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Abstract.
Primorials P(n) represent local minima of Euler’s totient φ(n) and 

occur among local maxima of the regular counting function θ(n) = 
A010846(n). In the latter case, this has to do with the expansion of 
the bounded regular tensor in scope and rank. The least nondivisor 
prime q₁ has outsized impact on θ(n). Therefore we are led to consid-
er a sequence of smallest prime(n) smooth k such that θ(k) is at least 
as large as θ(P(n+1)).

Introduction.
Consider k and n, nonzero positive integers. Here we are interested 

only in those k ≤ n. Recall the standard form prime power decompo-
sition of n shown below.

 n =  
ω
∏
i=1

 pi
εi, prime p | n, ω = ω(n). [1.1]

The empty product n = 1 is a product of no primes at all.
Let rad(n) = A7947(n) = κ be the squarefree kernel of n as below:

 κ =  
ω
∏
i=1

 pi, prime p | n, ω = ω(n). [1.2]

We define an n-regular number k as k such that rad(k) | n, that is, 
the squarefree kernel A7947(k) divides n. 

We say k and n are coregular if rad(k) = rad(n) = κ. From this, it 
is clear that ω(k) = ω(n) for coregular k and n. 

Since n-regularity depends on the squarefree kernel rad(n) = κ 
independent of multiplicity, we then may generate a set Rκ that con-
tains all κ-regular k, that is, the set of all numbers that are products of 
primes p such that p | κ, raised to any nonnegative power ε:

 Rκ = {k : k ∥ κ}.
 Rκ = ⊗

p|κ 
{pε : ε ≥ 0}. [1.3]

Therefore, the set Rκ is the tensor product of prime divisor power 
ranges {pε : ε ≥ 0}. The rank of Rκ is ω(κ). The cardinality of Rκ is ℵ₀, 
since | {pε : ε ≥ 0} | = ℵ₀ and, when sorted, we may assign an index i 
that makes the set countably infinite. 

In the case of Rκ where ω(κ) = 1, we simply have the prime power 
range for κ = p, that is, {pε : ε ≥ 0}. For example, R₂ = A79.

An example of Rκ for κ = 6 is A3586 = R₆ whose first terms follow:
1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 
64, 72, 81, 96, 108, 128, 144, 162, 192, 216, 243, 256, 
288, 324, 384, 432, 486, 512, 576, 648, 729, 768, 864, 
972, 1024, 1152, 1296, 1458, 1536, 1728, 1944, 2048, ...

We may also write R₁₂, R₅₄, etc., but these subscripts ascribe to 
squarefree kernel κ = 6, hence these are equivalent to R₆.

If we are interested in coregular k such that rad(k) = κ, then we 
instead use the set κRκ. Therefore, the set of k coregular to 6 is simply 
6R₆ = 6 × A3586 which begins as follows:

6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 
216, 288, 324, 384, 432, 486, 576, 648, 768, 864, 972, 
1152, 1296, 1458, 1536, 1728, 1944, 2304, 2592, 2916, 
3072, 3456, 3888, 4374, 4608, 5184, 5832, 6144, ...

Since ω(6) = 2, 6R₆ is simply A3586 stripped of prime powers. For 
κRκ with ω(κ) > 2, this is not true; k ∈ κRκ all have ω(k) = ω(κ), since 
by definition, all terms are divisible by κ.

We are concerned in this work with k such that rad(k) | n and k ≤ 
n. We denote this finite set Řn as follows:

 Řn = { k : k ∥ κ ∧ k ≤ n}.
 = { k ∈ ⊗

p|κ 
{pε : ε ≥ 0} : ∧ k ≤ n }. [1.4]

We write the subscript n rather than squarefree kernel κ to specify 
the discrete limit. Then Cn is the set containing those k = mκ not ex-
ceeding n where m is κ-regular. Simply, Cn contains k ≤ n coregular 
to κ = rad(n).

 Cn = { k : k = mκ ∧ m ∥ κ ∧ mκ ≤ n }. [1.5]

Therefore, for n = 12, we have the following:

 Ř₁₂ = {1, 2, 3, 4, 6, 8, 9, 12},
 C₁₂ = {6, 12}.

The Regular Counting Function.
This section introduces basics about the regular counting function 

θ(n) = A010846(n) and its relation to the divisor counting function 
τ(n) = A5(n).

Define the regular counting function as follows:

 θ(n) = | {k : k ∥ κ ∧ k ≤ n } |
 = | Řn | 
 = A010846(n). [2.1]

Let us examine the divisor counting function.

 For n =  
ω
∏
i=1

 pi
εi, prime p | n, ω = ω(n),

 τ(n) =  
ω
∏
i=1

 (εi+1) [2.2]

 =  
ω
 ⊗
i=1 

{pi
δi : δi = 0…εi}. [2.3]

Example: for n = 12 = 2² × 3, τ(12) = (2+1)(1+1) = 2 × 3 = 6 via 
[2.2]. A diagram of the outer product approach [2.3] appears below:

2⁰ 2¹ 2²
3⁰ 1 2 4
3¹ 3 6 12

[2.4]

The outer product approach lends insight toward an algorithm we 
can employ to most efficiently construct a table of divisors of n. In 
Table [1.9], we see the following:

 τ(2² × 3) = {2δ : δ = 0…2} ⊗ {3δ : δ = 0…1}
 = {1, 2, 4} ⊗ {1, 3}
 = {{1, 2, 4}, {3, 6, 12}}
 = row 12 of A275055. [2.5]

The sequence A275055 lists divisors in the order of appearance 
read left to right, then by level, etc. through all ranks of Řn, hence 
the row is vectorized to {1, 2, 4, 3, 6, 12}. We compare this to row 
12 of A162306 = {1, 2, 3, 4, 6, 12}, where we regard the operation ⊗ 
instead as a Kronecker product.

Now consider n = 60, with ω(60) = 3. The outer product approach 
toward a table of divisors of 60 appears in [2.6]. Compare this to Ř₆₀, 
that is, the set of numbers k ≤ 60 that are also regular to 60, which is 
shown in Figure [2.7].
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×5⁰ 2⁰ 2¹ 2²
3⁰ 1 2 4
3¹ 3 6 12

×5¹ 2⁰ 2¹ 2²
3⁰ 5 10 20
3¹ 15 30 60

[2.6]

1 2 4 8 16 32
3 6 12 24 48
9 18 36

27 54

5 10 20 40
15 30 60
45

25 50 [2.7]

The finite ω(κ)-rank tensor Řn derives from infinite Rκ bounded 
by n. The divisor tensor D is the product of power ranges { pε : pε 

| n }, while the regular tensor Řn is the product, bounded by n, of 
power ranges { pε : p | n ∧  pε ≤ n }. The former, D, is an orthogonal 
array set within Řn. The finite ω(κ)-rank tensor Řn involves an irreg-
ular discrete “surface” or “sheet”; both are contained in Rκ. The ge-
ometry of Řn approximates an ω(κ)-dimensional orthogonal simplex 
(ω(κ)-orthosimplex) with an origin-antipodal ω(n–1)-simplex facet 
that joins the largest values of all distinct prime divisor power ranges 
bounded by n. The geometry of the orthosimplex may be amenable 
to calculus and is beyond the scope of this paper.

In brief, [2.6] when vectorized as generated, is merely row 60 of 
A275055 while row 60 of A027750 is the same set of divisors, sorted. 
Table [2.7] is what we obtain when we allow an algorithm to iterate 
the exponent of a prime power factor until the product exceeds n. 
This constructs Řn efficiently to yield row n of A275280 in a manner 
analogous to [2.6]. The algorithm in question appears in the pseudo-
code below:

let n = 60;
for (i = 0, i ≤ ⌊log₂ n⌋ )  {
 for (j = 0, j ≤ ⌊log₃ n/2i⌋ )  {
  for (k = 0, k ≤ ⌊log₅ n/(2i × 3j)⌋ )  {
   2a × 3b × 5c } } } [2.8]

Mertens-Like Regular Counting Function
There are several methods for computing θ(n). Notably, Benoit 

Cloitre [1: A010846] shows that we may employ the reduced residue 
system (RRS) of n, where totative t such that (t, n) = 1 (i.e., t ⊥ n) in 
the following summation:

 θ(n) =
t⊥n
∑

t<n
 μ(t) × ⌊n/t⌋. [2.9]

where μ(n) is the Möbius function of n. This summation links the 
regular counting function with the totative counting function, better 
known as the Euler totient function. 

Define Ťn to be the RRS of n, the set of 1 ≤ t < n such that (t, n) = 1. 

 Ťn = { t : (t, n) = 1 ∧ t < n }. [2.10]
 Tn = { mt : (t, n) = 1 ∧ t < n ∧ m ≥ 1 }. [2.11]

where [2.11] is the set of numbers coprime to n, tantamount to the 
set of numbers coprime to κ = rad(n).

The Euler totient function is the cardinality of Ťn shown below:

 φ(n) = | Ťn |
 = n ∏

p|n
 (1–1/p) [2.12]

We note that Řn ⋂ Ťn = Rκ ⋂ Tκ = {1}, which makes the construc-
tion of θ(n) via [2.9] interesting.

Define a primorial to be a product of the smallest n primes:

 P(n) = A2110(n) = V0111(n)   
n

∏
i=1

 prime(n). [3.1]

We are interested in primorials P(n) since they minimize the to-
tient ratio φ(n)/n and represent local minima for φ(n), while they 
occur among local maxima for θ(n).

The Möbius function method of generating θ(n) in [2.9] merits ex-
amination not merely because it differs from the “intuitive” method-
ologies associated with the properties of n-regular k themselves, but 
because of implications regarding the smallest primes q coprime to 
n. Chief among the implications is that small prime totatives wreak 
havoc against a high value of θ(n).

Define function f(n, t) as follows:
 f(n, t) = μ(t) × ⌊n/t⌋, 
 with (n, t) = 0, t < n. [3.2]
Let q1 be the least nondivisor prime of n, i.e, q1 = lnp(n) = 

A053669(n), and generally, let q be a prime does not divide n. 
We can determine the following about the behavior of the func-
tion f. The value of f(n, q) applied to prime q < ½ n is negative 
with an absolute value greater than 1. The absolute value is most 
pronounced for q1 = 2 and decreases as q increases. For prime  
q > ½ n the value is –1.

Consider RP(n), the infinite set of k regular to P(n). It is clear that 
RP(n) is the set of prime(n)-smooth numbers. Therefore ŘP(n) is the 
set of prime(n)-smooth numbers k ≤ P(n).

The empty product is the smallest number coprime to n. The value 
of f(n, 1) = n, since n/1 = 1 and μ(1) = 1. Hence, beginning with t = 
n, θ(n) = n, with subsequent f(n, t) for t > 1 modifying the value to 
arrive at actual θ(n). 

Those totatives t < ½ n have the greatest effect on the ultimate val-
ue of θ(n) for the following reasons:

1.  The totatives of n are symmetrically arranged about ½ n. In 
other words, t < n such that (t, n) = 1 implies (n, n – t) = 1.

2.  ⌊n/t⌋ > 1 for t < ½ n while ⌊n/t⌋ = 1 for t < ½ n. 
3.  ⌊n/q1⌋ is maximal since q1 is the smallest prime that is co-

prime to n.
4. Let S = the sum of f(n, t) across ½ n < t < n. Then  f(n, q1) 

≥ S. The set of numbers that have f(n, q1) = S is finite: {3, 4, 
6, 8, 12, 18, 24, 30}, cf. A048597. 

Hence, the least nondivisor prime q1 has the most influence on 
θ(n). This supports interest in ŘP(n).

Examination of q1 alone is incomplete regarding the full effect of 
the smallest prime totative q1 on θ(n). 

Given [3.1], the following is evident regarding primorial P(n):
 pn < q1, that is,
 gpf(P(n)) < lnp(P(n)).  [3.3]
In this way, P(n) maximizes q1 for numbers m with ω(m) = n. 

For example, regarding squarefree numbers κ such that ω(κ) = 3, the 
smallest such number is P(3) = 30 = 2 × 3 × 5, where q1 = 7. Any oth-
er three prime factors produces a number that has q1 < 7. Therefore, 
among κ such that ω(κ) = 3, primorial P(3) = 30 maximizes q1.

Let’s consider the effect of multiplication on the tensor Řn. A 
prime number must either divide or be coprime to n. Therefore we 
consider the following cases.

Case 1 involves pn, where prime p | n. Since p by definition 
is prime, pn > n. It is clear that coregular k and n share the 
same squarefree kernel κ and therefore Rκ. It follows that both 
rad(n) = rad(pn) = κ and ω(n) = ω(pn). 
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If n = pεQ, then it is obvious pn = p(ε+1)Q, hence, (ε+1) > 1. 
No new prime divisors are introduced and none are lost. Since 
ω(n) = ω(pn), the rank of Rκ is maintained. These facts togeth-
er imply the new tensor Řpn is merely Rκ bounded not by n, 
but by pn > n. 

Therefore, multiplication of n by a prime p | n merely increas-
es the bound and admits more regular terms from the infinite 
regular set Rκ common to both n and pn. Hence, θ(pn) > θ(n).

Case 2 involves qn, with prime q coprime to n. Since q is prime 
by definition, the product qn > n. The set Rκ cannot be that 
of qn, since the distinct prime factors of qn have an addition-
al prime factor q that is missing in n, i.e., rad(n) < rad(qn). 
Furthermore, ω(qn) = ω(n) + 1, implying Rqκ has greater rank 
than Rκ. Specifically, Rqκ has 1 more dimension than Rκ via the 
following tensor product:

 Rqκ = Rκ ⊗
 
{ qε : ε ≥ 0 }. [4.1]

Furthermore, since qn > n, Řqκ is bounded at a larger value qn. 
Therefore θ(qn) must be significantly larger than θ(n).

Case 3. Suppose we want to conserve the value of ω(n). Case 
1 above conforms to such conservation, while Case 2 violates 
it. We can, however, “bargain away” prime p such that p | n for 
a nondivisor prime q so as to obtain qn/p. This way, the num-
ber of distinct prime factors is conserved, i.e., ω(qn/p) = ω(n), 
and the regular tensors of both n and qn/p have the same rank. 

Now suppose n = P(t) and that q₁ = lnp(P(t)). Here are 
some implications:

1. q > gpf(P(t)), i.e., q > pt.

2. qn/p > n, since q > p for p | P(t). 

Let q₁ = prime(t+1). Then q₁ > lnp(qn/p) which we can re-
write as simply q₁ > p.

Since p < q₁ and q₁n/p > n, ⌊n/p⌋ > ⌊n/q₁⌋. This implies that, 
although θ(q₁n/p) may exceed θ(n), q₁n/p certainly is less effi-
cient at producing regulars; indeed the magnitude of the larg-
er number might only be overcoming the reduced efficiency. 
Thus we may see certain numbers like q₁n/p among the terms 
of A244052, following P(t) in the sequence.

How Early does P(n+1) appear in A244052?
What is the smallest prime(n)-smooth k such that θ(k) is no small-

er than θ(P(n+1))? The question is motivated by Cases 1 and 2 
above. Therefore we pose the sequence A363794, defined as follows:

 a(n) = ⍃k, k ∈ RP(n), θ(k) ≥ θ(P(n+1))
 =  ⍃k, k ∈ RP(n), A010846(k) ≥ A010846(A2110(n+1))
 =  ⍃k, k = RP(n)(i), i ≥ A363061(n+1). [5.1]

Hence, the question is tantamount to finding the smallest index 
i ≥ A363061(n+1) such that RP(n)(i) is coregular to P(n). It follows 
from Case 2 that RP(n)(i) > P(n+1). The sequence demonstrates the 
efficiency of P(n+1) over prime(n)-smooth m in generating regular 
numbers k ≤ n.

The first terms of A363794 are as follows:
16, 72, 540, 6300, 92400, 1681680, 36756720, 921470550, 
27886608750, 970453984500, 37905932634570, ...

Table [5.2] below shows n, prime(n) , and primorial P(n+1) in the 
first 3 columns, respectively. The fourth column gives the term a(n) 
= A363794(n), followed by A363061(n) = θ(P(n+1)) and θ(a(n)). 
The last two columns show a(n) = C(j) = m × P(n).

 n p(n)        P(n+1)          a(n)  θ(P(n))  θ(a(n))   j    m
--------------------------------------------------------------
 1   2             6            16        5        5    4    8
 2   3            30            72       18       18    8   12
 3   5           210           540       68       69   13   18
 4   7          2310          6300      283      290   22   30
 5  11         30030         92400     1161     1165   29   40
 6  13        510510       1681680     4843     4848   42   56
 7  17       9699690      36756720    19985    19994   53   72
 8  19     223092870     921470550    83074    83435   68   95
 9  23    6469693230   27886608750   349670   351047   89  125
10  29  200560490130  970453984500  1456458  1457926  107  150

This data shows that a(n) is several times P(n+1). As for records 
in θ(n), (i.e., highly regular numbers A244052), we see that P(n+1) 
appears long before prime(n)-smooth number appears that has 
more regular numbers.

Conclusion.
We have examined the regular counting function θ(n) = 

A010846(n) and have discerned that primorials P(n) set records and 
therefore are highly regular numbers in A244052. Since primorials 
also represent local minima in Euler’s totient φ(n), we are drawn to 
what might make them relevant to such apparently disparate consti-
tutive counting functions.

We have shown that the least nondivisor prime q₁ presents an out-
sized impact against the number θ(n), through the lens of a formula 
for θ(n) involving μ(t) × ⌊n/t⌋. We also examined the effect of multi-
plication of n by both prime divisor p | n and nondivisor prime q co-
prime to n. Specifically, the latter product presents a bounded regular 
tensor Ř with greater rank, therefore, increased density of n-regular 
k such that k ≤ n.

This leads us to consider the smallest prime(n)-smooth k that 
has at least as many regular numbers (no greater than itself) as does 
P(n+1). Given the first few terms, it is evident that k > P(n+1) by a 
significant factor. ••••
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Concerns sequences:
A000005: Divisor counting function τ(n).
A000010: Euler totient function φ(n).
A000040: Prime numbers.
A002110: Primorials P(n).
A010846: Regular counting function θ(n).
A038566: List of n-totatives Ťn = { k : k ⊥ n ∧ k < n }.
A053669: Smallest prime that does not divide n.
A363061: θ(P(n)) = A010846(A2110(n)).
A363844: ξt(P(n)) = A243823(A2110(n)).
A363794: Least prime(n) smooth k such that θ(k) ≥ A363061(n).
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