On A113901 = $\Omega(n)\omega(n)$ and A363920 = $n^{A113901(n)}$.

Sequences A113901 by Hilliard and A363920 by Luschny.

Michael Thomas De Vlieger · St. Louis, Missouri · 20 July 2023

Abstract.

We examine sequences related to the product of the elementary number-theoretical counting functions $\omega(n)$ and $\Omega(n)$. We show that A113901(n) < n. Moreover, we see that A363920(n) is a sequence bereft of squarefree composites and numbers in A332785, comprised of fixed points A8578, and composite $n \rightarrow$ squareful $m \in$ A1694.

INTRODUCTION.

Define the following functions:

$$\begin{split} \omega(n) &= A1221(n) \\ &= \left| \left\{ p: p \mid n \right\} \right| \text{ where } p \text{ is prime.} \end{split}$$

$$\begin{aligned} &\left[1.1 \right] \\ \Omega(n) &= A1222(n) \\ &= \sum_{p \in [n]} \varepsilon, \text{ where } \varepsilon \text{ is maximal such that } p^{\varepsilon} \mid n. \end{aligned}$$

$$\begin{aligned} &\left[1.2 \right] \end{aligned}$$

A prime power is a number $n = p^{\epsilon}, \epsilon \ge 0$, hence the sequence of prime powers is A961 = {1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, ... }.

The number 1 represents the product of no primes at all; it is the empty product, hence $\omega(n) = \Omega(n) = 0$. Therefore we are interested in the following set of prime powers:

A246655 = A961 \ {1}
= {
$$p^{\varepsilon} : \varepsilon \ge 1$$
 }. [1.4]

Hereinafter we then mean $n \in A246655$ when we write "prime power". Using this definition, it follows that prime power p^{ϵ} , $\epsilon \ge 1$, implies $\omega(p^{\epsilon}) = 1$ and $\Omega(n) = \epsilon$.

A squarefree number *n* is a product of *k* distinct primes. It is clear that squarefree *n* implies $\omega(n) = \Omega(n) = k \ge 0$. The sequence of squarefree numbers is A5117 = {1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, ...}.

SEQUENCE A113901.

PROOF:

Define function f(x) to be as follows:

$$f(x) = \omega(x) \times \Omega(x).$$
 [2.0]

Then we generate the sequence A113901 = $f \mapsto \mathbb{N}$, which begins as shown below:

Lemma 2.1: Prime power
$$p^{\epsilon}, \epsilon \ge 0$$
 implies A113901 $(p^{\epsilon}) = \epsilon$.
Proof: $f(p^{\epsilon}) = \omega(p^{\epsilon}) \times \Omega(p^{\epsilon})$
 $= 1 \times \epsilon$

= ε. 🔳

COROLLARY 2.2: f(1) = 0, since $1 \times \varepsilon = 1 \times 0 = 0$.

COROLLARY 2.3: Prime p implies f(p) = 1.

COROLLARY 2.4: Prime square
$$p^2$$
 implies $f(p^2) = 2$.

LEMMA 2.5: Squarefree *n*, product of *k* distinct primes *p*, implies $A_{113901}(n) = k^2$.

$$f(n) = \omega(n) \times \Omega(n) : \Omega(n) = \omega(n) = k$$
$$= k \times k$$
$$= k^{2}. \blacksquare$$

COROLLARY 2.6: Squarefree semiprime $n \in A6881$ implies f(n) = 4.

LEMMA 2.7: Number $n \in A_{126706}$, implies $A_{113901}(n) > k^2$.

PROOF: Let
$$k = \omega(n)$$
 and let $j = \Omega(n) - \omega(n) \ge 1$.
 $f(n) = \omega(n) \times \Omega(n)$

$$=k(j+k)$$

Since
$$j > 1$$
, $k(j + k) > k^2$.

Тнеогем 2.8: f(n) < n.

PROOF: Natural numbers $n \in \mathbb{N}$ are either squarefree or not squarefree; they are either prime powers or not prime powers. Therefore Lemmas 2.1 through 2.7 cover all natural numbers.

Lemma 2.1 shows $p^{\varepsilon} \rightarrow \varepsilon$, and since prime p > 1, $p^{\varepsilon} > \varepsilon$.

Lemma 2.5 shows $n \rightarrow \omega(n)^2$ for squarefree *n*, and it is clear that such $n > \omega(n)^2$. Let $\mathcal{P}(k) = A_{2,1,1,0}(k)$ be the product of *k* smallest primes; it follows that $\mathcal{P}(k) > k^2$ for k > 0.

Lemma 2.7 shows $f(n) > \omega(n)^2$, with $\omega(n)^2 = k^2$ for numbers neither squarefree nor prime powers, that is, $n \in A_{12}6_{70}6$. Knowing that $\mathcal{P}(k) > k^2$, and that we can produce a minimal $n \in A_{12}6_{70}6$ via $2 \times \mathcal{P}(k)$ with $f(2 \times \mathcal{P}(k)) = k(k+1)$; $2 \times \mathcal{P}(k) > k(k+1)$, k > 1. It becomes clear that we are dealing with exponentiation on the left hand side versus multiplication on the right, and we always have n > f(n) for $n \in A_{12}6_{70}6$.

Conclusions involving A113901:

- Prime $p \rightarrow 1$ and generally $p^{\varepsilon} \rightarrow \varepsilon$.
- $n \rightarrow \omega(n)^2$ for squarefree *n*.
- $n \rightarrow k (j + k)$ for $n \in A_{12}6_{706}$, $k = \omega(n)$ and $j = \Omega(n) \omega(n) \ge 1$.
- n > f(n) for $n \in \mathbb{N}$.

SEQUENCE A363920.

Define $A_{363920} = a$ to be the following:

$$a(n) = n^{\alpha(n)\omega(n)}$$

= $n^{A_{113901}(n)}$. [3.0]

The first terms of this sequence appear below:

(In this work we do not address the fact Peter Luschny defines a(0) = 1, hence the sequence offset is 0.)

LEMMA 3.1: Prime power
$$p^{\epsilon}, \epsilon \ge 0$$
 implies A363920 $(p^{\epsilon}) = p^{\epsilon^2}$.
PROOF:
 $a(p^{\epsilon}) = p^{\omega(p^{\epsilon})a(p^{\epsilon})}$
 $= (p^{\epsilon})^{(1 \times \epsilon)}$
 $= p^{\epsilon^2}$.

THEOREM 3.2: Number $n \in A8578$ (i.e., n = 1 or n = p prime) implies fixed point a(n) = n.

PROOF: a(1) = 1 since $\Omega(n) = \omega(n) = 0$. Hence $a(1) = 1^0 = 1$ For prime p, a(p) = p since $\Omega(p) = \omega(p) = 1$. Hence $a(p) = p^1 = p$.

Therefore the proposition is true. \blacksquare

COROLLARY 3.3: Prime square p^2 implies $a(p^2) = p^4$.

LEMMA 3.4: Squarefree *n*, a product of *k* distinct primes *p*, implies $a(n) = n^{(k^2)}$.

PROOF:

$$a(n) = n^{\omega(n)\Omega(n)} : \Omega(n) = \omega(n) = k > 1$$

$$= n^{(k \times k)}$$

$$= n^{k^2} \blacksquare$$

COROLLARY 3.5: Squarefree semiprime $n \in A6881$ implies $a(n) = n^4$.

COROLLARY 3.6: Squarefree composite $n \in A_{120944}$ implies $A_{363920}(n) \in A_{303606}$. We note $A_{303606} \subset A_{286708} \subset A_{126706}$. Remark:

$$A1694 = \{1\} \cup A246547 \cup A286708.$$
[3.6]

Since j > 1, $n^{k(j+k)} > n^{k^2}$.

LEMMA 3.7: Number $n \in A_{12}6_{706}$, implies $A_{363920}(n) > n^{k^2}$. PROOF: Let $k = \omega(n)$ and let $j = \Omega(n) - \omega(n) \ge 1$. $a(n) = n^{\omega(n)\Omega(n)}$

 $= n^{k(j+k)}$

Since j > 1, $n^{k(j+k)} > n^{k^2}$.

COROLLARY 3.8: Number $n \in A_{126706}$ implies $a(n) \in A_{286708}$. We note $A_{286708} \subset A_{126706}$.

Theorem 3.9: For $n \in A_{2808}$, a(n) > n.

PROOF: Natural numbers $n \in \mathbb{N}$ are either squarefree or not squarefree; they are either prime powers or not prime powers. Therefore Lemmas 3.1 through 3.8 cover all natural numbers. Theorem 3.2 shows that primes and n = 1 are fixed points, while Lemmas 3.4 and 3.7 show that a(n) > n for $n \in Ao24619$. Through Lemma 3.1, regarding $n = p^{\epsilon}$ and setting $\epsilon > 1$ to obtain $n \in A246547$ results in a(n) > n. Since $Ao24619 \cup A246547 = A2808$, we verify the proposition.

Conclusions involving $a = A_{363920}$:

- $n \rightarrow n$ for $n \in A8578$, that is, n = 1 or n = p prime.
- $p^{\varepsilon} \rightarrow p^{\varepsilon^2}$, hence $n \in A246547 \rightarrow m \in A246547$, m > n.
- $n \rightarrow n^{k^2}$ for squarefree *n*.
- $n \in A_{120944} \rightarrow m \in A_{303606}; A_{303606} \subset A_{286708} \subset A_{126706}.$
- $pq \rightarrow (pq)^4$, primes p < q.
- $n \rightarrow n^{k(j+k)}$ for $n \in A_{12}6_{70}6$, $k = \omega(n)$ and $j = \Omega(n) \omega(n) \ge 1$.
- $n \in A_{126706} \Rightarrow m \in A_{286708}$; $A_{286708} \subset A_{126706}$.
- a(n) > n for composite $n; n \rightarrow m \in A1694$, with m > n.

Essentially, n = 1 or n = p prime constitute fixed points, while composite prime power $n \in A246547$ transforms into a number $m \in A246547$ and $n \in A024619$ transforms into a number $m \in A286708$, m > n in both latter cases. Therefore, A363920 is a sequence containing 1, the primes, and squareful numbers in A1694. The sequence lacks numbers in A120944 and A332785 = A126706 \ A286708. \ddagger

Figure 1: Plot the class of a(120m+k) at (x, y) = (k, m+1), where the class of a number is coded according to colors in the key above. This plot demonstrates that 1 and prime constitute fixed points, while squarefree composites transform to a number in A303606, and numbers neither squarefree nor composite transform to a number in A286708.

References:

[1] N. J. A. Sloane, *The Online Encyclopedia of Integer Sequences*, retrieved July 2023.

CONCERNS SEQUENCES:

- A000040: Prime numbers. A001221: Number of distinct prime divisors of n, $\omega(n)$. A001222: Number of prime divisors of n with multiplicity, $\Omega(n)$. A001694: Squareful numbers, $\{a^2b^3 : a \ge 1, b \ge 1\}$. A005117: Squarefree numbers. A013929: Numbers that are not squarefree. A024619: Numbers that are not prime powers. A113901: $\omega(n) \times \Omega(n)$. A120944: Squarefree composites. A126706: Numbers neither prime power nor squarefree. A246547: Composite prime powers $p^{\epsilon} : \epsilon \ge 1$. A286708: Products of A246547. A332785: A126706 \ A286708. A363920: $n^{\alpha(n)\omega(n)} = n^{A113901(n)}$. DOCUMENT REVISION RECORD:
- 2023 0720: Version 1.