	·	·	·	·							
20:	•	·	·	•	·	·	•	·	·	·	·	·	·	·	•						
21:	·	·	·	·	·	•	·	•	·	·	·	·	·	·	•	·					
22:	•	·	·	•	·	·	•	·	·	·	·	·	·	·	•	·	•				
23:	•	·	·	•	·	·	•	·	·	·	·	·	·	·	•	·	•	•			
24:	·	·	·	·	·	•	·	•	·	·	·	·	·	·	•	·	·	·	·		
25:	•	•	•	•	10	•	•	•	•	15	•	•	•	•	20	•	•	•	•	•	
26:	·	·	·	·	·	•	·	•	·	·	·	·	·	·	•	·	·	·	·	·	•

Figure 1 overlays these 2 charts, with S_1 in green and S_3 in blue. Figure 3 shows instead in red, and shows that semitotatives dominate the cototient as *n* increases, but symmetric semitotatives predominate over nonsymmetric.

We defined a symmetric semitotative counting function $f_1(n) = A_{3}60_{4}80(n) = |S_1|$ in [2.3]. The definition of symmetric semicoprimality implies $\omega(n) \ge 2$ with the following consequences:

A360480(*n*) > 0 for $n \in$ A024619 via Lemmas 4.2 and 4.3. A360480(*n*) = 0 for $n \in$ A961 via Lemma 4.1. A360480(6) = 0 since k < 6 are prime powers.

Corollaries 3.1 and 3.3 and Lemma 3.2 show the following:

$$A_{3}60480(n) = |\{k < n : (k, n) > 1 \land (RAD(k) | n \nabla RAD(n) | k)\}|$$
[5.0]

The sequence A360480(*n*) begins as follows:

А

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 3, 0, 0, 3, 0, 5, 5, 6, 0, 6, 0, 8, 0, 9, 0, 5, 0, 0, 8, 11, 7, 10, 0, 13, 10, 13, 0, 12, 0, 16, 13, 17, 0, 16, 0, 18, 14, 20, 0, 19, 11, 21, 16, 23, 0, 19, 0, 25, 19, 0, 13, ...

LEMMA 5.1: For non-prime-powers n (i.e., $n \in A024619$), the following equation is true:

$$360480(n) = n - \phi(n) - \text{RCF}(n) + 1$$

$$= n - A_{10}(n) - A_{010}846(n) + 1$$
 [5.1]

PROOF: Consequence of Lemmas 4.2 and 4.3 and the following: A045763(n) = n - A10(n) - A5(n) + 1 = A243822(n) + A243823(n) A243823(n) = n - A10(n) - (A5(n) + A243822(n)) + 1 A243823(n) = n - A10(n) - A010846(n) + 1. Then since all semitotrives of n < A01666(n) + 1.

Then, since all semitotatives of $n \in A024619$ are symmetric, hence A243823(n) = A360480(n), it is plain that the proposition is true.

Likewise, we defined a nonsymmetric semitotative counting function $f_3(n) = A_360543(n) = |S_3|$ in [2.4]. The definition of symmetric semicoprimality implies $\omega(n) \ge 2$ with the following consequences: The sequence $A_360543(n)$ begins as follows:

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 6, 0, 0, 0, 0, 11, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 5, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 26, 0, 0, 0, 0, 0, 0, 0, ...

Lemma 4.4 and Theorem 4.5 prove the following:

$$A_{3}60543(n) = \left| \left\{ k < n : RAD(n) \mid k \land \omega(k) > \omega(n) \right\} \right|$$
 [5.2]

Consequently, we find the following:

A360543(*n*) = 0 for $n \in A_{5117}$ via Lemma 4.2. Let $\mathcal{M} = \{A_{246547} \cup A_{360765}\} \setminus \{4\}$. A360543(*n*) > 0 for $n \in \mathcal{M}$ via Lemmas 4.1, 4.4, and 4.5.

THEOREM 5.2: For $n = p^{\epsilon} \in A961$: n > 4, $A_{3}60543(p^{\epsilon}) = p^{(\epsilon-1)} - \epsilon$. PROOF: Consider $k \in (1 \dots p^{\epsilon})$, such that $(k, p^{\epsilon}) > 1$, that is, any k such that k/p is an integer. This leaves us with k = mp, where $m \le p^{\epsilon}$. Through p^{ϵ}/p , we define the range of $m = 1 \dots p^{(\epsilon-1)}$. For k = mp, any prime power $p^{\delta} | p^{\epsilon}, \delta \le \epsilon$, and there are $\tau(p^{\epsilon}) - 1 = (\epsilon+1) - 1 = \epsilon$ of these. Hence we subtract $p^{(\epsilon-1)} - \epsilon$ to find k < n such that k ③ n for n a prime power. The case of n = 4 yields $A_{3}60543(4) = 0$ since k < 4 are either coprime to 4 or divide 4.

LEMMA 5.3: For composite prime powers n (i.e., $n \in A246547$), the following equation is true:

 $A_{3}60543(n) = n - \phi(n) - \tau(n) + 1$

 $= n - A_{10}(n) - A_{5}(n) + 1$ [5.3]

PROOF: Consequence of Lemma 4.2 and since prime powers do not have semidivisors k < n, the following:

$$A045763(n) = n - A10(n) - A5(n) + 1 = A243823(n)$$

Then, since all semitotatives of $n \in A246547$ are nonsymmetric, hence A243823(n) = A360543(n), the proposition is true.

Record Setters in A360543.

Records seem to occur for *n* amid powers 2^{δ} , $\delta > 2$ and 3^{ϵ} , $\varepsilon > 1$, and may be related to A334151.

A3557 is the sequence defined as follows:

$$n = \prod p_i^{\epsilon_i} \Rightarrow a(n) = \prod p_i^{(\epsilon_i - 1)}, \text{ with } a(1) = 1,$$

thus, $a(n) = n/\text{RAD}(n).$ [5.4]

Define A334151 to include the following *k*:

$$k/\operatorname{RAD}(k) > j/\operatorname{RAD}(j)$$
 for all $j < k$. [5.5]

Hence, recordsetters in A3557 comprise A334151.

LEMMA 5.4: $\kappa \in A_{5117}$ implies $\kappa/RAD(\kappa) = 1$.

PROOF: Prime *p* is such that p = RAD(p), therefore p/RAD(p) = 1, and that, generally, squarefree $x \in A5117$ is such that x = RAD(x), and therefore x/RAD(x) = 1. Thus, we show only nonsquarefree numbers $k \in A013929$ are such that k/RAD(k) > 1.

Let $RAD(j) = \kappa$. We may express k/RAD(k) as $k/\kappa = m$, where *m* is an integer exceeding 1. Now the question, among multus and tantus numbers, is, which maximizes *m* first?

Note the following:

For
$$k = p^{\varepsilon}$$
, $\varepsilon > 1$, $m = p^{(\varepsilon-1)}$,
For $k = p^{\varepsilon}q$, $\varepsilon > 1$, $m = p^{(\varepsilon-1)}$, $p^{\varepsilon} < p^{\varepsilon}q$. [5.6]

Figure 3: For $n \le 120$ and k < n, we plot k in red if $k \odot n$, blue if $k \odot n$, light yellow if $k \mid n$, gray if (k, n) > 1, and white if (k, n) = 1. Since red and blue together represent k in A272619(n), the numbers k shown in gray are n-semidivisors that appear in A272618(n).

Figure 4: Log-log scatterplot of $A_360480(n)$ for $n = 1 \dots 2^{15}$, ignoring 0s, showing squarefree composite n in green, n neither squarefree nor prime power in blue, with products of composite prime powers in large light blue and primorials in magenta.

LEMMA 5.5: $p^{\varepsilon}/\operatorname{RAD}(p^{\varepsilon}) = p^{\varepsilon}q/\operatorname{RAD}(p^{\varepsilon}q) = p^{(\varepsilon-1)}, p^{\varepsilon} < p^{\varepsilon}q.$

PROOF: Suppose we have 2 numbers with kernels p and pq, p < q, primes. So as to make the numbers the smallest they can be, we set p = 2, hence q is an odd prime. Since we know through Lemma that squarefree numbers have m = 1, we see k = 2 reaches 1 before any odd prime as k increases, additionally before any varius number.

Now, so as to make for the smallest numbers with some multiplicity, we raise the least prime factor of p and pq to a power p^{ϵ} , to begin with, we set $\epsilon = 2$ thus we compare p^2 and p^2q . Since we've squared the smallest prime factor in both cases, it is clear that the latter exceeds the former, though m = p, and it is clear by induction on ϵ that multus numbers win out over tantus.

This Lemma can be proved using the definition of A3557. We can simply ignore tantus as far as records are concerned.

LEMMA 5.6: $p^{\epsilon}/\text{RAD}(p^{\epsilon}) = p^{\epsilon}q/\text{RAD}(p^{\epsilon}q) = p^{(\epsilon-1)}, p^{\epsilon} < p^{\epsilon}q$. PROOF: Return to the definition A3557(*n*) = $\prod p_i^{(\epsilon_i-1)}$ for *n* > 1. We perform the following:

Ao53211 = A3557 → A246547
= Ao51953 → A246547.
= Ao51953(
$$p^{\epsilon}$$
).
= $p^{(\epsilon-1)}$. [5.7]

Labos describes A053211 as the sequence of cototients of composite prime powers (multus numbers). This stands to reason, since the cototients of multus numbers are homogenously semicoprime. Since there is 1 prime divisor $p \mid p^{\epsilon}$, and since $p^{\delta} \mid p^{\epsilon}$, $0 \le \delta \le \epsilon$, we create the cototient via $mp < p^{\epsilon}$ such that $m \not\parallel p$. Hence A053211 is a permutation of A246655 = A961 \ {1}. Furthermore, we have shown that we can rewrite the formulation Gutkovskiy suggests via A3557 instead with A051953 as, when they regard $n \in$ A246547, they are equivalent. Therefore the record setters of A053211 comprise A334151.

Let
$$n = p^{\epsilon}$$
, $\epsilon > 0$; i.e., $n \in \{ A961 \setminus \{1\} \}$.
Let cototient $(n) = A051953(n) = n - \phi(n)$.
LEMMA 5.7: $A051953(p^{\epsilon}) = p^{(\epsilon-1)}$.
PROOF: $A051953(p^{\epsilon}) = p^{\epsilon} - \phi(p^{\epsilon})$
 $= p^{\epsilon} - p^{\epsilon} \times (1-1/p)$
 $= p^{\epsilon} - p^{\epsilon} + p^{\epsilon}/p$
 $= p^{(\epsilon-1)}$. [5.8]

COROLLARY 5.8: $A051953(p^2) = p$. COROLLARY 5.9: A051953(p) = 1.

Hence we can map $f(p^{\epsilon}) = p^{(\epsilon-1)}$ across A246547 to efficiently generate the sequence A053211. We can efficiently generate A246547 by taking the prime powers in A1694, using the construction

A1694 = {
$$a^2 \times b^3 : a, b \ge 1$$
 }. [5.9]

We contemplate a proposition related to A334151 whose resolution lies outside the scope of this paper:

PROPOSITION A: A334151 is comprised of the empty product and powers of 2 and 3.

PROOF SKETCH: For $n \in A246547$, we can write $A3557(n) = p^{(e-1)} = p^{e}/p$, hence, we have n/p. As p increases, decreases proportionately. We minimize decrease by minimizing p. The smallest prime p = 2, hence we should expect all $k \in A79 \setminus \{2\}$ to appear, since A3557(2) = A3557(1). Occasions of p = 3 appear on account of the similarity of 2 and 3 in magnitude, and the fact that $A3557(p^{e})$ for p = 3 is the second-least reduced. Composite powers of 2 offer the largest value $p^{(e-1)} > 1$ more frequently than any other prime.

The following theorem we propose, though it could use rigor:

THEOREM 5.10: $n \in \{A_{334151} \setminus \{4\}\}$ set records in A360543. PROOF: The number n = 1 is a trivial record, A360543(1) = 0; n = 4 is missing since k < 4 are either divisors or coprime to 4.

From [1.4] and [5.7], for $n = p^{\epsilon} \in A246547$ and n > 4, we have the following:

$$A045763(n) = \xi(n) = n - \phi(n) - \tau(n) + 1$$

= A051953(p^e) - A5(p^e) + 1
= p^(e-1) - e - 1 + 1
= p^(e-1) - e. [5.10]

Through Theorem 5.2, we have the following:

A045763
$$(p^{\varepsilon})$$
 = A360543 (p^{ε}) = $p^{(\varepsilon-1)} - \varepsilon$. [5.11]

The sequence of record setters of A360543 would seem to depart from A334151 while $n = p^{\epsilon}$ (with $\epsilon > 0$) is small. Recognizing to be small compared to as *n* increases, we see that the sequence of record setters of A360543 and the sequence A334151 are the same, apart from 4 missing from the former.

PREEMINENCE OF THE SYMMETRIC SEMITOTATIVE.

We might remark on the "quincunx" pattern of semitotatives of *n*. The pattern arises given that of the cototient. Let us define the "quincunx" pattern as follows:

$$A_{349297}(n) = \{ Q(n,k) : k \le n \}, Q(n,k) = [2 | n \lor 2 | k \lor 3 | n \lor 3 | k].$$
 [6.1]

In other words, we have all even or trine *k* for even or trine *n*, where trine signifies *m* mod $3 \equiv 0$.

We use the name quincunx for the 5-die pattern " \approx " that forms part of the plot of A349297(*n*, *k*). The sequence A349297 stands at issue because it comprises a significant part of the cototient; symmetrically semicoprime *k* < *n* occur in the nondivisor cototient. The cototient has the pattern described in A349317 as follows:

A349317(n) = {
$$T(n, k) : k \le n$$
 },
 $T(n, k) = [(n, k) > 1].$ [6.2]

We may write a sequence as follows:

$$A349298(n) = \{ T(n,k) - Q(n,k) : k \le n \}.$$
 [6.3]

Let *Q*(*n*) represent the cardinality of A349297(*n*):

$$Q(n) = |\{Q(n,k) : k \le n\}|$$
[6.4]

The first terms of Q(n), arranged mod 6, appear as follows:

Ο,	1,	1,	2,	Ο,	4,	
Ο,	4,	З,	5,	Ο,	8,	
Ο,	7,	5,	8,	Ο,	12,	
Ο,	10,	7,	11,	Ο,	16,	
Ο,	13,	9,	14,	Ο,	20,	
Ο,	16,	11,	17,	Ο,	24,	

It is clear that we might define a different way based on congruence relations, observing the following:

For
$$n \equiv 0 \pmod{6}$$
, $Q(n) = \frac{2}{3}n$,
For $n \equiv \pm 1 \pmod{6}$, $Q(n) = 0$,
For $n \equiv \pm 2 \pmod{6}$, $Q(n) = n/2$,
For $n \equiv \pm 3 \pmod{6}$, $Q(n) = n/3$. [6.5]

It is evident from scatterplot that A360840 that it is confined, once having "matured", between $\frac{2}{3} n$ and n. The upper bound is a consequence of the definition of A360840 to be a counting function of a species of $k \le n$. We have not explored a reason for the apparent lower bound.

Simple Sequence Analysis · Article 20230225.

6

Regarding the cototient, we note the following:

$$Ao_{51953}(n) = \Sigma \{ [(k, n) > 1] \land k \le n \}$$

$$= \Sigma \{ T(n, k) \land k \le n \}$$

$$= \Sigma A_{349317}(n).$$

$$Ao_{51953}(n) > Ao_{45763}(n) \ge A_{360480}(n)$$

$$n - \phi(n) > \xi(n) \ge f_1(n)$$

$$n - \phi(n) > n - \phi(n) - \tau(n) + 1 \ge f_1(n)$$

$$[6.7]$$

The sum of A349298(*n*) is A051953(*n*) = $n - \phi(n)$. We find that, aside from prime powers, A360840 is a near image of A051953 and A045763. (See Figure 4.)

It seems evident, but remains unproved, that the following is true:

$$\xi(n) > f_1(n) \text{ for } n \in A024619$$
 [6.8]

From Theorems 4 and 5 in [3], we see that composites outside n = 4 and n = 6 have at least 1 semitotative, and non-prime powers outside n = 6 have at least 1 semidivisor k < n. The following table summarizes the findings in [3] regarding the existence of semidivisors and semitotatives in the reference domain of n of various species.

	Table 1	<u>.</u>	
	$\xi(n)$	$\xi_d(n)$	$\xi_t(n)$
SPECIES	A045763(n)	A243822(<i>n</i>)	A243823(<i>n</i>)
PRIMES (A40)	—	—	—
<i>n</i> = 4	—	—	—
MULTUS (A246547)	> 0	—	> 0
<i>n</i> = 6	—	1	1
VARIUS (A120944)	> 0	> 0	> 1
TANTUS (A126706)	> 0	> 0	> 1

THEOREM 3.1: $\xi(n) > f_1(n)$ for $n \in A024619$. Numbers *n* that are not prime powers are such that symmetric semicoprime k < n are not the only *n*-neutral *k* such that k < n.

PROOF: Theorem 5 in [3] shows that there is at least 1 semidivisor k < n for numbers that are not prime powers. Additionally, Lemma 1.2 shows that all the semitotatives of multus n are in state ③.

Hence we have proved [6.8] to be true.

What remains is to explore the following difference:

A360543(
$$n$$
) = $\xi(n) - f_1(n)$ [6.9]
(especially for $n \in A024619$).

This sequence begins as follows:

Excepting $n \in A961$, the records appear to be highly regular in many cases, and 3-smooth in others. The ratio $s_{20230302}(n)/\xi(n)$ appears to converge to $\frac{1}{6}$ for these records. Therefore the following seems apparent, though remains to be proved:

$$f_1(n)/\xi(n) \text{ converges to } \%$$

for $n \in A024619$ [6.10]

If true, then we venture to suggest that symmetric semicoprimality is the most common form of semitotative, as seems to be borne by Figure 3. For large numbers, accepting for the moment [6.10], then we may further see the following for large $n \in A024619$:

 $A051953(n) \approx A045763(n) \approx \frac{6}{3} A045763(n).$ [6.11]

This unproved statement suggests that symmetric semicoprimality (state ①), with possible exception of coprimality, is the most common constitutive state.

Relation to the Semitotative Counting Function.

In the interest of context, the following is the related counting function $f_3(n)$ of mixed-neutral semitotatives:

$$f_3(n) = \{ k < n : k ③ n \} = \{ k < n : k \diamondsuit | n \}$$

= A243823(n) - A360480(n). [7.1]

Since there are precisely 2 kinds of semitotatives; symmetric (state ①) and mixed-neutral (state ③), we may write the following:

$$\xi_r(n) = f_1(n) + f_3(n)$$

A243823(n) = A360480(n) + A360543(n). [7.2]

CONCLUSION.

There are 2 varieties of *n*-semitotatives *k*; these are the symmetric and mixed variety. The former concerns k < n such that prime $p \mid k$ but (p, n) = 1, while prime $q \mid n$ but (q, k) = 1. The latter regards *k* and *n* in cototient such that $\omega(n) \mid \omega(k) > \omega(n)$, while RAD $(n) \mid RAD(k)$. Using constitutive states, these are $k \oplus n$ and $k \oplus n$, respectively. We have shown that these are the only possible constitutive varieties of semitotative. We generated counting functions $f_1(n) = A_360480(n)$ relating to $k \oplus n$, and $f_3(n) = A_360543(n)$ relating to $k \oplus n$, both such that k < n. Hence, $\xi_r(n) = f_1(n) + f_3(n)$, or in terms of OEIS, $A2243823(n) = A_360480(n) + A_360543(n)$.

Though k (3) n pertains to composite prime powers n > 4 exclusively, while k (1) n pertains to squarefree composite n > 6 exclusively, both appear for certain numbers $n \in \{ A_{3}60765 \cap A_{3}60768 \}$, a subset of A126706. Outside of these, generally $n \in A_{1}26706$ harbors only k (1) n.

We estimate that for numbers *n* that are not prime powers, the number of $k \bigcirc n$ approaches % of the cototient of *n*, but this remains something to ascertain. Given the evident dominance of $k \bigcirc n$ over $k \oslash n$, it is not surprising that the scatterplot of A360480 resembles those of A045763 or A051953. \ddagger

APPENDIX.

References:

- [1] N. J. A. Sloane, *The Online Encyclopedia of Integer Sequences*, retrieved February 2023.
- [2] Michael Thomas De Vlieger, Constitutive Basics, Simple Sequence Analysis, 20230125.
- [3] Michael Thomas De Vlieger, Constitutive State Counting Functions, *Simple Sequence Analysis*, 20230226.
- [4] Michael Thomas De Vlieger, The Symmetric Semidivisor Counting Function, *Simple Sequence Analysis*, 20230216.

CODE:

[Co] Function f(k, n) yields the constitutive state (Svitek number) between k and n.

```
conState[j_, k_] :=
Which[j == k, 5, GCD[j, k] == 1, 0, True,
1 + FromDigits[
Map[Which[Mod[##] == 0, 1,
PowerMod[#1, #2, #2] == 0, 2, True, 0] & @@ # &,
Permutations[{k, j}], 3]]
```

[C1] Calculate R_{\star} bounded by an arbitrary limit *m* (i.e., calculate A275280(*n*); flatten and take union to provide A162306)

```
regularsExtended[n_, m_ : 0] :=
    Block[\{w, lim = If[m \le 0, n, m]\},
      Sort@ ToExpression@
        Function[w,
          StringJoin[
            "Block[{n = ", ToString@ lim,
            "}, Flatten@ Table[",
            StringJoin@
              Riffle[Map[ToString@ #1 <> "^" <>
                ToString@ #2 & @@ # &, w], " * "],
            ", ", Most@ Flatten@ Map[{#, ", "} &, #],
            "]]" ] &@
         MapIndexed[
            Function[p,
              StringJoin["{", ToString@ Last@ p,
                ", 0, Log[",
                ToString@ First@ p, ", n/(",
                ToString@
                  InputForm[
                    Times @@ Map[Power @@ # &,
                     Take[w, First@ #2 - 1]]],
                ")]}" ] ]@ w[[First@ #2]] &, w]]@
         Map[{#, ToExpression["p" <>
            ToString@ PrimePi@ #]} &, #[[All, 1]] ] &@
          FactorInteger@ n];
[C2] Generate tantus numbers (A126706):
  a126706 = Block[\{k\}, k = 0;
```

```
Reap[Monitor[Do]
If[And[#2 > 1, #1 != #2] & @@
{PrimeOmega[n], PrimeNu[n]},
Sow[n]; Set[k, n] ],
{n, 2^21}], n]][[-1, -1]]] (* Tantus *);
[C3] Generate "strong tantus" numbers (A360768):
Select[a126706[[1 ;; 120]], #1/#2 >= #3 & @@
```

Select[a126706[[1 ;; 120]], #1/#2 >= #3 & @
 {#1, Times @@ #2, #2[[2]]} & @@
 {#, FactorInteger[#][[All, 1]]} &]

[C4] Generate tantus numbers that have $k \Im n$ (A360765):

```
nn = 2^20},
rad[n_] := rad[n] = Times @@
FactorInteger[n][[All, 1]];
lcp[n_] := If[OddQ[n], 2,
p = 2; While[Divisible[n, p], p = NextPrime[p]]; p];
a = a126706[[1 ;; nn]];
Monitor[ Reap[
Do[n = a[[j]];
If[rad[n]*lcp[n] < n, Sow[n]], {j, nn}]
][[-1, -1]], j] ]
```

```
[C5] Generate A360480, the k ① n counting function:
rad[x_] := rad[x] = Times @@
FactorInteger[x][[All, 1]];
Table[k = rad[n];
Count[Range[n],
__?(Nor[CoprimeQ[#1, n], Divisible[#2, k],
Divisible[k, #2]] & @@ {#, rad[#]} &)], {n, 88}]
```

[C6] Generate A360543, the k ③ n counting function:

```
nn = 120:
rad[n_] := rad[n] = Times @@
  FactorInteger[n][[All, 1]];
c = Select[Range[4, nn], CompositeQ];
s = Select[Select[Range[4, nn], Not @* SquareFreeQ],
  Function[{n, q, r},
    AnyTrue[TakeWhile[c, # <= n &],</pre>
      And [PrimeNu[#] > q_{i}
          Divisible[rad[#], r]] &]] @@
          {#, PrimeNu[#], rad[#]} &];
Table[If[FreeQ[s, n], 0,
  Function[{q, r},
    Count[TakeWhile[
      c, # <= n &], _?(And[PrimeNu[#] > q,
         Divisible[rad[#], r]] &)]] @@
         {PrimeNu[n], rad[n]}], {n, nn}]
```

[C7] Faster algorithm for A360543, the k ③ n counting function, given a dataset of A360765 and [C1]:

[C8] Fast algorithm for A334151, a sequence of record setters in A3557, which is related to record setters for the k ③ n counting function:

```
pp = 4; nn = 2^29; j = 0;
c = e[_] = 1; r = Prime@ Range[pp];
Do[(e[#1]++; Set[{k, m}, {#1^#2, #1^(#2 - 1)}]) & @@
First@ MinimalBy[Array[{#, e[#]} &[r[[#]]] &, pp],
Power @@ # &];
If[m > j, Set[{a[c], j}, {k, m}]; c++];
If[k > nn/2, Break[]], {n, Infinity}];
{1}~Join~Array[a, c - 2, 2]
```

CONCERNS SEQUENCES: A000005: Divisor counting function $\tau(n)$. A000010: Euler totient function $\phi(n)$. A000040: Prime numbers. A000961: Prime powers. A001221: Number of distinct prime divisors of n, $\omega(n)$. A003557: n/RAD(n). A006881: Squarefree semiprimes. A007947: Squarefree kernel of *n*; RAD(*n*). A010846: Regular counting function. A013929: Numbers that are not squarefree. A024619: Numbers that are not prime powers. A045763: Neutral counting function. A051953: Cototient function: $n - \phi(n)$. $A053211: A3557 \mapsto A246547 = A051953 \mapsto A246547.$ A120944: "Varius" numbers; squarefree composites. A126706: "Tantus" numbers neither prime power nor squarefree. A133995: Row *n* lists *n*-neutral *k* such that k < n. A162306: Row *n* lists *n*-regular *k* such that $k \le n$. A246547: "Multus" numbers; composite prime powers. A272618: Row *n* lists *n*-semidivisors *k* such that k < n. A272619: Row *n* lists *n*-semitotatives *k* such that k < n. A334151: Record setters for A3557. A355432: a(n) = symmetric semidivisor counting function. A360480: a(n) = symmetric semicoprime counting function. A360543: a(n) = mixed semicoprime counting function. A360765: n ∈ A126706 : A7947(n) × A053669(n) < n. A360767: Weakly tantus numbers. A360768: Strongly tantus numbers. A360769: Odd tantus numbers. A361235: a(n) = mixed semidivisor counting function.. **DOCUMENT REVISION RECORD:** 2023 0222: Draft 1.

2023 0222: Draft 1. 2023 0306: Draft 2. 2023 0314: Final.