On trying to exceed $\theta(\mathcal{P}(n+1))$ with $\theta(k)$ where k is prime(n) smooth.

Michael Thomas De Vlieger · St. Louis, Missouri · 23 June 2023.

Abstract.

Primorials $\mathcal{P}(n)$ represent local minima of Euler's totient $\phi(n)$ and occur among local maxima of the regular counting function $\theta(n) = Ao_{1}o_{8}46(n)$. In the latter case, this has to do with the expansion of the bounded regular tensor in scope and rank. The least nondivisor prime q_1 has outsized impact on $\theta(n)$. Therefore we are led to consider a sequence of smallest PRIME(n) smooth k such that $\theta(k)$ is at least as large as $\theta(\mathcal{P}(n+1))$.

INTRODUCTION.

Consider *k* and *n*, nonzero positive integers. Here we are interested only in those $k \le n$. Recall the standard form prime power decomposition of *n* shown below.

$$n = \prod_{i=1}^{\omega} p_i^{\varepsilon_i}, \text{ prime } p \mid n, \, \omega = \omega(n).$$
 [1.1]

The empty product n = 1 is a product of no primes at all.

Let $RAD(n) = A7947(n) = \kappa$ be the squarefree kernel of *n* as below:

$$\kappa = \prod_{i=1}^{n} p_i, \text{ prime } p \mid n, \omega = \omega(n).$$
 [1.2]

We define an *n*-regular number k as k such that RAD(k) | n, that is, the squarefree kernel A7947(k) divides n.

We say k and n are **coregular** if $RAD(k) = RAD(n) = \varkappa$. From this, it is clear that $\omega(k) = \omega(n)$ for coregular k and n.

Since *n*-regularity depends on the squarefree kernel RAD $(n) = \kappa$ independent of multiplicity, we then may generate a set R_{κ} that contains all κ -regular k, that is, the set of all numbers that are products of primes p such that $p \mid \kappa$, raised to any nonnegative power ε :

$$R_{\varkappa} = \{k : k \mid \varkappa\}.$$

$$R_{\varkappa} = \bigotimes_{p \mid \varkappa} \{p^{\varepsilon} : \varepsilon \ge 0\}.$$
[1.3]

Therefore, the set R_{κ} is the tensor product of prime divisor power ranges $\{p^{\varepsilon} : \varepsilon \ge 0\}$. The rank of R_{κ} is $\omega(\kappa)$. The cardinality of R_{κ} is \aleph_0 , since $|\{p^{\varepsilon} : \varepsilon \ge 0\}| = \aleph_0$ and, when sorted, we may assign an index *i* that makes the set countably infinite.

In the case of R_{κ} where $\omega(\kappa) = 1$, we simply have the prime power range for $\kappa = p$, that is, $\{p^{\epsilon} : \epsilon \ge 0\}$. For example, $R_2 = A79$.

An example of R_{ν} for $\kappa = 6$ is A3586 = R_6 whose first terms follow:

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 128, 144, 162, 192, 216, 243, 256, 288, 324, 384, 432, 486, 512, 576, 648, 729, 768, 864, 972, 1024, 1152, 1296, 1458, 1536, 1728, 1944, 2048, ...

We may also write R_{12} , R_{54} , etc., but these subscripts ascribe to squarefree kernel $\varkappa = 6$, hence these are equivalent to R_6 .

If we are interested in coregular k such that $RAD(k) = \varkappa$, then we instead use the set $\varkappa R_{\varkappa}$. Therefore, the set of k coregular to 6 is simply $6R_6 = 6 \times A3586$ which begins as follows:

6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, 288, 324, 384, 432, 486, 576, 648, 768, 864, 972, 1152, 1296, 1458, 1536, 1728, 1944, 2304, 2592, 2916, 3072, 3456, 3888, 4374, 4608, 5184, 5832, 6144, ...

Since $\omega(6) = 2$, $6R_6$ is simply A3586 stripped of prime powers. For $\varkappa R_{\varkappa}$ with $\omega(\varkappa) > 2$, this is not true; $k \in \varkappa R_{\varkappa}$ all have $\omega(k) = \omega(\varkappa)$, since by definition, all terms are divisible by \varkappa .

We are concerned in this work with k such that RAD(k) | n and $k \le n$. We denote this finite set \check{R}_n as follows:

$$\begin{split} \check{\mathbf{R}}_n &= \{ \ k : k \mid \| \ \varkappa \land k \le n \}. \\ &= \{ \ k \in \bigotimes_{p \mid \varkappa} \{ p^{\varepsilon} : \varepsilon \ge 0 \} : \land k \le n \}. \end{split} \tag{1.4}$$

We write the subscript *n* rather than squarefree kernel \varkappa to specify the discrete limit. Then C_n is the set containing those $k = m\varkappa$ not exceeding *n* where *m* is \varkappa -regular. Simply, C_n contains $k \le n$ coregular to $\varkappa = \text{RAD}(n)$.

$$C_n = \{ k : k = m\varkappa \land m \mid \varkappa \land m\varkappa \le n \}.$$
 [1.5]

Therefore, for n = 12, we have the following:

$$\check{\mathbf{R}}_{12} = \{1, 2, 3, 4, 6, 8, 9, 12\},\ C_{12} = \{6, 12\}.$$

THE REGULAR COUNTING FUNCTION.

This section introduces basics about the regular counting function $\theta(n) = A010846(n)$ and its relation to the divisor counting function $\tau(n) = A5(n)$.

Define the regular counting function as follows:

$$\begin{split} \theta(n) &= \big| \{k : k \mid | x \land k \le n \} \big| \\ &= \big| \check{R}_n \big| \\ &= \text{A010846}(n). \end{split}$$
 [2.1]

Let us examine the divisor counting function.

For
$$n = \prod_{i=1}^{\omega} p_i^{\epsilon_i}$$
, prime $p \mid n, \omega = \omega(n)$,
 $\tau(n) = \prod_{i=1}^{\omega} (\epsilon_i + 1)$ [2.2]

$$= \bigotimes_{i=1}^{\omega} \{ p_i^{\delta_i} : \delta_i = 0 \dots \varepsilon_i \}.$$
 [2.3]

Example: for $n = 12 = 2^2 \times 3$, $\tau(12) = (2+1)(1+1) = 2 \times 3 = 6$ via [2.2]. A diagram of the outer product approach [2.3] appears below:

The outer product approach lends insight toward an algorithm we can employ to most efficiently construct a table of divisors of *n*. In Table [1.9], we see the following:

$$\tau(2^2 \times 3) = \{2^{\delta} : \delta = 0 \dots 2\} \otimes \{3^{\delta} : \delta = 0 \dots 1\}$$

= \{1, 2, 4\} \overline \{1, 3\}
= \{\{1, 2, 4\}, \{3, 6, 12\}\}
= row 12 of A275055. [2.5]

The sequence A275055 lists divisors in the order of appearance read left to right, then by level, etc. through all ranks of $\check{\mathbf{R}}_n$, hence the row is vectorized to {1, 2, 4, 3, 6, 12}. We compare this to row 12 of A162306 = {1, 2, 3, 4, 6, 12}, where we regard the operation \otimes instead as a Kronecker product.

Now consider n = 60, with $\omega(60) = 3$. The outer product approach toward a table of divisors of 60 appears in [2.6]. Compare this to $\check{\mathbf{R}}_{60}$, that is, the set of numbers $k \le 60$ that are also regular to 60, which is shown in Figure [2.7].

The finite $\omega(\alpha)$ -rank tensor $\check{\mathbf{K}}_n$ derives from infinite \mathbf{R}_{κ} bounded by *n*. The divisor tensor \mathbf{D} is the product of power ranges { $p^{\epsilon} : p^{\epsilon} | n$ }, while the regular tensor $\check{\mathbf{K}}_n$ is the product, bounded by *n*, of power ranges { $p^{\epsilon} : p | n \land p^{\epsilon} \le n$ }. The former, \mathbf{D} , is an orthogonal array set within $\check{\mathbf{K}}_n$. The finite $\omega(\alpha)$ -rank tensor $\check{\mathbf{K}}_n$ involves an irregular discrete "surface" or "sheet"; both are contained in \mathbf{R}_{κ} . The geometry of $\check{\mathbf{K}}_n$ approximates an $\omega(\alpha)$ -dimensional orthogonal simplex ($\omega(\alpha)$ -orthosimplex) with an origin-antipodal $\omega(n-1)$ -simplex facet that joins the largest values of all distinct prime divisor power ranges bounded by *n*. The geometry of the orthosimplex may be amenable to calculus and is beyond the scope of this paper.

In brief, [2.6] when vectorized as generated, is merely row 60 of A275055 while row 60 of A027750 is the same set of divisors, sorted. Table [2.7] is what we obtain when we allow an algorithm to iterate the exponent of a prime power factor until the product exceeds *n*. This constructs $\mathbf{\tilde{R}}_{n}$ efficiently to yield row *n* of A275280 in a manner analogous to [2.6]. The algorithm in question appears in the pseudocode below:

let
$$n = 60$$
;
for $(i = 0, i \le \lfloor \log_2 n \rfloor)$ {
for $(j = 0, j \le \lfloor \log_3 n/2^i \rfloor)$ {
for $(k = 0, k \le \lfloor \log_5 n/(2^i \times 3^j) \rfloor)$ {
 $2^a \times 3^b \times 5^c$ } } } [2.8]

Mertens-Like Regular Counting Function

There are several methods for computing $\theta(n)$. Notably, Benoit Cloitre [1: A010846] shows that we may employ the reduced residue system (RRS) of *n*, where totative *t* such that (t, n) = 1 (i.e., $t \perp n$) in the following summation:

$$\theta(n) = \sum_{t=n}^{l \perp n} \mu(t) \times \lfloor n/t \rfloor.$$
 [2.9]

where $\mu(n)$ is the Möbius function of *n*. This summation links the regular counting function with the totative counting function, better known as the Euler totient function.

Define \check{T}_n to be the RRS of *n*, the set of $1 \le t < n$ such that (t, n) = 1.

$$\check{T}_{n} = \{ t : (t, n) = 1 \land t < n \}.$$
[2.10]

$$T_n = \{ mt : (t, n) = 1 \land t < n \land m \ge 1 \}.$$
 [2.11]

where [2.11] is the set of numbers coprime to *n*, tantamount to the set of numbers coprime to $\kappa = \text{RAD}(n)$.

The Euler totient function is the cardinality of \check{T}_n shown below:

$$\phi(n) = |\check{T}_n|$$

= $n \prod_{p|n} (1-1/p)$ [2.12]

We note that $\check{R}_n \cap \check{T}_n = R_* \cap T_* = \{1\}$, which makes the construction of $\theta(n)$ via [2.9] interesting.

Define a **primorial** to be a product of the smallest *n* primes:

$$\mathcal{P}(n) = A_{2110}(n) = VO111(n) \prod_{i=1}^{n} PRIME(n). \qquad [3.1]$$

We are interested in primorials $\mathcal{P}(n)$ since they minimize the totient ratio $\phi(n)/n$ and represent local minima for $\phi(n)$, while they occur among local maxima for $\theta(n)$.

The Möbius function method of generating $\theta(n)$ in [2.9] merits examination not merely because it differs from the "intuitive" methodologies associated with the properties of *n*-regular *k* themselves, but because of implications regarding the smallest primes *q* coprime to *n*. Chief among the implications is that small prime totatives wreak havoc against a high value of $\theta(n)$.

Define function f(n, t) as follows:

$$f(n, t) = \mu(t) \times \lfloor n/t \rfloor,$$

with $(n, t) = 0, t < n.$ [3.2]

Let q_1 be the least nondivisor prime of n, i.e, $q_1 = \text{LNP}(n) = Ao53669(n)$, and generally, let q be a prime does not divide n. We can determine the following about the behavior of the function f. The value of f(n, q) applied to prime $q < \frac{1}{2} n$ is negative with an absolute value greater than 1. The absolute value is most pronounced for $q_1 = 2$ and decreases as q increases. For prime $q > \frac{1}{2} n$ the value is -1.

Consider $R_{\mathcal{P}(n)}$ the infinite set of k regular to $\mathcal{P}(n)$. It is clear that $R_{\mathcal{P}(n)}$ is the set of PRIME(n)-smooth numbers. Therefore $\check{R}_{\mathcal{P}(n)}$ is the set of PRIME(n)-smooth numbers $k \leq \mathcal{P}(n)$.

The empty product is the smallest number coprime to *n*. The value of f(n, 1) = n, since n/1 = 1 and $\mu(1) = 1$. Hence, beginning with t = n, $\theta(n) = n$, with subsequent f(n, t) for t > 1 modifying the value to arrive at actual $\theta(n)$.

Those totatives $t < \frac{1}{2} n$ have the greatest effect on the ultimate value of $\theta(n)$ for the following reasons:

- 1. The totatives of *n* are symmetrically arranged about $\frac{1}{2}n$. In other words, t < n such that (t, n) = 1 implies (n, n t) = 1.
- 2. $\lfloor n/t \rfloor > 1$ for $t < \frac{1}{2}n$ while $\lfloor n/t \rfloor = 1$ for $t < \frac{1}{2}n$.
- 3. $\lfloor n/q_1 \rfloor$ is maximal since q_1 is the smallest prime that is coprime to *n*.
- 4. Let *S* = the sum of f(n, t) across $\frac{1}{2}n < t < n$. Then $f(n, q_1) \ge S$. The set of numbers that have $f(n, q_1) = S$ is finite: {3, 4, 6, 8, 12, 18, 24, 30}, cf. A048597.

Hence, the least nondivisor prime q_1 has the most influence on $\theta(n)$. This supports interest in $\check{R}_{\mathcal{P}(n)}$.

Examination of q_1 alone is incomplete regarding the full effect of the smallest prime totative q_1 on $\theta(n)$.

Given [3.1], the following is evident regarding primorial $\mathcal{P}(n)$:

$$p_n < q_1$$
, that is,
 $GPF(\mathcal{P}(n)) < LNP(\mathcal{P}(n)).$ [3.3]

In this way, $\mathcal{P}(n)$ maximizes q_1 for numbers m with $\omega(m) = n$.

For example, regarding squarefree numbers κ such that $\omega(\kappa) = 3$, the smallest such number is $\mathcal{P}(3) = 30 = 2 \times 3 \times 5$, where $q_1 = 7$. Any other three prime factors produces a number that has $q_1 < 7$. Therefore, among κ such that $\omega(\kappa) = 3$, primorial $\mathcal{P}(3) = 30$ maximizes q_1 .

Let's consider the effect of multiplication on the tensor \check{R}_n . A prime number must either divide or be coprime to *n*. Therefore we consider the following cases.

<u>CASE 1</u> involves *pn*, where prime $p \mid n$. Since *p* by definition is prime, pn > n. It is clear that coregular *k* and *n* share the same squarefree kernel \varkappa and therefore \mathbf{R}_{\varkappa} . It follows that both RAD(*n*) = RAD(*pn*) = \varkappa and $\omega(n) = \omega(pn)$. If $n = p^{\epsilon}Q$, then it is obvious $pn = p^{(\epsilon+1)}Q$, hence, $(\epsilon+1) > 1$. No new prime divisors are introduced and none are lost. Since $\omega(n) = \omega(pn)$, the rank of \mathbf{R}_{\star} is maintained. These facts together imply the new tensor $\check{\mathbf{R}}_{pn}$ is merely \mathbf{R}_{\star} bounded not by n, but by pn > n.

Therefore, multiplication of *n* by a prime $p \mid n$ merely increases the bound and admits more regular terms from the infinite regular set R_{v} common to both *n* and *pn*. Hence, $\theta(pn) > \theta(n)$.

<u>CASE 2</u> involves *qn*, with prime *q* coprime to *n*. Since *q* is prime by definition, the product *qn* > *n*. The set \mathbf{R}_{x} cannot be that of *qn*, since the distinct prime factors of *qn* have an additional prime factor *q* that is missing in *n*, i.e., RAD(*n*) < RAD(*qn*). Furthermore, $\omega(qn) = \omega(n) + 1$, implying \mathbf{R}_{qx} has greater rank than \mathbf{R}_{x} . Specifically, \mathbf{R}_{qx} has 1 more dimension than \mathbf{R}_{x} via the following tensor product:

$$\boldsymbol{R}_{q\boldsymbol{\varkappa}} = \boldsymbol{R}_{\boldsymbol{\varkappa}} \otimes \{ q^{\varepsilon} : \varepsilon \ge 0 \}.$$

$$[4.1]$$

Furthermore, since qn > n, \check{R}_{qx} is bounded at a larger value qn. Therefore $\theta(qn)$ must be significantly larger than $\theta(n)$.

<u>CASE 3</u>. Suppose we want to conserve the value of $\omega(n)$. Case 1 above conforms to such conservation, while Case 2 violates it. We can, however, "bargain away" prime p such that $p \mid n$ for a nondivisor prime q so as to obtain qn/p. This way, the number of distinct prime factors is conserved, i.e., $\omega(qn/p) = \omega(n)$, and the regular tensors of both n and qn/p have the same rank.

Now suppose $n = \mathcal{P}(T)$ and that $q_1 = LNP(\mathcal{P}(T))$. Here are some implications:

1.
$$q > \operatorname{GPF}(\mathcal{P}(T))$$
, i.e., $q > p_{T}$.

2.
$$qn/p > n$$
, since $q > p$ for $p \mid \mathcal{P}(T)$.

Let $q_1 = \text{PRIME}(T+1)$. Then $q_1 > \text{LNP}(qn/p)$ which we can rewrite as simply $q_1 > p$.

Since $p < q_1$ and $q_1n/p > n$, $\lfloor n/p \rfloor > \lfloor n/q_1 \rfloor$. This implies that, although $\theta(q_1n/p)$ may exceed $\theta(n)$, q_1n/p certainly is less efficient at producing regulars; indeed the magnitude of the larger number might only be overcoming the reduced efficiency. Thus we may see certain numbers like q_1n/p among the terms of A244052, following $\mathcal{P}(T)$ in the sequence.

How Early does $\mathcal{P}(n+1)$ appear in A244052?

What is the smallest PRIME(*n*)-smooth *k* such that $\theta(k)$ is no smaller than $\theta(\mathcal{P}(n+1))$? The question is motivated by Cases 1 and 2 above. Therefore we pose the sequence A363794, defined as follows:

$$\begin{split} a(n) &= \boxtimes k, k \in \mathbf{R}_{\mathcal{P}(n)}, \theta(k) \geq \theta(\mathcal{P}(n+1)) \\ &= \boxtimes k, k \in \mathbf{R}_{\mathcal{P}(n)}, \operatorname{Ao10846}(k) \geq \operatorname{Ao10846}(\operatorname{Ao110}(n+1)) \\ &= \boxtimes k, k = \mathbf{R}_{\mathcal{P}(n)}(i), i \geq \operatorname{Ao363061}(n+1). \quad [5.1] \end{split}$$

Hence, the question is tantamount to finding the smallest index $i \ge A_{3}6_{3}06_1(n+1)$ such that $R_{\mathcal{P}(n)}(i)$ is coregular to $\mathcal{P}(n)$. It follows from Case 2 that $R_{\mathcal{P}(n)}(i) > \mathcal{P}(n+1)$. The sequence demonstrates the efficiency of $\mathcal{P}(n+1)$ over PRIME(*n*)-smooth *m* in generating regular numbers $k \le n$.

The first terms of A363794 are as follows:

```
16, 72, 540, 6300, 92400, 1681680, 36756720, 921470550, 27886608750, 970453984500, 37905932634570, ...
```

Table [5.2] below shows *n*, PRIME(*n*), and primorial $\mathcal{P}(n+1)$ in the first 3 columns, respectively. The fourth column gives the term *a*(*n*) = A₃6₃₇₉₄(*n*), followed by A₃6₃₀₆₁(*n*) = $\theta(\mathcal{P}(n+1))$ and $\theta(a(n))$. The last two columns show $a(n) = \mathbf{C}(j) = m \times \mathcal{P}(n)$.

n	p(n)	P(n+1)	a (n)	θ(P(n))	θ(a(n))	j	m
1	2	6	16	5	5	4	8
2	3	30	72	18	18	8	12
3	5	210	540	68	69	13	18
4	7	2310	6300	283	290	22	30
5	11	30030	92400	1161	1165	29	40
6	13	510510	1681680	4843	4848	42	56
7	17	9699690	36756720	19985	19994	53	72
8	19	223092870	921470550	83074	83435	68	95
9	23	6469693230	27886608750	349670	351047	89	125
10	29	200560490130	970453984500	1456458	1457926	107	150

This data shows that a(n) is several times $\mathcal{P}(n+1)$. As for records in $\theta(n)$, (i.e., highly regular numbers A244052), we see that $\mathcal{P}(n+1)$ appears long before PRIME(n)-smooth number appears that has more regular numbers.

CONCLUSION.

We have examined the regular counting function $\theta(n) =$ A010846(*n*) and have discerned that primorials $\mathcal{P}(n)$ set records and therefore are highly regular numbers in A244052. Since primorials also represent local minima in Euler's totient $\phi(n)$, we are drawn to what might make them relevant to such apparently disparate constitutive counting functions.

We have shown that the least nondivisor prime q_1 presents an outsized impact against the number $\theta(n)$, through the lens of a formula for $\theta(n)$ involving $\mu(t) \times \lfloor n/t \rfloor$. We also examined the effect of multiplication of *n* by both prime divisor $p \mid n$ and nondivisor prime *q* coprime to *n*. Specifically, the latter product presents a bounded regular tensor $\mathbf{\check{R}}$ with greater rank, therefore, increased density of *n*-regular *k* such that $k \leq n$.

This leads us to consider the smallest PRIME(*n*)-smooth *k* that has at least as many regular numbers (no greater than itself) as does $\mathcal{P}(n+1)$. Given the first few terms, it is evident that $k > \mathcal{P}(n+1)$ by a significant factor. \ddagger

References:

- [1] N. J. A. Sloane, *The Online Encyclopedia of Integer Sequences*, retrieved June 2023.
- [2] Michael Thomas De Vlieger, Constitutive Counting Functions for Primorials, *Simple Sequence Analysis*, 20230621.

CONCERNS SEQUENCES:

A000005: Divisor counting function $\tau(n)$. A000010: Euler totient function $\phi(n)$. A000040: Prime numbers. A002110: Primorials $\mathcal{P}(n)$. A010846: Regular counting function $\theta(n)$. A038566: List of *n*-totatives $\check{T}_n = \{k : k \perp n \land k < n\}$. A053669: Smallest prime that does not divide *n*. A363061: $\theta(\mathcal{P}(n)) = A010846(A2110(n))$. A363844: $\xi_t(\mathcal{P}(n)) = A243823(A2110(n))$. A363794: Least prime(*n*) smooth *k* such that $\theta(k) \ge A363061(n)$. DOCUMENT REVISION RECORD:

2023 0629: Version 1.

2023 0719: Version 2: amended orthosimplex from a later study.