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Abstract.
We introduce several related functions having to do with numbers 

k in an infinite sequence Rκ where rad(k) | κ, where κ is squarefree. 
These functions furnish successors and predecessors to a given num-
ber in the sequence Rκ. We also examine the sequence κRκ wherein 
all numbers share the same squarefree kernel κ. Some of these func-
tions have long existed in the OEIS and others we have proposed re-
cently. This work merely lays out the basics about each function.

Introduction.
Let rad(n) = A7947(n) = κ, the squarefree kernel of n, that is, the 

product of distinct prime divisors p | n. 

Definition 1.0. Define k regular to n, integers, as k such that 
rad(k) | κ. In other words, n-regular k is a product that does not 
involve any prime q coprime to n. It’s clear from this definition that 
n-regularity ascribes to rad(n) = κ, hence we define Rκ to be the se-
quence of n-regular k. 

We may construct Rκ as follows:

 Rκ =  ⊗
p|κ 

{pε : ε ≥ 0}.  [1.0]

As a tensor product of countably infinite sets, it is clear Rκ is also 
countably infinite. Sorting Rκ according to magnitude of its elements, 
we may assign an index and hence we have a countably infinite set.
Definition 1.1. Define k strongly regular to n as k such that 
rad(k) = rad(n) = κ. Alternatively, we may say that such strongly 
regular k and n are coregular. Since strongly n-regular k is a product 
(distinct from n) of all distinct prime divisors p such that p | n, we 
define κRκ to be the set of strongly n-regular k. Multiplication by the 
common squarefree kernel κ guarantees the presence of all distinct 
prime factors of κ.

For example, let n = 12. Then rad(12) = κ = 6. Then the set R₆ is 
the tensor product of prime power ranges of 2 and 3, i.e.,

 R₆ = {2ε : ε ≥ 0} ⊗ {3ε : ε ≥ 0}. [1.1] 

This is A3586, which begins as follows:
1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 
64, 72, 81, 96, 108, 128, 144, 162, 192, 216, 243, 256, 
288, 324, 384, 432, 486, 512, 576, 648, 729, 768, 864, 
972, 1024, 1152, ...

From this, we construct κRκ = 6R₆ which begins as follows:
6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 
216, 288, 324, 384, 432, 486, 576, 648, 768, 864, 972, 
1152, 1296, 1458, 1536, 1728, 1944, 2304, 2592, 2916, 
3072, 3456, 3888, 4374, 4608, 5184, 5832, 6144, ...

Distinct numbers k, n ∈ κRκ are coregular, meaning that they share 
the same squarefree kernel κ.

For the empty product κ = 1, R₁ = {1}, a finite set. There is only 1 
natural number that is the product of zero primes and that is 1 itself.

There are two notable species of n-regular number; these are the 
n-divisor d | n, and the n-semidivisor k | nε, ε > 1. Alternatively we 
might call the n-semidivisor a nondivisor n-regular number. 

Because the divisor constitutes a major focus of mathematical 
interest since antiquity, this distinction among n-regular numbers 
proves of interest.

Lemma 1.2. The number 1 is regular to all numbers, since it divides 
all numbers, and divisors are a finite subset of regular numbers. The 
number 1 is not divisible by any prime, hence no prime q coprime to 
κ. Therefore, 1 is the smallest element in Rκ.

Lemma 1.3. In the sorted sequence of κ-coregular numbers κRκ, we 
see the squarefree number κ followed by mκ where m is κ-regular, i.e., 
rad(m) | κ. This lemma follows from Definition 1.1.

Lemma 1.4. Prime κ = p implies the sorted p-coregular sequence pRp 
begins with prime p followed by composite prime powers pε : ε > 1. 

 Rp =  {pε : ε ≥ 0}.  [1.2]

 pRp =  {pε : ε ≥ 1}.  [1.3]

This is evident given the nature of [1.2] and [1.3].

Lemma 1.5. For squarefree composite κ ∈ A120944, the sorted κ-co-
regular sequence κRκ begins with κ followed by “tantus numbers” mκ 
∈ A126706, which are neither squarefree nor prime powers. This is 
clear since we may divide κRκ by κ to derive Rκ, whose minimum is 1 
via Lemma 1.2. Multiplying 1 by κ, we have squarefree composite κ 
as the minimum of κRκ. ∎

Lemma 1.5 suggests that the only nontantus number in 6R₆ is 6 
itself. This follows from the definition of κ-coregular; all numbers in 
the sequence are distinct products of 6, and since there can only be 
one instance of mκ = 1 × 6, κ = 6 is the only squarefree term in the 
sequence and its minimum.

Corollary 1.6. Squarefree n-regular k implies k | n. 

Herinafter we construe the sets Rκ and κRκ as being ordered ac-
cording to magnitude, that is, beginning with the minimum.

The κ-Regular Successor Function.
Define f(n) = k such that k > n and rad(k) | rad(n) = κ to be the 

κ-regular successor function. 
Suppose n is the i-th element of Rκ. Then f(n) = Rκ(i+1).
Prime p in Rp follows 1 and is succeeded by p², given [1.2], and 

generally, the successor to pε in Rp is p(ε+1).
The successor to 1 in Rκ is prime p = lpf(κ) = A020639(κ). Gen-

erally, the successor function presents a problem similar to that ex-
plored in Mintz [2]. For squarefree semiprimes pq, where q =next-
prime(p), we have the following sequence:

 Rpq = {1, p, q, p², pq, …, q², …}.  [2.1]

We can imagine an even squarefree semiprime 2q, where q is an 
immense prime, and then see many powers of 2 appear before q and 
between q and 2q, etc.

 R2q = {1, 2, 2², 2³, …, q, …, 2q, …, q², …}.  [2.2]

Let A(1) remain undefined; for n > 1, A(n) = ⍃k such that k > n and 
rad(k) = rad(n) = κ. (The symbol ⍃k means k is the smallest such.) 
This sequence is Sigrist’s A289280 which begins as follows: 

4, 9, 8, 25, 8, 49, 16, 27, 16, 121, 16, 169, 16, 25, 
32, 289, 24, 361, 25, 27, 32, 529, 27, 125, 32, 81, 32, 
841, 32, 961, 64, 81, 64, 49, 48, 1369, 64, 81, 50, 
1681, 48, 1849, 64, 75, 64, 2209, 54, 343, 64, 81, 64, 
2809, 64, 121, 64, 81, 64, 3481, 64, ...
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We can use a naive greedy approach to arrive at answers. Let’s at-
tempt a more efficient method based on theorems.

Theorem 2.1. A(n) ≤ n². 
Proof. Aside from A(1) = 1, A(n) > n by definition. For n = p prime, 
via [1.2] A(p) = p² = n². Generally, A(pε)= p(ε+1), and we see through 
induction on ε that p(ε+1) < p(2ε)  for ε > 1.

For composite n, we have composite squarefree κ such that ω(κ) 
> 1. Our approach involves attempting to find n-regular k such that 
n < k < n². Since rad(n) = κ, we are not concerned with n < κ in Rκ.

Let p = lpf(κ) and q = Gpf(κ) = A6530(κ). We know the following:

 logp n > logq n > logn n. [2.3]

Hence, between n and n² in Rκ, for n ≥ κ, there exists at least 1 
prime power associated with each of p and q. Therefore, A(n) ≤ n². ∎

Theorem 2.1 implies that, given a means to generate Rκ via [1.0], 
we need only generate {n, …, n²} and the answer is the second term 
in that subsequence. In other words, n = Rκ(i) implies A(n) = Rκ(i+1).

Code [C6] generates the sequence efficiently. The scatterplot ap-
pears in Figure 2. Records derive from A(p) = p². Horizontal quasi-
linear features mostly derive from powers of small primes. The lower 
bound is comprised by A(n) = n + 2, where n is even and n + 2 is a 
power of 2, as n + 1 is coprime to n, hence, never n-regular.

The κ-Regular Predecessor Function.
We may modify the κ-regular successor function f(n) to work back-

ward, perhaps by adding the latter parameter in f(n, –1). 
Let B(1) = 1; for n > 1, B(n) = ⍄k such that k < n and rad(k) 

= rad(n) = κ. (The symbol ⍄k means k is the largest such.) This is 
A079277 by Istvan Beck, which begins as follows:

1, 1, 2, 1, 4, 1, 4, 3, 8, 1, 9, 1, 8, 9, 8, 1, 16, 1, 
16, 9, 16, 1, 18, 5, 16, 9, 16, 1, 27, 1, 16, 27, 32, 25, 
32, 1, 32, 27, 32, 1, 36, 1, 32, 27, 32, 1, 36, 7, 40, 
27, 32, 1, 48, 25, 49, 27, 32, 1, 54, 1, 32, 49, 32, 25, 
64, 1, 64, 27, 64, 1, 64, 1, 64, 45, 64, 49, 72, 1, ...

Define row n of A162306 to be a sorted list of n-regular numbers k 
that do not exceed n. Then A079277 is the penultimate term in row n 
of A162306. We present two lemmas associated with A079277.

Lemma 3.1. For prime p, B(p) = 1, which follows from the construc-
tion of Rp in [1.1]. In the prime power range of p, the empty product 
1 precedes p. Generally, the successor to pε in Rp is p(ε–1).

Lemma 3.2. For n with ω(n) > 1, B(n) ∤ n. 
Proof. We have to show that the largest proper divisor of n, d = n/p, 
is such that d < k < n, where p = lpf(κ) = A020639(κ). 

 logp n – logp n/p = 1 [3.2]

Since ω(n) > 1, logp n is not an integer, therefore there is some perfect 
power k = pε , ε = ⌊logp n⌋ that interposes d and n. (This is not to say 
that B(n) = p⌊logp n⌋.) ∎

Hence we note that in Rκ, we have the subsequence {A079277(n), 
n, A289280(n)}. A couple generalizations:

1. For prime n = p, we have {1, p, p²} and generally, for n such 
that ω(n) = 1, {p(ε–1), pε, p(ε+1)}. 

2. For squarefree composite n = κ, we have {k, κ, pκ}, where 
k ∤ κ and p = lpf(κ).

3. The scatterplot of A079277 shown by Figure 3 resembles 
that of A289280 shown by Figure 2. Many of its features 
can be explained by reversing the approach. For instance, 
the upper bound is comprised by B(n) = n – 2, where n is 
even and n – 2 is a power of 2.

Figure 1: Log log scatterplot of A065642(1…2¹⁴).

Figure 2: Log log scatterplot of A289280(1…2¹⁴).

Figure 3: Log log scatterplot of A079277(1…2¹⁴).
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The κ-Coregular Successor Function.
Definition 1.1 shows that we may derive a similar function g(n) 

= k such that k > n and rad(k) = rad(n) = κ to be the κ-coregular 
successor function. This function is of interest because of the quality 
noted in Lemma 1.3, that is, κRκ begins with squarefree κ followed by 
nonsquarefree mκ, m > 1 and m ∈ Rκ.

Suppose n is the i-th element of κRκ. Then g(n) = κRκ(i+1). Divid-
ing by , we have Rκ(i) = n/κ and successor Rκ(i+1).

The successor to p in pRp is p², given [1.3], and generally, the suc-
cessor to pε in pRp is p(ε+1).

We find it not as simple for squarefree composite κ ∈ A120944.
The successor to κ in κRκ is pκ, where p = lpf(κ) = A020639(κ). 

The successor to k > κ in κRκ generally is not as easy to determine, 
and presents a problem similar to that explored in Mintz [2]. For 
squarefree semiprimes pq, where q = nextprime(p), we have the 
following sequence:

 pqRpq = pq × {1, p, q, p², pq, …, q², …}.  [4.1]

We can imagine an even squarefree semiprime 2q, where q is an 
immense prime, and then see 2

 2qR2q = 2q × {1, 2, 2², 2³, …, q, …, 2q, …, q², …}.  [4.2]

It is clear that it is sufficient to find the successor n' to k' in Rκ, then 
taking κn'. Therefore there may be some predictability partly assisted 
by Mintz’s approach in [2]. In aggregate, the problem of finding the 
successor to k in κRκ is akin to problems associated with the abc con-
jecture (which is outside the scope of this paper).

Let a(1) = 1; for n > 1, a(n) = k such that k > n and rad(k) = 
rad(n) = κ. This sequence is Zumkeller’s A065642 which begins as 
follows: 

1, 4, 9, 8, 25, 12, 49, 16, 27, 20, 121, 18, 169, 28, 
45, 32, 289, 24, 361, 40, 63, 44, 529, 36, 125, 52, 81, 
56, 841, 60, 961, 64, 99, 68, 175, 48, 1369, 76, 117, 
50, 1681, 84, 1849, 88, 75, 92, 2209, 54, 343, 80, 153, 
104, 2809, 72, 275, 98, 171, 116, 3481, 90, ...

Theorem 4.1. a(n) ≤ n². 
Proof. Given the relation between κ-regular Rκ and κ-coregular κRκ 
shown in Definition 1.1, the proposition follows from Theorem 2.1, 
via multiplication by κ. ∎

Code [C5] efficiently generates the sequence, whose scatterplot 
appears in Figure 1.

It is clear that infinite recursion of the coregular successor function 
g, begining with a squarefree number κ, generates κRκ. Therefore, 
suppose we begin with a(6) = 12, then take a(12) = 18, etc. It is clear 
from the definition of A065642 that we reconstruct 6R₆ = 6 × A3586.

Define sequence A360529 to be the mapping g ↦ A024619, the se-
quence of numbers that are not prime powers. This sequence begins 
as follows:

12, 20, 18, 28, 45, 24, 40, 63, 44, 36, 52, 56, 60, 99, 
68, 175, 48, 76, 117, 50, 84, 88, 75, 92, 54, 80, 153, 
104, 72, 275, 98, 171, 116, 90, 124, 147, 325, 132, 136, 
207, 140, 96, 148, 135, 152, 539, 156, 100, 164, ...

Lemma 4.2. A360529(n) < A024619(n)².
This is clear since we have eliminated prime powers from input.

Lemma 4.3. Squarefree composite A024619(n) implies tantus 
A360529(n) (i.e., A360529(n) ∈ A126706).
Proof: Since g(κ) = pκ for squarefree composite κ, we have p² | pκ 
and hence a tantus number, that is, one that is neither squarefree nor 
a prime power. ∎

Figure 4: Log log scatterplot of A360529(1…2¹⁶).

Figure 5: Log log scatterplot of A360719(1…2¹⁶), showing varius (squarefree com-
posite) numbers in green and tantus (numbers neither squarefree nor prime powers) in 
blue. We highlight plenus numbers (tantus numbers that have multiplicity for all prime 
divisors) in light blue. The graph appears to feature striations according to lpf(a(n)) 
among varius numbers.

Figure 6: Log log scatterplot of A362041(1…2¹²) showing primes in red, multus 
numbers (composite prime powers) in gold, varius numbers (squarefree composites) in 
green, and tantus numbers (neither squarefree nor prime powers) in blue. We highlight 
those tantus numbers that have multiplicity for all prime divisors in light blue. There are 
striations among primes, varius, and multus numbers that have lpf(a(n)).
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Theorem 4.4. A360529 is a permutation of A126706.
This follows from the transformation of κRκ(i) → κRκ(i+1) across the 
domain A024619 = A120944 ∪ A126706. Since the smallest (and 
first) element of κRκ is squarefree composite κ itself, it is replaced by 
a tantus number, and that tantus number is replaced by its successor, 
etc. until we have completely remapped A126706. ∎

Define the successor function f(n) to be that function which gives 
the next term after n in κRκ. Given the structure of κRκ with varius κ, 
the successor function f(n) yields tantus numbers. Therefore, we see 
that f ↦ A024619 yields a permutation of A126706.

The κ-Coregular Predecessor Function.
We may likewise modify the κ-coregular successor function to give 

the κ-coregular predecessor, for instance, via g(n, –1) in a way analo-
gous to f(n, –1) in the last section.

If we attempt to map g(n, –1) ↦ A024619, we find that there are 
no predecessors for squarefree composite κ ∈ A120944. It is suffi-
cient thus only to map to g(n, –1) ↦ A126706, and avoid the obvious 
transformation g(n, pε) → p(ε–1) with ε > 2. 

Define sequence A360719 to be the mapping g(n, –1) ↦ A126706, 
the sequence of tantus numbers (i.e., those that are neither square-
free nor prime powers). This sequence begins as follows:

6, 12, 10, 18, 14, 24, 20, 22, 15, 36, 40, 26, 48, 28, 
30, 21, 34, 54, 45, 38, 50, 42, 44, 60, 46, 72, 56, 33, 
80, 52, 96, 98, 58, 39, 90, 62, 84, 66, 75, 68, 70, 108, 
63, 74, 120, 76, 51, 78, 100, 144, 82, 126, 57, 86, ...

It is clear that this is a permutation of A024619 via arguments sim-
ilar to Theorem 4.4. We can generate this sequence via Code [C9].

We know that squarefree numbers (both prime and composite) 
have no predecessor in κRκ. Therefore, we find the mapping g(n, –1) 
↦ A013929 of interest.

Define sequence A362041 to be the mapping g(n, –1) ↦ A013929, 
the sequence of numbers that are not prime powers. This sequence 
begins as follows:

2, 4, 3, 6, 8, 12, 10, 18, 5, 9, 14, 16, 24, 20, 22, 15, 
36, 7, 40, 26, 48, 28, 30, 21, 32, 34, 54, 45, 38, 50, 
27, 42, 44, 60, 46, 72, 56, 33, 80, 52, 96, 98, 58, 39, 
90, 11, 62, 25, 84, 64, 66, 75, 68, 70, 108, 63, ...

We note that g(p², –1) → p and g(qκ, –1) → κ where in latter case 
q = lpf(κ). Given arguments similar to Theorem 4.4, we see that, 
were we to append A362041(0) = 1, we have a permutation of nat-
ural numbers. 

The scatterplot of this sequence shown by Figure 6 merits further 
study. It features striations associated with lpf(A362041(n)). Code 
[C10] efficiently generates A362041.

The Nondivisor κ-Coregular Successor Function.
Within κRκ, we want to find distinct k and n such that k > n and 

rad(k) = rad(n) = κ, yet n ∤ k, a relationship we abbreviate k ¦¦ n (or 
equivalently, n ¦¦ k). 

In other words, k and n are coregular exclusive of divisibility. 
We had called this relation “symmetric semidivisibility”, having ex-

plored it in depth in January 2023 [3]. Several sequences and papers 
arose addressing the case. Chief among the sequences were A360768 
(strong tantus numbers), A355432 (the symmetric semidivisor 
counting function), and A360589 (highly symmetrically semidivis-
ible numbers).

In this section we turn to k < n such that k ¦¦ n, first regarding k, the 
successor of n in κRκ. 

Figure 7: Log log scatterplot of A362432(1…2¹²), showing records in red.

Figure 8: Log log scatterplot of a362844(1…2¹²), showing records in red.

Table A
A362432
m = A126706(n)
k = A362432(n)
r = rad(m) = rad(k)
 n     m      k    k/m    r
---------------------------
 1    12     18    3/2    6
 2    18     24    4/3    6
 3    20     50    5/2   10
 4    24     36    3/2    6
 5    28     98    7/2   14
 6    36     48    4/3    6
 7    40     50    5/4   10
 8    44    242   11/2   22
 9    45     75    5/3   15
10    48     54    9/8    6
11    50     80    8/5   10
12    52    338   13/2   26
13    54     72    4/3    6
14    56     98    7/4   14
15    60     90    3/2   30
16    63    147    7/3   21
17    68    578   17/2   34
18    72     96    4/3    6
19    75    135    9/5   15
20    76    722   19/2   38
21    80    100    5/4   10
22    84    126    3/2   42
23    88    242   11/4   22
24    90    120    4/3   30
25    92   1058   23/2   46
26    96    108    9/8    6
27    98    112    8/7   14
28    99    363   11/3   33
29   100    160    8/5   10
30   104    338   13/4   26

A362844
m = A360768(n)
k = A362844(n)
r = rad(m) = rad(k)
 n     m     k     k/m     r
----------------------------
 1    18    12     2/3     6
 2    24    18     3/4     6
 3    36    24     2/3     6
 4    48    36     3/4     6
 5    50    40     4/5    10
 6    54    48     8/9     6
 7    72    54     3/4     6
 8    75    45     3/5    15
 9    80    50     5/8    10
10    90    60     2/3    30
11    96    72     3/4     6
12    98    56     4/7    14
13   100    80     4/5    10
14   108    96     8/9     6
15   112    98     7/8    14
16   120    90     3/4    30
17   126    84     2/3    42
18   135    75     5/9    15
19   144   108     3/4     6
20   147    63     3/7    21
21   150   120     4/5    30
22   160   100     5/8    10
23   162   144     8/9     6
24   168   126     3/4    42
25   180   150     5/6    30
26   189   147     7/9    21
27   192   162   27/32     6
28   196   112     4/7    14
29   198   132     2/3    66
30   200   160     4/5    10
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Therefore we define the function F(κ) = ⍃k such that both k > n 
and k ¦¦ n. 

Let sequence A362432 constitute the mappings F ↦ A126706, 
since it is clear that p | k for k ∈ pRp, pε | k for k ∈ pεRpε, and κ | k for k 
∈ κRκ. This sequence begins as follows:

18, 24, 50, 36, 98, 48, 50, 242, 75, 54, 80, 338, 72, 
98, 90, 147, 578, 96, 135, 722, 100, 126, 242, 120, 
1058, 108, 112, 363, 160, 338, 144, 196, 1682, 507, 150, 
1922, 168, 198, 225, 578, 350, 162, 189, 2738, 180, ...

For example, the regular successor f(20) = 25 and the coregular 
successor g(20) = 40, but since 20 | 40, F(20) = 50. This sequence 
contains repeated terms; F(20) = F(40) = 50. Therefore it is not a 
permutation, say, of A360768. Table A on page 4 demonstrates the 
ratio A362432(n)/ A126706(n). There is structure in scatterplot that 
merits exploration.

The Nondivisor κ-Coregular Predecessor Function.
We define the function G(κ) = ⍄k such that both k < n and k ¦¦ n. 
Let sequence A362844 be the mappings F ↦ A360768 (the strong 

tantus numbers, see [3]). This sequence begins as follows:
12, 18, 24, 36, 40, 48, 54, 45, 50, 60, 72, 56, 80, 96, 
98, 90, 84, 75, 108, 63, 120, 100, 144, 126, 150, 147, 
162, 112, 132, 160, 192, 196, 135, 156, 180, 176, 175, 
200, 168, 198, 240, 216, 252, 270, 204, 234, 250, ...

This sequence is not a permutation of A126706, since 20 is missing. 
Table A on page 4 demonstrates the ratio A362844(n)/ A360768(n)/. 
Like the related successor function, this function scatterplot merits 
exploration that is outside the cursory scope of this work.

Conclusion.
This paper introduced functions given a number n whose square-

free kernel is κ, that find the predecessor of and successor to n in 
the sequences of n-regular numbers in Rκ and n-coregular numbers 
in κRκ. Some of these functions were already available in OEIS and 
others were recently added. Additionally, we posed a couple se-
quences that restricted the domain to numbers that are not prime 
powers or those that are not squarefree so as to eliminate the more 
easily understandable output. The sequence Rκ is of interest because 
of its association with the abc conjecture, and as focus for the work of 
Størmer and others which relate to A2071 and A2072.

Definition 1.1 constructs the sequence of κ-coregular numbers via 
multiplication of n-regular numbers Rκ by κ. As a consequence it is 
clear that κRκ has a squarefree minimum and first term κ, succeeded 
by nonsquarefree numbers. If κ is prime p, then all the rest of the 
terms in pRp are powers pε, ε > 0, and indeed, pRp = {pε : ε ≥ 1} via 
[1.3]. If squarefree κ is composite (hence in A120944), then succeed-
ing terms are tantus numbers (i.e., in A126706). 

This work yielded 4 handy results regarding predecessors and 
successors in regular and coregular sequences. Theorem 2.1 shows 
that A289280(n) ≤ n²; we further show A065642(n) ≤ n² in Theorem 
4.1 as consequence of Definition 1.1. Lemmas 3.1 and 3.2 show that 
ω(n) > 1 implies A079277(n) ∤ n. Theorem 4.4 shows A360529 to be 
a permutation of natural numbers.

This work is part of a series on nondivisor coregular numbers, also 
known as symmetric semidivisors. ••••

Appendix.
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Concerns sequences:
A007947: Squarefree kernel of n; rad(n).
A013929: Numbers that are not squarefree.
A024619: Numbers that are not prime powers.
A065642: κ-regular successor function.
A079277: κ-regular predecessor function.
A120944: “Varius” numbers; squarefree composites.
A126706: “Tantus” numbers neither prime power nor squarefree.
A162306: Truncation of Rκ: row n = { k ∈ Rκ : k ≤ n }, rad(n) = κ.
A360529: κ-coregular successor function g ↦ A024619.
A360719: κ-coregular predecessor function ğ ↦ A126706.
A362041: κ-coregular predecessor function ğ ↦ A013929.
A362432: Nondivisor κ-coregular successor f ↦ A126706.
A362844: Nondivisor κ-coregular predecessor f ↦ A360768.
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6 Simple Sequence Analysis . Article 20230501.

Code:
[c1] Calculate Rκ bounded by an arbitrary limit m (i.e., calculate 

A275280(n); flatten and take union to provide A162306)
regularsExtended[n_, m_ : 0] := 
  Block[{w , lim = If[m <= 0, n, m]}, 
   Sort@ ToExpression@
     Function[w, 
       StringJoin[
         "Block[{n = ", ToString@ lim, 
         "}, Flatten@ Table[", 
         StringJoin@
           Riffle[Map[ToString@ #1 <> "^" <> 
             ToString@ #2 & @@ # &, w], " * "], 
         ", ", Most@ Flatten@ Map[{#, ", "} &, #], 
         "]]" ] &@ 
       MapIndexed[
         Function[p, 
           StringJoin["{", ToString@ Last@ p, 
             ", 0, Log[", 
             ToString@ First@ p, ", n/(", 
             ToString@
               InputForm[
                 Times @@ Map[Power @@ # &, 
                   Take[w, First@ #2 - 1]]], 
             ")]}" ] ]@ w[[First@ #2]] &, w]]@
       Map[{#, ToExpression["p" <> 
         ToString@ PrimePi@ #]} &, #[[All, 1]] ] &@ 
       FactorInteger@ n];

[c2] Generate tantus numbers (A126706):
a126706 = Block[{k}, k = 0;
   Reap[Monitor[Do[
       If[And[#2 > 1, #1 != #2] & @@ 
         {PrimeOmega[n], PrimeNu[n]}, 
        Sow[n]; Set[k, n] ],
       {n, 2^21}], n]][[-1, -1]]] (* Tantus *);

[c3] Generate “strong tantus” numbers (A360768):
Select[a126706[[1 ;; 120]], #1/#2 >= #3 & @@ 
  {#1, Times @@ #2, #2[[2]]} & @@ 
  {#, FactorInteger[#][[All, 1]]} &] 

[c4] Generate A013929 and A024619:
a013929 = Select[Range[2^20], Not@*SquareFreeQ];

a024619 = Select[Range[2^20], Not@*PrimePowerQ];

[c5] Generate A065642:
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
Table[Function[r, 
   SelectFirst[regularsExtended[n, n^2], 
     And[# > n, rad[#] == r] &]][rad[n]], {n, 2, 2^14}] 

[c6] Generate A289280:
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
Table[Function[r, 
   SelectFirst[regularsExtended[n, n^2], 
     And[# > n, Divisible[r, rad[#]] ] &]][rad[n]], 
     {n, 2, 2^14}]

[c7] Generate A079277:
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
Table[Function[r, 
   SelectFirst[Reverse@ Most@ regulars[n], 
     Divisible[r, rad[#]] &]][rad[n]], {n, 2, 2^14}]

[c8] Generate A360529:
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
Table[Function[r,
  SelectFirst[regularsExtended[n, n^2], 
    And[# > n, rad[#] == r] &]][rad[n]], 
    {n, a024619[[1 ;; 2^10]]}]

[c9] Generate A360719:
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
Table[m = a126706[[i]]; 
   Function[r, SelectFirst[Reverse@ Most@ regulars[m], 
     rad[#] == r &]][rad[m]], {i, 2^10}], {i, m}] ]

[c10] Generate A362041:
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
{1}~Join~Table[m = a013929[[i]]; 
   Function[r, SelectFirst[Reverse@ Most@ regulars[m], 
     rad[#] == r &]][rad[m]], {i, 2^10}], {i, m}]

[c11] Generate A362432:
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
Table[Function[r, 
   SelectFirst[regularsExtended[n, n^2], 
    And[# > n, rad[#] == r, ! Divisible[#, n]] &]]  
    [rad[n]], {n, a126706[[1 ;; 2^10]]}]

[c12] Generate A362844:
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
Table[Function[r, 
   SelectFirst[Reverse@ Most@ regulars[n], 
    And[r == rad[#], ! Divisible[n, #]] &]][rad[n]], 
    {n, a360768[[1 ;; 2^10]]}]


