On A113901 $=\Omega(n) \omega(n)$ and A363920 $=n^{\text {A113901 }(n)}$.

Sequences A113901 by Hilliard and A363920 by Luschny.
Michael Thomas De Vlieger • St. Louis, Missouri • 20 July 2023

Abstract.

We examine sequences related to the product of the elementary number-theoretical counting functions $\omega(n)$ and $\Omega(n)$. We show that A113901 $(n)<n$. Moreover, we see that A363920 (n) is a sequence bereft of squarefree composites and numbers in A332785, comprised of fixed points A8578, and composite $n \rightarrow$ squareful $m \in$ A1694.

Introduction.

Define the following functions:

$$
\begin{align*}
\omega(n) & =\operatorname{A1221(n)} \\
& =|\{p: p \mid n\}| \text { where } p \text { is prime. } \tag{1.1}\\
\Omega(n) & =\text { A1222(n) } \\
& =\sum_{p^{\varepsilon} \mid n} \varepsilon \text {, where } \varepsilon \text { is maximal such that } p^{\varepsilon} \mid n .
\end{align*}
$$

A prime power is a number $n=p^{\varepsilon}, \varepsilon \geq 0$, hence the sequence of prime powers is A961 $=\{1,2,3,4,5,7,8,9,11,13,16,17, \ldots\}$.

The number 1 represents the product of no primes at all; it is the empty product, hence $\omega(n)=\Omega(n)=0$. Therefore we are interested in the following set of prime powers:

$$
\begin{align*}
\text { A2 } 246655 & =\text { A961 } \backslash\{1\} \\
& =\left\{p^{\varepsilon}: \varepsilon \geq 1\right\} . \tag{1.4}
\end{align*}
$$

Hereinafter we then mean $n \in$ A246655 when we write "prime power". Using this definition, it follows that prime power $p^{\varepsilon}, \varepsilon \geq 1$, implies $\omega\left(p^{\varepsilon}\right)=1$ and $\Omega(n)=\varepsilon$.

A squarefree number n is a product of k distinct primes. It is clear that squarefree n implies $\omega(n)=\Omega(n)=k \geq 0$. The sequence of squarefree numbers is A5 $117=\{1,2,3,5,6,7,10,11,13,14,15,17, \ldots\}$.

Sequence A113901.

Define function $f(x)$ to be as follows:

$$
\begin{equation*}
f(x)=\omega(x) \times \Omega(x) . \tag{2.0}
\end{equation*}
$$

Then we generate the sequence A113901 $=f \mapsto \mathbb{N}$, which begins as shown below:
$0,1,1,2,1,4,1,3,2,4,1,6,1,4,4,4,1,6,1$,
$6,4,4,1,8,2,4,3,6,1,9,1,5,4,4,4,8,1,4$,
$4,8,1,9,1,6,6,4,1,10,2,6,4,6,1,8,4,8$,
$4,4,1,12,1,4,6,6,4,9,1,6,4,9,1,10, \ldots$
Lemma 2.1: Prime power $p^{\varepsilon}, \varepsilon \geq 0$ implies A113901 $\left(p^{\varepsilon}\right)=\varepsilon$.
Proof:

$$
\begin{aligned}
f\left(p^{\varepsilon}\right) & =\omega\left(p^{\varepsilon}\right) \times \Omega\left(p^{\varepsilon}\right) \\
& =1 \times \varepsilon \\
& =\varepsilon .
\end{aligned}
$$

Corollary 2.2: $f(1)=0$, since $1 \times \varepsilon=1 \times 0=0$.
Corollary 2.3: Prime p implies $f(p)=1$.
Corollary 2.4: Prime square p^{2} implies $f\left(p^{2}\right)=2$.
Lemma 2.5: Squarefree n, product of k distinct primes p, implies A113901 $(n)=k^{2}$.
Proof:

$$
\begin{aligned}
f(n) & =\omega(n) \times \Omega(n): \Omega(n)=\omega(n)=k \\
& =k \times k \\
& =k^{2} .
\end{aligned}
$$

Corollary 2.6: Squarefree semiprime $n \in \operatorname{a6881}$ implies $f(n)=4$.
Lemma 2.7: Number $n \in$ A126706, implies A113901 $(n)>k^{2}$.

Proof: Let $k=\omega(n)$ and let $j=\Omega(n)-\omega(n) \geq 1$.

$$
\begin{aligned}
f(n) & =\omega(n) \times \Omega(n) \\
& =k(j+k)
\end{aligned}
$$

Since $j>1, k(j+k)>k^{2}$.
Theorem 2.8: $f(n)<n$.
Proof: Natural numbers $n \in \mathbb{N}$ are either squarefree or not squarefree; they are either prime powers or not prime powers. Therefore Lemmas 2.1 through 2.7 cover all natural numbers.
Lemma 2.1 shows $p^{\varepsilon} \rightarrow \mathcal{\varepsilon}$, and since prime $p>1, p^{\varepsilon}>\varepsilon$.
Lemma 2.5 shows $n \rightarrow \omega(n)^{2}$ for squarefree n, and it is clear that such $n>\omega(n)^{2}$. Let $\mathcal{P}(k)=\mathrm{A} 2110(k)$ be the product of k smallest primes; it follows that $\mathcal{P}(k)>k^{2}$ for $k>0$.
Lemma 2.7 shows $f(n)>\omega(n)^{2}$, with $\omega(n)^{2}=k^{2}$ for numbers neither squarefree nor prime powers, that is, $n \in$ A126706. Knowing that $\mathcal{P}(k)>k^{2}$, and that we can produce a minimal $n \in$ A126706 via $2 \times \mathcal{P}(k)$ with $f(2 \times \mathcal{P}(k))=k(k+1) ; 2 \times \mathcal{P}(k)>k(k+1), k>1$. It becomes clear that we are dealing with exponentiation on the left hand side versus multiplication on the right, and we always have $n>f(n)$ for $n \in$ A126706.

Conclusions involving A113901:

- $1 \rightarrow 0$.
- Prime $p \rightarrow 1$ and generally $p^{\varepsilon} \rightarrow \varepsilon$.
- $n \rightarrow \omega(n)^{2}$ for squarefree n.
- $n \rightarrow k(j+k)$ for $n \in$ A126706, $k=\omega(n)$ and $j=\Omega(n)-\omega(n) \geq 1$.
- $n>f(n)$ for $n \in \mathbb{N}$.

Sequence A363920.

Define A363920 $=a$ to be the following:

$$
\begin{align*}
a(n) & =n^{\Omega(n) \omega(n)} \\
& =n^{\text {A113901 }(n) .} . \tag{3.0}
\end{align*}
$$

The first terms of this sequence appear below:

$$
\begin{aligned}
& 1,2,3,16,5,1296,7,512,81,10000,11,2985984, \\
& 13,38416,50625,65536,17,34012224,19,64000000, \\
& 194481,234256,23,110075314176,625,456976,19683, \\
& 481890304,29,19683000000000,31,33554432, \ldots
\end{aligned}
$$

(In this work we do not address the fact Peter Luschny defines $a(0)=1$, hence the sequence offset is 0 .)
Lemma 3.1: Prime power $p^{\varepsilon}, \varepsilon \geq 0$ implies A363920 $\left(p^{\varepsilon}\right)=p^{\varepsilon^{2}}$.
Proof:

$$
\begin{aligned}
a\left(p^{\varepsilon}\right) & =p^{\omega\left(p^{\varepsilon}\right) \Omega\left(p^{\varepsilon}\right)} \\
& =\left(p^{\varepsilon}\right)^{(1 \times \varepsilon)} \\
& =p^{\varepsilon^{2}} .
\end{aligned}
$$

Theorem 3.2: Number $n \in$ A8578 (i.e., $n=1$ or $n=p$ prime) implies fixed point $a(n)=n$.
Proof: $a(1)=1$ since $\Omega(n)=\omega(n)=0$. Hence $a(1)=1^{0}=1$
For prime $p, a(p)=p$ since $\Omega(p)=\omega(p)=1$. Hence $a(p)=p^{1}=p$. Therefore the proposition is true.
Corollary 3.3: Prime square p^{2} implies $a\left(p^{2}\right)=p^{4}$.

Lemma 3.4: Squarefree n, a product of k distinct primes p, implies $a(n)=n^{\left(k^{2}\right)}$.
Proof:

$$
\begin{aligned}
a(n) & =n^{\omega(n) \Omega(n)}: \Omega(n)=\omega(n)=k>1 \\
& =n^{(k \times k)} \\
& =n^{k^{2}} .
\end{aligned}
$$

Corollary 3.5: Squarefree semiprime $n \in$ a6881 implies $a(n)=n^{4}$. Corollary 3.6: Squarefree composite $n \in$ A120944 implies A363920 $(n) \in$ A303606. We note A303606 \subset A286708 \subset A126706. Remark:

$$
\text { A1 } 694=\{1\} \cup \text { A2 } 26547 \cup \text { A286708. }
$$

Since $j>1, n^{k(j+k)}>n^{k^{2}}$.
Lemma 3.7: Number $n \in$ A126706, implies A363920 $(n)>n^{k^{2}}$.
PRoof: Let $k=\omega(n)$ and let $j=\Omega(n)-\omega(n) \geq 1$.

$$
\begin{aligned}
a(n) & =n^{\omega(n) \Omega(n)} \\
& =n^{k(j+k)}
\end{aligned}
$$

Since $j>1, n^{k(j+k)}>n^{k^{2}}$.
Corollary 3.8: Number $n \in$ a 126706 implies $a(n) \in$ A2 86708 . We note A286708 \subset A126706.

Theorem 3.9: For $n \in$ a2808, $a(n)>n$.
Proof: Natural numbers $n \in \mathbb{N}$ are either squarefree or not squarefree; they are either prime powers or not prime powers. Therefore Lemmas 3.1 through 3.8 cover all natural numbers. Theorem 3.2 shows that primes and $n=1$ are fixed points, while Lemmas 3.4 and 3.7 show that $a(n)>n$ for $n \in$ A024619. Through Lemma 3.1, regarding $n=p^{\varepsilon}$ and setting $\varepsilon>1$ to obtain $n \in$ A246547 results in $a(n)>n$. Since A024619 U A246547 = A2808, we verify the proposition.

Conclusions involving $a=$ A363920:

- $n \rightarrow n$ for $n \in$ A8578, that is, $n=1$ or $n=p$ prime.
- $p^{\varepsilon} \rightarrow p^{\varepsilon^{2}}$, hence $n \in \mathrm{~A} 246547 \rightarrow m \in \mathrm{~A} 246547, m>n$.
- $n \rightarrow n^{k^{2}}$ for squarefree n.
- $n \in \mathrm{~A} 120944 \rightarrow m \in \mathrm{~A} 303606 ; \mathrm{A} 303606 \subset \mathrm{~A} 286708 \subset \mathrm{~A} 126706$.
- $p q \rightarrow(p q)^{4}$, primes $p<q$.
- $n \rightarrow n^{k(j+k)}$ for $n \in$ A126706, $k=\omega(n)$ and $j=\Omega(n)-\omega(n) \geq 1$.
- $n \in \mathrm{~A} 126706 \rightarrow m \in \mathrm{~A} 286708 ; \mathrm{A} 286708 \subset \mathrm{~A} 126706$.
- $a(n)>n$ for composite $n ; n \rightarrow m \in$ A1694, with $m>n$.

Essentially, $n=1$ or $n=p$ prime constitute fixed points, while composite prime power $n \in$ A246547 transforms into a number $m \in$ A246547 and $n \in$ A024619 transforms into a number $m \in$ A286708, $m>n$ in both latter cases. Therefore, A363920 is a sequence containing 1, the primes, and squareful numbers in A1694. The sequence

Figure 1: Plot the class of a $(120 m+k)$ at $(x, y)=(k, m+1)$, where the class of a number is coded according to colors in the key above. This plot demonstrates that 1 and prime constitute fixed points, while squarefree composites transform to a number in A303606, and numbers neither squarefree nor composite transform to a number in A286708.

References:

[1] N. J. A. Sloane, The Online Encyclopedia of Integer Sequences, retrieved July 2023.
Concerns sequences:
Aoooo40: Prime numbers.
AOO 1221: Number of distinct prime divisors of $n, \omega(n)$.
A001222: Number of prime divisors of n with multiplicity, $\Omega(n)$.
A001694: Squareful numbers, $\left\{a^{2} b^{3}: a \geq 1, b \geq 1\right\}$.
Aoo5 117: Squarefree numbers.
A013929: Numbers that are not squarefree.
Ao24619: Numbers that are not prime powers.
A113901: $\omega(n) \times \Omega(n)$.
A120944: Squarefree composites.
A126706: Numbers neither prime power nor squarefree.
A246547: Composite prime powers $p^{\varepsilon}: \varepsilon \geq 1$.
A286708: Products of A246547.
A332785: A126706 \A286708.
A363920: $n^{n(n) \omega(n)}=n^{A 113901(n)}$.
Document Revision Record:
2023 0720: Version 1.

