On A369690 $=\operatorname{MAX}(\operatorname{A119288(n),A053669(n)})$

 A sequence of Peter Munn

 A sequence of Peter Munn}

Michael Thomas De Vlieger • St. Louis, Missouri • 2 February 2024.

Abstract.

This is a brief study of the mappings of the function $\max \left(p_{2}, q\right)$ across natural numbers, where p_{2} is the second least prime factor of n (or 1 if n is a prime power), and q is the smallest prime nondivisor of n. We show that the function takes prime values for certain classes of number.

Introduction.

Let $p_{2}=$ A119288(n) be the second least prime factor of n or 1 if n is a prime power, i.e., $\omega(n)=1$, and let $q=\operatorname{Aos3669}(n)$ be the smallest prime that does not divide n.

We define the following functions:
$\Omega(n)=\mathrm{A} 1220(n)$, number of prime factors of n with multiplicity,
$\omega(n)=$ A1221 (n), number of distinct prime factors of n,
$\varkappa=\operatorname{RAD}(n)=\operatorname{A7947}(n)$, squarefree kernel of n,
$\mathcal{P}(n)=\mathrm{A} 211 \mathrm{O}(n)$, product of the smallest n primes,
$n / \operatorname{RAD}(n)=\operatorname{A3557}(n)$.
A126706 $=\{k: \Omega(k)>\omega(k)>1\}$, tantus numbers k neither squarefree nor prime powers.

We present 4 blocks resulting from the partition of tantus, known as the "constitutive quadrisection" of tantus numbers $k \in$ A126706 according to the magnitudes of A3557 (k), AO53669 (k), and A119288(k). These sequences are defined below:

$$
\begin{aligned}
& \mathrm{V} 74=\text { A361098 }=\left\{n: \Omega(n)>\omega(n)>1, p_{2}<n / x, q<n / x\right\} . \\
& \mathrm{V} 75=\text { A364999 }=\left\{n: \Omega(n)>\omega(n)>1, n / x<p_{2}, n / x<q\right\} . \\
& \mathrm{V} 76=\text { A364998 }=\left\{n: \Omega(n)>\omega(n)>1, q<n / x<p_{2}\right\} . \\
& \mathrm{V} 77=\text { A364997 }=\left\{n: \Omega(n)>\omega(n)>1, p_{2} \leq n / x<q\right\} .
\end{aligned}
$$

In [2] we find that A364999 represents even terms in A366825, minimally tantus numbers. The "panstitutive" sequence A361098, defined in [2], is remarkable in that it contains both A286708 and A131605, powerful tantus and tantus that are perfect powers, respectively [3].

In reflecting upon the definition of A361098, Peter Munn suggested the following sequence:

$$
\operatorname{V0223}=\operatorname{mAx}\left(p_{2}, q\right) \mapsto \mathbb{N}
$$

The sequence begins as follows:

$$
2,3,2,3,2,5,2,3,2,5,2,5,2,7,5,3,2,5,2 \text {, }
$$

5, 7, 11, 2, 5, 2, 13, 2, 7, 2, 7, 2, 3, 11, 17, 7, 5, $2,19,13,5,2,5,2,11,5,23,2,5,2,5,17,13,2$, $5,11,7,19,29,2,7,2,31,7,3,13,5,2,17, \ldots$

Let $a=$ vo223. The sequence is proposed in OEIS as A369690.
In the function $\max \left(p_{2}, q\right)$, we deal with primes related to n through divisibility and coprimality. It is easy to see the following:

$$
\begin{align*}
& a(n)=p \rightarrow a(m \chi)=p, \operatorname{RAD}(m) \mid \varkappa, \varkappa=\operatorname{RAD}(n) . \\
& a(n)=p \text { for certain } k \in\{k=m \varkappa: \operatorname{RAD}(m) \mid \varkappa\} . \tag{1.2}
\end{align*}
$$

Lemma A1. $a(n)=2$ for n in A061345, where we define A061345 to be thus:

$$
\begin{align*}
\text { A061345 } & =\left\{p^{\delta}: p>2, \delta \geq 0\right\} \\
& =\cup(\{1\},\{m p: p>2, \operatorname{RAD}(m) \mid p\}) . \tag{1.3}
\end{align*}
$$

This is to say, n is an odd prime power.
Proof. Consequence of $q=2$ since n is odd, but $p=1$ since n is a prime power.
Lemma A2. $a(n)=3$ for n in A79, where we define A79 to be thus:

$$
\begin{align*}
\text { A79 } & =\left\{2^{\delta}: \delta \geq 0\right\} \\
& =\cup(\{1\},\{2 m: \operatorname{RAD}(m) \mid 2\}) . \tag{1.4}
\end{align*}
$$

This is to say, n is a power of 2 .
Proof. Consequence of $q=3$ since n is even, but $p=1$ since n is a prime power.

Lemma A3. $a(n)=\operatorname{PRIME}(j)$ for $j>2$ and $\mathcal{P}(j-1)$-coregular sequence

$$
\{k=m \times \mathcal{P}(j-1): \operatorname{RAD}(m) \mid \mathcal{P}(j-1)\}
$$

Proof. For primorials $\mathcal{P}(i), i>1$, we show $p_{2}=3$, but $q>3$. Hence, $a(\mathcal{P}(i))=\operatorname{PRIME}(i+1)$, thus, $a(\mathcal{P}(j-1))=\operatorname{Prime}(j)$. This pertains to the $\mathcal{P}(j-1)$-coregular sequence via Lemma A1.
Lemma A4. $a(n)=\operatorname{PRIME}(j)$ for $j>2$ and the following sequence:

$$
\begin{gather*}
\{k=m \times \mathcal{P}(j-1) \times Q: \operatorname{Rad}(m) \mid \mathcal{P}(j-1), \\
\left.\forall p_{+} \mid Q, p_{+}>\operatorname{PRIME}(j)\right\} . \tag{1.6}
\end{gather*}
$$

Proof. Consequence of Lemma A3 and the fact that multiplication of $\mathcal{P}(j-1)$ by a product of primes $p_{+}>\operatorname{PRIME}(j)$ preserves $p_{2}<q$, with $a(n)=q=\operatorname{Prime}(j)$.
Define number triangle $T(n, k)=\operatorname{Prime}(k) \times \operatorname{Prime}(n), k<n$, where the vectorized sequence is A339116, a permutation of squarefree semiprimes, A100484
{4\}. }

The triangle $T(n, k)$ begins as shown below:

$\mathrm{n} \backslash \mathrm{k}$	1	2	3	4	5	6	7	8
2:	6 ;							
3:	10,	15;						
4:	14,	21,	35 ;					
$5:$	22,	33,	55,	77 ;				
$6:$	26,	39,	65,	91,	143;			
$7:$	34,	51,	85,	119,	187,	221 ;		
8 :	38,	57,	95,	133,	209,	247,	323;	
9:	46,	69,	115,	161,	253,	299,	391,	437

Lemma A5:

$$
T(n, k)=\operatorname{PRIME}(k) \times \operatorname{PRIME}(n), n>2, k<n \text { implies } q<p_{2} .
$$

Proof. Aside from $s=T(2,1)=6, q<p_{2}$, since even s implies $q=3$ and odd s implies $q=2$, but $p_{2}=\operatorname{PRIME}(n)>q$ in both cases.
This is tantamount to saying that A100484(n) > 6 implies $q<p_{2}$.
Lemma A6. The inequality $q<p_{2}$ is preserved for the following infinite sequences:

$$
\left\{T(n, k) \times Q: n>2, \forall p_{+} \mid Q, p_{+} \geq \operatorname{PRIME}(n)\right\} \rightarrow q<p_{2} .
$$

Proof. Consequence of $p_{2}=\operatorname{Prime}(n)<p_{+}$. The factor Q is a product of primes larger than $p_{2}=\operatorname{PRIME}(n)$ and presents no impact on the fact that $q<p_{2}$.

Lemma A7. $a(n)=\operatorname{Prime}(j)$ for $j>2$ and for the following k-coregular sequence:

$$
\begin{align*}
& \{k=m \times T(j, k) \times Q: \\
& \operatorname{RAD}(m) \mid T(j, k), \\
& \left.\forall p_{+} \mid Q, p_{+} \geq \operatorname{PRIME}(j)\right\} . \tag{1.7}
\end{align*}
$$

Proof. Consequence of Lemmas A3, A4, and A5.
However, we explore the case of prime $m=p$ such that $p<\operatorname{PRImE}(j)$ and $p \neq \operatorname{PRIME}(k)$. Suppose $m>q$. Then $a(n)=p_{2}=p$ and we have a number in the form of Lemma A5 instead for $j=\pi(p)$. It is clear that $m=5$, or any product that yields $\mathcal{P}(i)$ for $\mathrm{i}>2$ gives us a number of the form shown by Lemma A4.

It is clear we may rewrite the formula shown in Lemma A7 thus:

$$
\begin{aligned}
& \{k=m \times d \times Q: \operatorname{Rad}(m)|d, \forall q| Q, q \geq \operatorname{PRIME}(j-1)\} \\
& \quad \text { for } d|\mathcal{P}(j): \omega(d)=2, \operatorname{PRIME}(j-1)| d .
\end{aligned}
$$

Theorem A assembles Lemmas A1-A7.
$a(n)=2$ for n that are powers of odd primes.
$a(n)=3$ for $n>1$ that are powers of 2 .
$a(n)=\operatorname{PRIME}(j)$ for $j>2$ and for both of the following:

$$
\begin{gathered}
\{k=m \times \mathcal{P}(j-1) \times Q: \operatorname{RAD}(m) \mid \mathcal{P}(j-1), \\
\left.\forall p_{+} \mid Q, p_{+}>\operatorname{PRIME}(j)\right\}, \text { and } \\
\{k=m \times d \times Q: \operatorname{RAD}(m)|d, \forall q| Q, q \geq \operatorname{PRIME}(j-1)\} \\
\text { for } d|\mathcal{P}(j): \omega(d)=2, \operatorname{PRIME}(j-1)| d .
\end{gathered}
$$

Corollary A8. $a(n)<5$ for $n \in$ A961.
Corollary A9. $a(n) \geq 5$ for $n \in \operatorname{AO} 24619$.
Corollary A10. A3557 $(n)>a(n) \geq 5$ for $n \in \operatorname{A3} 61098$.

Conclusion.

We have shown that $\operatorname{vo223}(n)=2$ for odd prime powers $n, \operatorname{Vo223}(n)$ $=3$ for n that are powers of 2 , and exceeds 3 for numbers that are not prime powers. Among numbers that are not prime powers, we see

Concerns Sequences:

A000079, A000224, A000961, A002110, A003557, A006530, A006881, A007947, A024619, A053669, A061345, A100484, A119288, A126706, A339116, A361098, A364997, A364998, A364999, A369690. [1]
(V7, V9, V74, V75, V76, V77, Vo103, Vo109, Vo 111 , Vo119, Vo220, Vo222, VO223, Vo4O1, Vo4O2, Vo612, V1002, V1003.)

References:

[1] N. J. A. Sloane, The Online Encyclopedia of Integer Sequences, retrieved January 2024.
[2] Michael Thomas De Vlieger, Constitutive State Counting Functions, Simple Sequence Analysis, 20230226.
[3] Michael Thomas De Vlieger, Partitioning the Set of Tantus Numbers, Simple Sequence Analysis, 20240106.
Code:
[C1] Generate 2^{14} terms of vo223:

```
    v0223 = {2}~Join~Array[
        If[PrimePowerQ[#],
        q = 2; While[Divisible[#, q], q = NextPrime[q]]; q,
        q = 2; While[Divisible[#, q], q = NextPrime[q]];
            Max[FactorInteger[#][[2, 1]], q]] &, 2^14, 2] ];
```

