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Abstract.
This work conceives of counting functions based on the constitu-

tive relationship between k and n, k ≤ n. These functions address the 
cototient as Euler’s totient function has addressed the totient.

Introduction.
Let’s examine counting functions based on constitutive states. We 

consider a reference domain k ∈ (1…n) such that k and n have some 
constitutive state. 

We have the following state classes:

Coprimality (⓪)
Symmetric Semicoprimality (①)
Lean Divisorship (②④)
Mixed Neutrality (③⑦)
Equality (⑤)
Mixed Regularity (⑥⑧)
Symmetric Semidivisorship (⑨) [1.0]

These states are explained in depth in [2], this paper will not re-in-
troduce concepts that appear in [2] for the sake of brevity.

The Euler totient function below is the most well-known such 
counting function:
 A10(n) = φ(n) 

 = | { k < n : k ⓪ n } |

 = ∏
p|n

 (1 – 1/p). [1.1] 

The divisor counting function τ(n) pertains to the cardinality of 
several related species in the reference domain:
 A5(n) = τ(n) 

 = | { k < n : k ④⑤⑥ n } |.
 = | Dn = ⊗

pδ|n
{ pε : 0 ≤ ε ≤ δ } |

 = ∏
pε|n

 (ε+1). [1.2]

In the case of these counting functions, we enjoy handy formulae 
based on prime power decomposition. For instance, τ(144) is the 
cardinality of numbers d ∈ Dn, within the box shown in Table 1; the 
formula follows from the tensor product (see A275055 in [1]).

Table 1.
1 2 4 8 16 32 64 128
3 6 12 24 48 96 192 384
9 18 36 72 144 288 576 1152

27 54 108 216 432 864 1728 3456
81 162 324 648 1296 2592 5184 10368

Table 1 can be extended infinitely to include the set of numbers 
k regular to n, which are shared by any number having squarefree 
kernel rad(n) = κ:
 Rκ =  ⊗

p|κ 
{ pε : ε ≥ 0 }. [1.3]

Related to τ(n) is a regular counting function rcf(n) = A010846(n), 
defined as follows:

 A010846(n) = rcf(n) 
 = | { k ≤ n : k  ④⑤⑥⑦⑨ n } |
 = | rn = { k ≤ n : k ∈ Rκ } | [1.4]

This function has no simple formula. Regarding rcf(144), it 
includes numbers in Table 1 that appear in the irregular-shaped 
“wings” to the right of and under the box of divisors of 144, hence, 
while τ(144) = 15, rcf(144) = 23. In other words, the function 
rcf(n) is a tensor product discretely bounded by n. Because of this, 
we can write an algorithm and efficiently calculate rcf(n) for reason-
ably sized n. 

Another significant extant counting function is the neutral count-
ing function ξ(n) defined below:

 A045763(n) = ξ(n) 
 = | { k < n : k  ①③⑦⑨ n } |
 = | { k < n : k  ∤ n ∧ (k, n) > 1 } |
 = n – φ(n) – τ(n) + 1 [1.5]

It is easy to see ξ(n) = 0 for prime n, but also for n = 4.
Given [2], we discern 2 species of numbers counted by ξ(n); these 

are the semidivisors and semitotatives, neither divisors nor totatives 
of n, hence neutral. Therefore we may define a semidivisor and semi-
totative counting function. The former relates to both rcf(n) and 
ξ(n) and is defined as follows:

 A243822(n) = ξd(n) 
 = | { k < n : k ⑦⑨ n } |
 = | ðn = rn \ Dn | 
 = ξ(n) – ξt(n)  [1.6]

It is clear from the third line, for example, that ξd (144) counts 
products that appear in the “wings” of Table 1.

 A243823(n) = ξt(n) 
 = | { k < n : k ①③ n } |
 = ξ(n) – ξd(n)  [1.7]

Single-State Counting Functions.
The latter six classes in [1.0] occur in the proper cototient, which 

we define as follows:
  { k < n : k ⊔ n }, i.e.,

 { k < n : (k, n) > 1 }. [2.1]

We make this distinction so as to certify that we do not mean k 
that are congruent to some number in the cototient of n. We may 
find among k and n, k ⊔ n, neither restrained to the proper cototient, 
most any cototient constitutive state. For example, 6 ① 10 implies 
10 ① 6 on account of symmetry. Some states are constrained to the 
proper cototient, such as those that have k | n. Two states do not 
occur in the proper cototient because they involve n | k, hence n < 
k. These are ② = ◊|, meaning k ◊ n ∧ n | k, k semicoprime to n, for 
example, 10 ② 5, and ⑧ = ¦|, meaning k ¦ n ∧ n | k, k semidivides n, 
e.g., 20 ⑧ 10.

States ①③⑦⑨ comprise neutrality and pertain to A133995 and 
A045763. State ⑦ pertains to multus factors of nonmultus pε = k < n 
: ε > 1 ∧  pε | n. State ⑦ also pertains to semicoprime multiples of n 
outside the proper cototient. 

States ②④⑤⑥⑧ comprise divisorship, but in the proper co-
totient, we only have ④⑤⑥. State ② appears outside the proper 
cototient, and ⑧ represents regular multiples of n. 
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States ④⑤⑥⑦⑧⑨ comprise regularity; we have already 
shown ⑧ to lie outside the proper cototient.

Therefore, there are two varieties of semidivisor k < n; these are 
described as follows, each with example:

 symmetric  ⑨  k ¦ n ∧ n ¦ k 12 ¦¦ 18
 mixed  ⑦  k ¦ n ∧ n ◊ k  12 ¦◊ 30 [2.2]

There are two varieties of n-semitotative; these are as follows: 

 symmetric  ①  k ◊ n ∧ n ◊ k 6 ◊◊ 14
 mixed  ③  k ◊ n ∧ n ¦ k. 20 ◊¦ 25 [2.3]

Finally, there are 4 kinds of divisor: 

 coprime    1 | n
 symmetric ⑤ d = n 
 nonplenary ④ d | n ∧ n ◊ d. 2 |◊ 10
 plenary ⑥ d | n ∧ n ¦ d. 6 |¦ 18 [2.4]

Let rad(m) = A7947(m) be the squarefree kernel of m. Regarding 
the latter 2 cases, plenary divisor d ⑥ n implies rad(d) = rad(n) = 
κ, whereas nonplenary or “lean” d ④ n implies rad(d) | rad(n), yet 
the converse, rad(n) | rad(d), is false, hence n ◊ d.

We don’t see k < n in states ②⑧; these represent semicoprime 
and regular multiples of n, respectively.

Constitutive Composition of the Cototient.
It’s obvious that natural numbers n ∈ ℕ have symmetric divisor 

state ⑤ (equality, k = n) in the proper cototient. The pattern for 
primes p regarding { k : k < p } is coprimality. The proper cototient 
only contains state ⑤. Let f₁(n) be the symmetric divisor counting 
function. Since f₁(n) = 1 for n ∈ ℕ, we identify A27 as f₁.

Multus (A246547).

The cototient of multus n (composite prime powers, n ∈ A246547) 
contains plenary divisors ⑥ and mixed semitotatives ③ in addition 
to equality ⑤. The smallest multus number, n = 4, has no semitota-
tives, since k < 4 are prime powers.

Lemma 1.1: Divisors d | n, d > 1, for multus n ∈ A246547 are such 
that rad(d) = rad(n).
Proof: By definition, n = pε, ε > 1, is such that ω(n) = 1, i.e., pε has 
a single distinct prime divisor p. Hence d | pε = pδ, 0 ≤ δ ≤ ε, and it is 
clear, given rad(p) = p, that rad(d) = rad(n). ∎
Corollary 1.2: There are no semidivisors k < n for n ∈ A246547, 
a consequence of k | pε = pδ, 0 ≤ δ ≤ ε; all n-regular k such that k < n 
divide n.

Lemma 1.3: Semitotatives k ◊ n, k < n, for multus n ∈ A246547 are 
never symmetric.
Proof: An n-semitotative k is n-semicoprime, with k < n. The defini-
tion of n-semicoprime k requires a prime p | k that does not divide n, 
yet (k, n) > 1. Symmetric semicoprimality has prime q | n such that 
q does not divide k, yet (k, n) > 1. We have to show that n is k-semi-
coprime, however, such implies ω(n) > 1.  (See [2], Lemma 1.2) ∎
Theorem 1: In the range [1…n] for n ∈ A246547, we have k ⓪ n, k 
③ n, k ⑤ n, and k ⑥ n.
Proof: The number k must have a constitutive relationship with n, 
meaning k is coprime to n, k divides n, or if both composite (see [2], 
Lemma 1.1), k must semidivide or be a semitotative of n. Recogniz-
ing this along with Lemmas 1.1 and 1.3, and Corollary 1.2, we show 
the proposition to be true. ∎  

Varius (A120944).

The cototient of varius n ∈ A120944 is restricted to nonplenary 
divisors ④, mixed semidivisors ⑦, and symmetric semitotatives ①, 
along with k ⑤ n. Squarefree semiprime 6 has no semitotatives, since 
all k < 6 are prime powers, hence it has no symmetric semitotatives.

Lemma 2.1: Divisors d | n, d < n, for varius n ∈ A120944 are such that 
rad(d) ≠ rad(n).
Proof: The number n ∈ A120944 is squarefree by definition, hence 
divisors d | n, d < n, are products of proper subsets of { p : p | n }, and 
it is evident that for d < n, rad(d) ≠ rad(n). ∎
Lemma 2.2: Varius n has n-regular k, k < n, such that rad(k) ≠ 
rad(n), implying mixed semidivisors k < n. 
Proof: The proposition is true because nondivisor k < n are tantus, 
i.e., k possesses multiplicity ε > 1 for at least one prime power factor 
pε | k, hence are regular multiples of n-divisors. Therefore all semidi-
visors are nonplenary or lean, i.e., rad(k) ≠ rad(n), implying that n 
has at least 1 prime factor q that does not divide tantus k. ∎
Lemma 2.3: For varius n, all semitotatives are symmetric.  
Proof: There are 2 kinds of semitotatives shown by [2.3]. Therefore 
we need to show that squarefree n does not semidivide k. The expres-
sion n ¦ k implies rad(n) | rad(k), but n does not divide k. The latter 
is true since k < n, but the former implies rad(n) = rad(k), that is, 
all primes q | n also divide k, contradicting k ◊ n. ∎
Theorem 2: In the range [1…n] for n ∈ A120944, we have k ⓪ n, k 
① n, k ④ n, k ⑤ n, and k ⑦ n.
Proof: In a similar vein as Theorem 1, but along with Lemmas 2.1 
and 2.3, and Corollary 2.2, we show the proposition to be true. ∎

Tantus (A126706).

In addition to the states ①④⑦, tantus n enjoy plenary divisors 
⑥ that include the squarefree kernel rad(n) = κ. 

A tantus number is such that among distinct prime divisors p | n, 
there exists a prime power factor pε | n such that ε > 1. In other words, 
κ | n and κ < n.

We know natural numbers have trivial divisors since 1 × n = n. We 
also know that natural numbers have trivial totatives t ≡ ±1 (mod 
n). For n ≤ 2, these are conflated into t = 1. We can use the neutral 
counting function ξ(n) to show that, outside of primes and n ≤ 4, all 
n have some neutral k.

Therefore we need to show which species of semidivisor, semitota-
tive, and divisor occurs in the cototient of tantus numbers.

Lemma 3.1: Divisors d | n, 1 < d < n, for tantus n ∈ A126706 are such 
that rad(d) ≤ rad(n).
Proof: This proposition merely states that d | n, d < n are unrestrict-
ed to lean divisors. Therefore we must show that there exists at least 
1 divisor d | n such that rad(d) = rad(n) = κ. It is clear, given the 
definition of tantus, that κ | n and κ < n. ∎

We examine n-semidivisor k for either variety, symmetric or mixed 
neutral, shown in [2.2]. 

Lemma 3.2: Tantus n has n-semidivisor k such that there is a prime q 
| n that does not divide k.
Proof: So as to minimize p, we select p = lpf(n) and set k = pε where 
pδ | n and ε = δ + 1. It is clear k ¦◊ n (i.e., k ⑦ n) since ω(k) = 1 but 
ω(n) > 1. Let q = prime(π(p)+1) and let n = pδq. Since q > p it is clear 
that pε < n. Induction on p and q or δ shows that n-regular pε < n and 
does not divide n. ∎
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We have proved in [3], Theorem 3.5, that for certain tantus num-
bers, we have symmetric semidivisors k ⑨ n such that k < n. Let 
prime p = lpf(n) and q be the second smallest prime divisor of n. Let 
pε be the largest power of p such that pε | n. Let rad(n) = κ, and let 
n/κ = m. For all n ∈ A126706 such that n/κ ≥ q, there exists at least 1 
symmetric semidivisor k ¦¦ n such that k < n.  

Let a “strong tantus” number n be neither prime power nor square-
free semiprime, such that pε > p⌊logp q⌋, where p = lpf(n) and q is the 
second smallest prime divisor of n. The sequence A360768 of strong 
tantus numbers that have symmetric semidivisors ⑨ in the proper 
cototient begins as follows:

18, 24, 36, 48, 50, 54, 72, 75, 80, 90, 96, 98, 100, 
108, 112, 120, 126, 135, 144, 147, 150, 160, 162, 168, 
180, 189, 192, 196, 198, 200, 216, 224, 225, 234, 240, 
242, 245, 250, 252, 264, 270, 288, 294, 300, 306, 312, 
320, 324, 336, 338, 342, 350, 352, 360, 363, 375, ...

Finally, we need to show that both species of semitotative appear 
for tantus n.
 symmetric  ①  k ◊ n ∧ n ◊ k 6 ◊◊ 14
 mixed  ③  k ◊ n ∧ n ¦ k. 20 ◊¦ 25

Lemma 3.3: There exists k such that k < n and k ① n for all n ∈ 
A126706. 
Proof: Set p = lpf(n) and set q = A053669(n), the smallest prime 
that is coprime to n. It is clear pq ① n for all n ∈ A126706 by defini-
tion of “semicoprime”. Is pq < n? The smallest tantus number is n = 
12; for such we have pq = 2 × 5 = 10; 10 < 12. If we set p > 2, suppos-
ing p² | n in order to minimize n, then q = 2, and we are only making 
larger n. It becomes clear that, so as to maximize q but keeping p = 2 
and p² | n, we require n = 2P(i) = 2 × A2110(i), i > 1, but with induc-
tion on i, it is clear that pq < 2P(i). ∎

We note that for n = 12, 10 is the sole semitotative; there are none 
of the mixed neutral variety k ③ n. We do see that for n = 45, we have 
k = 30, thus k ③ n. 

Lemma 3.4: There exists k such that k < n and k ③ n for odd n ∈ 
A126706. 
Proof: Break the expression k ③ n into components k ◊ n and n ¦ k. 
We may rewrite the latter component as rad(n) | rad(k), where, per 
the former component, rad(k) = q × rad(n) and q coprime to n. If 
n is odd, then we can produce the state via k = 2κ, where κ = rad(n). 
Since n is tantus, n ≥ pκ such that p | κ and p > 2. Therefore it is clear 
that 2 < pκ ≤ n. ∎
Lemma 3.5: There exists k such that k < n and k ③ n for even n ∈ 
A126706 such that ω(k) > ω(n) and rad(n) | rad(k) for some k < n.
Proof: Define the set of k-regular numbers Rκ, where κ = rad(k), 
to be as follows:
 Rκ = ⊗

p|κ 
{pε : ε ≥ 0}.  [2.5]

All numbers m ∈ Rκ are such that  rad(m) | κ. Therefore, n ¦ k im-
plies k, n ∈ Rκand hence rad(n) | κ. Since we restrict all numbers in 
Rκ to primes p | κ, it is sufficient merely to find n > k in this sequence 
such that ω(n) < ω(k). 

We thus define A360765 such that A360765 ⊂ A126706 contain-
ing tantus numbers that have mixed semitotatives ③ that begins 
with the following numbers:

36, 40, 45, 48, 50, 54, 56, 63, 72, 75, 80, 88, 96, 98, 
99, 100, 104, 108, 112, 117, 135, 136, 144, 147, 152, 
153, 160, 162, 171, 175, 176, 184, 189, 192, 196, 200, 
207, 208, 216, 224, 225, 232, 240, 242, 245, 248, ...

For n ∈ A360765, there exists k < n such that k = A053669(n) × κ.

Theorem 3.6. Distinct m, n ∈ A360765 such that both have same 
squarefree kernel κ implies that mixed semicoprime k pertains to both 
m and n, and symmetric semicoprime k pertains to both m and n.
Proof: Suppose we have 2 distinct numbers m, n ∈ A360765 such 
that rad(m) = rad(n) = κ and n < m. It is clear that rad(m) = rad(n) 
= κ implies ω(m) = ω(n) = Q. Therefore, if we have k < n such that k ③ 
n, we know that κ | rad(k) (which itself implies cototient), and ω(k) 
> Q. Hence, if we have k ③ n, then we have k ③ m and vice versa. ∎

From this theorem, we merely need to store k < n such that k ③ n 
in Sκ for a large n such that rad(n) = κ, and count k such that k < m 
for any counting function f₃(m) < f₃(n) and m ∈ κRκ.

The “Panstitutive” Numbers.
Summarizing the numbers k in the reference domain of tantus n, 

we have numbers k ⓪ n, k ① n, k ④ n, k ⑤ n, k ⑥ n, and k ⑦ n. Tan-
tus numbers in the subset A360765 have mixed as well as symmetric 
semitotatives k ③ n. Strong tantus numbers (in A360768) have sym-
metric semidivisors k ⑨ n. 

Numbers n ∈ (A360765 ∪ A360768) have both ③ and ⑨, and 
therefore all 8 possible constitutive states among k ≤ n. Define the 
sequence of “panstitutive” numbers to be the following:

 S20230228 = (A360765 ∪ A360768).  [2.6]

This sequence begins as follows:
36, 48, 50, 54, 72, 75, 80, 96, 98, 100, 108, 112, 135, 
144, 147, 160, 162, 189, 192, 196, 200, 216, 224, 225, 
240, 242, 245, 250, 252, 270, 288, 294, 300, 320, 324, 
336, 338, 350, 352, 360, 363, 375, 378, 384, 392, ...

For n = 36 we have the following smallest k satisfying a given con-
stitutive state with respect to n:
 totatives semitotatives divisors semidivisors
 1 ⓪ 36 10 ① 36 2 ④ 36 8 ⑦ 36
  30 ③ 36 36 ⑤ 36 24 ⑨ 36
   6 ⑥ 36

For the smallest odd term in S20230228, n = 135, we have the fol-
lowing smallest k satisfying a given constitutive state with n:
 totatives semitotatives divisors semidivisors
 1 ⓪ 135 6 ① 135 3 ④ 135 25 ⑦ 135
  30 ③ 135 135 ⑤ 135 75 ⑨ 135
   15 ⑥ 135

Now we show that plenus numbers n ∈ A286708, products of at 
least 2 multus numbers (i.e., composite prime powers n ∈ A246547) 
are panstitutive.

Lemma 3.7: A286708 ⊂ A360765. In other words, numbers n that 
are products of at least 2 composite prime powers pε, ε > 1 (i.e., n ∈ 
A286708) have κq < n where κ = rad(n) = A7947(n) and q = lpc(n) 
= A053669(n).
Proof: The proposition is true since q < κ, hence κq < mκ², m ≥ 1. ∎

Lemma 3.8: A286708 ⊂ A360768. In other words, numbers n that 
are products of at least 2 composite prime powers pε, ε > 1 (i.e., n 
∈ A286708) have n/κ > q where squarefree kernel κ = rad(n) = 
A7947(n), and q is the second-least prime factor of n.
Proof: Numbers n ∈ A286708 are such that n = mκ² with m ≥ 1 
and ω(κ) > 1. Thus, n/κ = mκ, and since κ is the product of at least 2 
primes including q, q < κ. ∎ 

Theorem 3.9: Plenus numbers n ∈ A286708 are panstitutive, be-
cause they are both n ∈ A360765 and n ∈ A360768.
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This said, there are panstitutive numbers like 48 and 50 that are 
not plenus, since their prime power factors are not always multus.

Several Constitutive State Counting Functions.
Recognizing the existence of the Euler totient function regarding 

the totient spurs us toward examination of counting functions based 
on constitutive states in the reference range. Some of these have been 
explored at the time of writing, while others have yet to be explored. 
Some may not merit inclusion in OEIS, but can be examined none-
theless in papers with datasets made available. Therefore, we define 
the following counting functions in the proper cototient. When we 
do not have an OEIS A-number for these sequences we use a provi-
sional ISO-8601 style S-number.

Symmetric semicoprime counting function f₁ (A360480).
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 3, 0, 0, 3, 
0, 5, 5, 6, 0, 6, 0, 8, 0, 9, 0, 5, 0, 0, 8, 11, 7, 10, 
0, 13, 10, 13, 0, 12, 0, 16, 13, 17, 0, 16, 0, 18, 14, 
20, 0, 19, 11, 21, 16, 23, 0, 19, 0, 25, 19, 0, 13, 25, 
0, 27, 20, 27, 0, 27, 0, 30, 25, 31, 13, 32, 0, 32, 0, 
34, 0, 33, 17, 36, 25, 37, 0, 35, 15, 39, 27, 40, 19, 
38, 0, 41, 31, 42, 0, 46, 0, 45, 42, 46, 0, 44, 0, 50, 
33, 48, 0, 53, 23, 51, 37, 52, 19, 53, ...

 A360480(n) = | { k < n : (k, n) > 1 ∧ 
 (rad(k) | rad(n) ⊽ rad(n) | rad(k) ) } | [3.1]

The definition of symmetric semicoprimality implies ω(n) ≥ 2. We 
have the following consequences: 

A360480(n) > 0 for n ∈ A024619. 
A360480(n) = 0 for n ∈ A961. 
A360480(6) = 0 since k < 6 are prime powers.

The function is related closely with the cototient function 
A051953(n) = n – φ(n); its scatterplot resembles that of the cototient 
function. Almost all k < n for composite n are in state ①. This func-
tion is covered in detail in [4]. 

•

Mixed semicoprime counting function f₃ (A360543).
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 
0, 0, 0, 0, 0, 0, 3, 0, 6, 0, 0, 0, 0, 11, 0, 0, 0, 1, 
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 5, 1, 0, 0, 0, 2, 
0, 1, 0, 0, 0, 0, 0, 0, 1, 26, 0, 0, 0, 0, 0, 0, 0, 4, 
0, 0, 2, 0, 0, 0, 0, 3, 23, 0, 0, 0, 0, 0, 0, 1, 0, 0, 
0, 0, 0, 0, 0, 7, 0, 3, 1, 4, 0, 0, 0, 1, 0, 0, 0, 8, 
0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, ...

Lemmas 3.4 and 3.5 prove the following:

  A360543(n) = 
 | { k < n : rad(n) | rad(k) ∧ ω(k) > ω(n) } | [3.3]

Consequently, we find the following:
A360543(n) = 0 for n ∈ A5117.
Let M = {A246547 ∪ A360765} \ {4}.
A360543(n) > 0 for n ∈ M.
For n = pε ∈ A961 : n > 1, A360543(pε) = p(ε–1) – ε.

Records seem to occur amid powers 2δ, δ > 2 and 3ε, ε > 1, and may 
be related to A334151. This function is covered in [5].

•

Nonplenary divisor counting function f₄ (A183093(n) – 1).
0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 3, 0, 2, 2, 0, 0, 3, 
0, 3, 2, 2, 0, 4, 0, 2, 0, 3, 0, 6, 0, 0, 2, 2, 2, 4, 
0, 2, 2, 4, 0, 6, 0, 3, 3, 2, 0, 5, 0, 3, 2, 3, 0, 4, 
2, 4, 2, 2, 0, 9, 0, 2, 3, 0, 2, 6, 0, 3, 2, 6, 0, 5, 
0, 2, 3, 3, 2, 6, 0, 5, 0, 2, 0, 9, 2, 2, 2, 4, 0, 9, 
2, 3, 2, 2, 2, 6, 0, 3, 3, 4, 0, 6, 0, 4, 6, 2, 0, 5, 
0, 6, 2, 5, 0, 6, 2, 3, 3, 2, 2, 12, ...

Figure 1: A map of constitutive states between k and n for k ≤ 24 and n ≤ 24. For pairs 
involving one 1, we show the state in gray and write state ⓪, and for k = 1 and n = 1, we 
write state ⑤.

Figure 2: A map of constitutive states between k and n for k ≤ 120 and n ≤ 120 using the 
same color function as in Figure 1.
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This function counts divisors d | n : rad(d) | rad(n) ∧ 1 < d < n. 
We remark that A183093(n) > 1 for n ∈ A013929.

•
Plenary divisor counting function f₆ (A183094(n) – 1) .
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 
0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 3, 
0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 2, 
0, 2, 0, 0, 0, 1, 0, 0, 1, 5, 0, 0, 0, 1, 0, 0, 0, 5, 
0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 2, 0, 1, 
0, 1, 0, 0, 0, 4, 0, 1, 1, 3, 0, 0, 0, 2, 0, 0, 0, 5, 
0, 0, 0, 3, 0, 0, 0, 1, 1, 0, 0, 2, ...

This function counts divisors d | n : rad(d) = rad(n) ∧ d < n. We 
remark that A183094(n) > 1 for n ∈ A013929.

•
Mixed semidivisor counting function f₇ (A361235).
0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 2, 1, 0, 0, 3, 
0, 2, 1, 3, 0, 2, 0, 3, 0, 2, 0, 10, 0, 0, 2, 4, 1, 4, 
0, 4, 2, 3, 0, 11, 0, 3, 2, 4, 0, 3, 0, 4, 2, 3, 0, 4, 
1, 3, 2, 4, 0, 14, 0, 4, 2, 0, 1, 14, 0, 4, 2, 12, 0, 
4, 0, 5, 2, 4, 1, 15, 0, 3, 0, 5, 0, 16, 1, 5, 3, 3, 0, 
19, 1, 4, 3, 5, 1, 4, 0, 5, 2, 4, 0, 17, 0, 3, 8, 5, 0, 
5, 0, 13, 3, 3, 0, 18, 1, 4, 2, 5, 1, 19, ...

Lemma 2.2 and the fact state ⑦ is the reverse of ③ implies the 
following:

  A361235(n) = 
 | { k < n : rad(k) | rad(n) ∧ ω(k) < ω(n) } | [3.7]

Consequently, we find the following: 
A361235(n) > 0 for n ∈ A013929.
A361235(n) = 0 for n ∈ A961.

Observation: record setters for this sequence seem to agree with 
A293555, the sequence of record setters for ξd = A243822.

•

Symmetric semidivisor counting function f₉ (A355432).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 4, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 
0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 
0, 0, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, ...

This function is covered at length in [3].  From that work we see 
the following:

  A361235(n) = 
 | { k < n : rad(k) = rad(n) ∧ k ∤ n } | [3.9]

A355432(n) = 0 for prime powers, squarefree numbers, and weak 
tantus numbers in A360767. A355432(n) > 0 for n ∈ A360768.

Existence of Neutral Species in Reference Domain.
We state a few axioms for the purpose of the following proofs.
An n-semicoprime number k is such that there is a prime q such 

that q | k yet q does not divide n, while rad(n) | rad(k). That is,  
n-semicoprime k is such that rad(n) | rad(k) yet ω(k) > ω(n).

An n-semidivisor k is such that rad(k) | rad(n) yet k ∤ n. That is, 
k | nε, ε > 1.

Semicoprimality and semidivisorship are two kinds of neutrality; 
there are no other kinds [2]. Since primes p must either divide or 
be coprime to another number, primes do not have neutrality in the 
domain k < n, hence no semidivisors nor semitotatives.

Prime power pε implies pδ | pε for δ ≤ ε, hence multus numbers n ∈  
A246547 have no semidivisors k < n.

Lemma 4.1: Sκ(1) = pq = A096014(n), where p = lpf(n) = A020639(n) 
and q = lpT(n) = A053669(n).
Proof: Consequence of definition of semicoprime.

Corollary 4.2: Prime n = p ∈ A40 implies n < Sκ(1) since p < pq 
and as a consequence of the definition of prime. 

Corollary 4.3: n ≤ 6 implies n < Sκ(1) since the smallest semi-
prime A6881(1) = pq = 2 × 3 = 6, therefore there are no semiprimes 
smaller than 6.

Lemma 4.4: Multus pε = n ∈ A246547, ε > 1, and n > 4 implies 
A243823(κ) > 0.
Proof: Suppose even n = pε = 2ε, hence ε > 2. Then q = 3 and pq = 
6; clearly 6 < 2³. Through induction, it is clear that 6 ◊ 2ε for all ε > 2. 
Now suppose odd n = pε, hence ε > 1. Then q = 2 and pq = 6; clearly 
6 < p² for odd prime p. Through induction, it is clear that 6 ◊ pε for 
all ε > 1 and odd p. ∎
Lemma 4.5: Varius κ ∈ A120944 and κ > 6 implies A243823(κ) > 0.
Proof: Our strategy is to create the smallest varius number κ so as 
to induce Sκ(1) > κ. The smallest varius number κ = A120944(1) = 
6 = A6881(1), and there is no smaller squarefree semiprime, hence 
A243823(6) = 0. We turn to κ = A120944(2) = 10 = 2 × 5, hence q = 
3, and it is clear 6 < 10. 

Therefore we attempt to close the gap between prime factors so as 
to force q to be as large as possible in comparison to κ. This implies 
the use of primorial κ = P(i) = A2110(i). For κ = P(i), q = prime(i+1), 
and we have pq = 2 × prime(i+1). For κ = 30, pq = 2 × 7 = 14. For κ 
= 210, pq = 2 × 11 = 22. 

Now we turn to odd half-primorials κ = P(i)/2 = A2110(i)/2. For κ 
= P(i)/2, q = 2, and p = 3, and it is clear that these numbers also have 
semitotative Sκ(1) < κ. 

Hence it is clear that except for κ = 6, varius κ. ∎
Lemma 4.6: Tantus n ∈ A126706 implies A243823(κ) > 0.
Proof: We employ again a strategy that begins with the smallest 
possible tantus number n = A126706(1) = 12 = 2² × 3, while pq = 2 
× 5; 10 < 12. These numbers are larger than their squarefree kernels 
κ on account of multiplicity, therefore it is evident the approach we 
pursued in Lemma 4.5 may also be applied here with same result. ∎
Theorem 4: n ∉ A193461 implies A243823(n) ≥ 1.
Proof: Consequence of Lemmas 4.1, 4.3, 4.4, and 4.5 .
Lemma 5.1: Smallest n-semidivisor Ðκ(1) = p(ε+1), where p = lpf(n).
Proof: Consequence of definition of semidivisor.
Corollary 5.2: Prime power n ∈ A246655 implies n < Ðκ(1). 
(A246655 = { m > 1 : ω(m) = 1})
Corollary 5.3: Prime power n ∈ A961 implies A243822(n) = 0, 
since p(ε+1) > pε.
(A961 = { m : ω(m) = 1})
Lemma 5.4: Varius κ ∈ A120944 implies A243822(κ) > 0.
Proof: Our strategy is to create the smallest varius κ such that Ðκ(1) 
> κ. It is clear that a product of 2 similar primes pq, p ≠ q, would 
create a smaller κ than any product involving more than 2 distinct 
primes. The very smallest such squarefree semiprime pq, p ≠ q, is 
A6881(1) = 6 = 2 × 3, and it is clear that 2² < 6.  We thus attempt to 
edge Ðκ(1) = p² so as to exceed pq. By definition of p as least prime 
factor of n = pq, p < √n ∧ q > √n, hence p² < pq. ∎
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Lemma 5.5: Tantus n ∈ A126706 implies A243822(n) > 0.
Proof: Again, we pursue a strategy of creating the smallest tantus 
number n that might induce Ðκ(1) = p(ε+1) to exceed n. We select a 
tantus number pεq, p < q, ε > 1, since additional distinct prime di-
visors would merely increase n. In fact, we examine p²q = 2² × 3 = 
12 = A126706(1), the smallest tantus number, and see that 2³ < 12. 
Furthermore, since q > p, through induction, we see that p(ε+1) < pεq 
for all p < q and ε > 1. ∎
Theorem 5: n ∈ A024619 implies A243822(n) > 0.
Proof: Consequence of Lemmas 5.1, 5.4, and 5.5.

Recalling [1.7], we may write the following:

 ξ(n) = ξd(n) + ξt(n) 
 A045763(n) = A243822(n) + A243823(n)  [4.1]

Therefore we may write the following:
For prime n, A243822(n) = A243823(n) = A045763(n) = 0. There 

are no neutral numbers k < n for prime n. Hence there are neither 
semitotatives nor semidivisors less than n.

For multus n ∈ A246547, that is, composite prime powers, 
A243822(n) = 0, but A243823(n) > 0, therefore A045763(n) > 0. The 
exception: A243823(4) = 0. Multus numbers have no semidivisors 
because all n-regular k such that k < n are n-divisors. Multus numbers 
n > 4 have at least 1 semitotative k = A096014(n) such that k < n. 
Therefore, aside from n = 4, multus numbers have at least 1 n-neutral 
k such that k < n.

For varius n ∈ A120944, that is, squarefree composites, A243822(n) 
> 0 and A243823(n) > 0, therefore A045763(n) > 0.  The exception: 
A243823(6) = 0 since 6 is the smallest squarefree number. Varius 
numbers have at least 1 semidivisor k < n and at least 1 semitotative, 
except n = 6 has no semitotatives. 

Tantus n ∈ A126706 has at least 1 semidivisor k < n and at least 1 
semitotative, hence at least 2 n-neutral k such that k < n.

Composites outside n = 4 and n = 6 have at least 1 semitotative, 
and non-prime powers outside n = 6 have at least 1 semidivisor k < n.

Table 2.

Species
ξ(n)

a045763(n)
ξd(n)

A243822(n)
ξt(n)

A243823(n)
primes (A40) — — —
n = 4 — — —
multus (A246547) > 0 — > 0
n = 6 — 1 1
varius (A120944) > 0 > 0 > 1
Tantus (A126706) > 0 > 0 > 1

Sequences Concerning Constitutive State
Counting Functions.

Table 3 summarizes sequences having to do with constitutive 
states. In the first column are listed various species. These are the 
divisor, semidivisor, regular, semicoprime, coprime, and neutral spe-
cies, followed by certain constitutive states, all bounded by n.

Table 3.
counting
function list

record
Setter record

Dn A5 A027750 A2182 A2183
Ðκ A243822 A272618 A293555 A293556
Rκ A010846 A162306 A244052 A244053
Sκ A243823 A272619 A292867 A292868
Tκ ⓪ A10 A038566 A8578 A6093
Ξκ A045763 A133995 A300859 A300914
① A360480
③ A360543 A334151
④ A183093(n) – 1
⑤ A27 A27 A27 A27
⑥ A183094(n) – 1
⑦ A361235
⑨ A355432 A360589

From the definitions of constitutive states and their presence in 
the proper cototient, we can write the following formulae:
 A051953(n) = n – A10(n).
 =  A183093(n) + A183094(n) +  
 A361235(n) + A355432(n) +
 A360543(n) + A360480(n) 

 A045763(n) = n – A10(n) – A5(n) + 1.
 = A243822(n) + A243823(n).
 = A361235(n) + A355432(n) +  
 A360543(n) + A360480(n) 

 A010846(n) = A5(n) + A243822(n).
 =  A183093(n) + A183094(n) +  
 A361235(n) + A355432(n) 

 A243822(n) = A010846(n) – A5(n).
 = A045763(n) – A243823(n).

 A243823(n) = A045763(n) – A243822(n).
    = n – A10(n) – A010846(n) + 1.

 A243822(n) = A361235(n) + A355432(n). (⑦⑨)
 A243823(n) = A360543(n) + A360480(n). (①③)

 A361235(n) = A243822(n) – A355432(n).   (⑦)
 = A045763(n) – A243823(n) – A355432(n).
 = A051953(n)  – A5(n) – A243823(n) – A355432(n) + 1.
 = A010846(n) – A5(n) – A355432(n).

 A355432(n) = A243822(n) – A361235(n).   (⑨)
 = A045763(n) – A243823(n) – A361235(n).
 = A051953(n)  – A5(n) – A243823(n) – A361235(n) + 1.
 = A010846(n) – A5(n) – A361235(n).

 A360543(n) = A243823(n) – A360480(n)    (③)
 = A045763(n) – A243822(n) – A360480(n)
 = n – A10(n) – A010846(n) – A360480(n) + 1
 = A051953(n) – A010846(n) – A360480(n) + 1

 A360480(n) = A243823(n) – A360543(n)    (①)
 = A045763(n) – A243822(n) – A360543(n)
 = n – A10(n) – A010846(n) – A360543(n) + 1
 = A051953(n) – A010846(n) – A360543(n) + 1
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Code:
[c0] Function f(k, n) yields the constitutive state (Svitek number) be-

tween k and n. 
conState[j_, k_] := 
 Which[j == k, 5, GCD[j, k] == 1, 0, True, 
  1 + FromDigits[
    Map[Which[Mod[##] == 0, 1, 
      PowerMod[#1, #2, #2] == 0, 2, True, 0] & @@ # &, 
      Permutations[{k, j}]], 3]]

[c1] Calculate Rκ bounded by an arbitrary limit m (i.e., calculate 
A275280(n); flatten and take union to provide A162306)

regularsExtended[n_, m_ : 0] := 
  Block[{w , lim = If[m <= 0, n, m]}, 
   Sort@ ToExpression@
     Function[w, 
       StringJoin[
         "Block[{n = ", ToString@ lim, 
         "}, Flatten@ Table[", 
         StringJoin@
           Riffle[Map[ToString@ #1 <> "^" <> 
             ToString@ #2 & @@ # &, w], " * "], 
         ", ", Most@ Flatten@ Map[{#, ", "} &, #], 
         "]]" ] &@ 
       MapIndexed[
         Function[p, 
           StringJoin["{", ToString@ Last@ p, 
             ", 0, Log[", 
             ToString@ First@ p, ", n/(", 
             ToString@
               InputForm[
                 Times @@ Map[Power @@ # &, 
                   Take[w, First@ #2 - 1]]], 
             ")]}" ] ]@ w[[First@ #2]] &, w]]@
       Map[{#, ToExpression["p" <> 
         ToString@ PrimePi@ #]} &, #[[All, 1]] ] &@ 
       FactorInteger@ n];

[c2] Generate the squarefree kernel of n (A7947):
rad[n_] := rad[n] = Times @@ 
  FactorInteger[n][[All, 1]];

[c3] Generate tantus numbers (A126706):
a126706 = Block[{k}, k = 0;
   Reap[Monitor[Do[
       If[And[#2 > 1, #1 != #2] & @@ 
         {PrimeOmega[n], PrimeNu[n]}, 
        Sow[n]; Set[k, n] ],
       {n, 2^21}], n]][[-1, -1]]] (* Tantus *);

[c4] Generate “strong tantus” numbers (A360768):
Select[a126706[[1 ;; 120]], #1/#2 >= #3 & @@ 
  {#1, Times @@ #2, #2[[2]]} & @@ 
  {#, FactorInteger[#][[All, 1]]} &] 

In this way we have demonstrated complete coverage of all the 
possible constitutive states for k in the proper cototient of n regard-
ing constitutive states. 

Conclusion.
Together with the totient, we have described a finer classification 

of numbers k the range 1…n based on the multiplicative properties 
described in [2]. The cototient harbors as many as 7 kinds of mul-
tiplicative relationship between k and n, including symmetric and 
mixed semitotatives, symmetric and mixed semidivisors, lean and 
plenary divisors, and k = n. These represent constitutive states ①, 
③, ⑨, ⑦, ④, ⑥, and ⑤, respectively. 

We have shown which constitutive states appear in the reference 
range [1…n] of certain classes of natural numbers n, including 
composite prime powers (multus numbers n ∈ A246547), square-
free composites (varius numbers n ∈ A120944), and numbers n nei-
ther squarefree nor prime powers (tantus numbers n ∈ A126706). 
In the last-mentioned sequence, we have determined 2 special cas-
es of tantus number that harbors certain constitutive states among 
k < n. These are the sequences of the “strong” tantus numbers (n 
∈ A360768) and the “limbo-bar” tantus numbers (n ∈ A360765), 
which harbor symmetric semidivisors k < n and mixed semitotatives, 
respectively. 

We have proposed several counting functions based on constitu-
tive states between k and n, for k < n. We have shown that the sym-
metric semidivisor counting function A355432 and the mixed semi-
divisor counting function A361235 sum to the semidivisor counting 
function A243822. Likewise, we have shown that the symmetric 
semitotative counting function A360480 and the mixed semitotative 
counting function A360543 sum to the semitotative counting func-
tion A243823. In turn, A243822 and A243823 represent the partition 
of the neutral numbers that are counted in A045763. Furthermore, 
A243822 relates to A010846 and the divisor counting function. Re-
garding A045763 and its relation to A051953, the Euler totient func-
tion, and the divisor counting function, we have shown how our nu-
anced proposals frame into the larger picture of elementary number 
theory. ••••
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[c10] Generate A355432 (needs [C1]), the k ⑨ n counting function:
A355432 = Block[{a, c, f, k, s, t, nn}, 
  nn = 2^20; c[_] = 0;
  f[n_] := f[n] = n regularsExtended[n, Floor[nn/n]];
  s = Select[Range[nn], 
    And[CompositeQ[#], SquareFreeQ[#]] &];
  Monitor[
    Do[Set[t[ s[[i]] ], f@ s[[i]]], {i, Length[s]}], 
  i];
  Monitor[
    Do[k = t[ s[[j]] ]; 
      Map[Function[m, 
        Set[c[m], 
          Count[TakeWhile[k, # <= m &], 
            _?(Mod[m, #] != 0 &)]]], k], {j, Length[s]}],   
  j];
  Array[c, nn] ];

[c11] Generate the k ④ n counting function (A183093(n) – 1):
{1}~Join~Table[Function[q, 
  DivisorSum[n, 1 &, -1 + PrimeNu[#] < q &]]@
  PrimeNu[n], {n, 2, 120}]

[c12] Generate the k ⑥ n counting function (A183094(n) – 1):
Table[Function[q, 
  DivisorSum[n, 1 &, -1 + PrimeNu[#] == q &]]@
  PrimeNu[n], {n, 120}]

Concerns sequences:
A000005: Divisor counting function τ(n).
A000010: Euler totient function φ(n).
A000040: Prime numbers.
A000961: Prime powers.
A001221: Number of distinct prime divisors of n, ω(n).
A007947: Squarefree kernel of n; rad(n).
A010846: Regular counting function.
A013929: Numbers that are not squarefree.
A024619: Numbers that are not prime powers. 
A045763: Neutral counting function.
A051953: Cototient function: n – φ(n).
A053669: Smallest prime q that does not divide n.
A120944: “Varius” numbers; squarefree composites.
A126706: “Tantus” numbers neither prime power nor squarefree.
A183093: τ(n) – A183094(n) + 1.
A183094: Number of powerful divisors d | n : d > 1.
A246547: “Multus” numbers; composite prime powers.
A275055: ⊗

p|n
{ pε : 0 ≤ ε ≤ δ } where pδ is the largest power of p that 

divides n.
A275280: { k = { ⊗

p|κ  
{ pε : ε ≥ 0 }} ∧ k ≤ n }.

A355432: a(n) = symmetric semidivisor counting function.
A360480: a(n) = symmetric semicoprime counting function.
A360543: a(n) = mixed semicoprime counting function.
A360765: n ∈ A126706 : A7947(n) × A053669(n) < n. 
A360767: Weakly tantus numbers.
A360768: Strongly tantus numbers.
A360769: Odd tantus numbers.
A361235: a(n) = mixed semidivisor counting function.
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[c5] Generate tantus numbers that have k ③ n (A360765):
lcp[n_] := 
 If[OddQ[n], 2, 
   p = 2; 
   While[Divisible[n, p], p = NextPrime[p]]; p];
nn = 120; a = a126706[[1 ;; nn]];
Reap[
  Do[n = a[[j]]; 
    If[rad[n]*lcp[n] < n, Sow[n]], {j, nn}]][[-1, -1]]

[c6] Generate A360480, the k ① n counting function:
Table[k = rad[n]; 
  Count[Range[n], 
    _?(Nor[CoprimeQ[#1, n], Divisible[#2, k], 
        Divisible[k, #2]] & @@ {#, rad[#]} &)], {n, 88}]

[c7] Generate A360543, the k ③ n counting function:
nn = 120;
c = Select[Range[4, nn], CompositeQ];
s = Select[Select[Range[4, nn], Not @* SquareFreeQ], 
  Function[{n, q, r}, 
    AnyTrue[TakeWhile[c, # <= n &], 
      And[PrimeNu[#] > q, 
          Divisible[rad[#], r]] &]] @@       
          {#, PrimeNu[#], rad[#]} &];
Table[If[FreeQ[s, n], 0, 
  Function[{q, r}, 
    Count[TakeWhile[
      c, # <= n &], _?(And[PrimeNu[#] > q, 
         Divisible[rad[#], r]] &)]] @@ 
         {PrimeNu[n], rad[n]}], {n, nn}]

[c7a] faster algorithm for A360543, the k ③ n counting function, 
given a dataset of A360765 and [C1]:

nn = 2^12;
Array[Set[s[#], a360765[[#]]] &, Length[a360765]];
next = 1;
Monitor[Table[Which[SquareFreeQ[n], 0,
   PrimePowerQ[n],
   #1^(#2 - 1) - #2 & @@ FactorInteger[n][[1]],
   n == s[next], next++; 
   Function[{qq, rr}, k = 0; r = Rest@ 
     regularsExtended[n];
     t = Rest@ Flatten@
      Outer[Plus, rad[n]*Range[0, n/rad[n] - 1], 
        Select[Range[rad[n]], CoprimeQ[rad[n], #] &]];
     Do[If[And[Divisible[#, rr], PrimeNu[#] > qq], 
       k++] &[i j], 
       {i, r[[1 ;; LengthWhile[r, n/t[[1]] > # &]]]}, 
       {j, t[[1 ;; LengthWhile[t, n/i > # &]]]}]] @@ 
       {PrimeNu[n], rad[n]}; k,
   True, 0], {n, nn}]

[c8] faster algorithm for A360543, the k ③ n counting function, giv-
en a dataset of A360765 and [C1]:

rad[n_] := rad[n] = Times @@ 
  FactorInteger[n][[All, 1]];
{{}, {}}~Join~Table[r = Rest@ regularsExtended[n];
  t = Rest@ Flatten@ 
    Outer[Plus, rad[n]*Range[0, n/rad[n] - 1], 
      Select[Range[rad[n]], CoprimeQ[rad[n], #] &]];
  Union@ Flatten@
    Table[i j, 
      {i, r[[1 ;; LengthWhile[r, n/t[[1]] > # &]]]}, 
      {j, t[[1 ;; LengthWhile[t, n/i > # &]]]}], 
      {n, 3, 24}]

[c9] Generate A361235, the k ⑦ n counting function:
nn = 120;
c = Select[Range[4, nn], CompositeQ];
s = Select[Range[4, nn], Not @* PrimePowerQ];
Table[If[FreeQ[s, n], 0, 
  Function[{q, r}, 
    Count[DeleteCases[
      TakeWhile[c, # <= n &], _?(Divisible[n, #] &)], 
      _?(And[PrimeNu[#] < q, 
         Divisible[r, rad[#]]] &)]] @@ 
         {PrimeNu[n], rad[n]}], {n, nn}]


