Divisibility Based Lexically Earliest Sequence with Cellular Automaton Behavior.

Michael Thomas De Vlieger • St. Louis, Missouri • 14 March 2024.

Abstract

We examine some qualities of a lexically earliest sequence (LEs) based on divisibility of prime p that resemble a 1 dimensional cellular automaton that is affected by multiplication of a squarefree kernel r by kernel register $m(r)$. The sequence moves into and out of "coherence", defined in the paper, and in rare, intermittent, highly quasicoherent phases, admits primes and their perfect powers as well as composite powerful numbers. Otherwise the sequence is dominated by weak composites (as opposed to powerful numbers).

A. Introduction.

David Sycamore wrote an integer sequence A369609 defined to be as follows:

$$
\begin{aligned}
& a(1)=1, a(2)=2 \text {; } \\
& \text { for } n>2, a(n)=k=m(r) \times r, \\
& \text { with minimal } k \neq a(j), j<n, \text { where } \\
& R=\operatorname{RAD}(a(n-2) \times a(n-1)) \text { and } \\
& r=R / \operatorname{RAD}(a(n-1))
\end{aligned}
$$

The $\operatorname{RAD}(x)$ function yields the squarefree kernel A7947 (x). First terms of the sequence are shown below (see Code [C1]):

$$
\begin{aligned}
& 1,2,3,4,6,5,12,10,9,20,15,8,30,7,60,14, \\
& 45,28,75,42,25,84,35,18,70,21,40,63,50,105, \\
& 16,210,11,420,22,315,44,525,66,140,33,280, \\
& 99,350,132,175,198,245,264,385,24,770, \cdots
\end{aligned}
$$

Lemma A1:
Minimal k implies minimal $m(r)$, since r is held constant.
The above lemma implies approaching the solution to $a(n)$ from below via incrementation on $m(r)$. An approach from below (a greedy approach) ensures that no multiple k of the squarefree number r will go missing provided input r materializes infinitely as n increases to infinity.
Let $S=\{p: p \mid a(n-2)\}$ be the set of prime factors of $a(n-2)$.
Let $T=\{p: p \mid a(n-1)\}$ be the set of prime factors of $a(n-1)$.
Theorem A2. $r=\Pi(S \backslash T)$, that is, r is the product of the set difference of S and T.
Proof. The expression $\Pi(S \backslash T)$ signifies removal of any prime p such that $p \mid a(n-1)$ from set S of primes p that also divide $a(n-2)$. We are left with a product r of primes p such that while $p \mid a(n-2)$, the same prime $p \nmid a(n-1)$.
Expand the expression shown below:

$$
\begin{aligned}
r & =R / \operatorname{RAD}(a(n-1)) \\
& =\operatorname{RAD}(a(n-2) \times a(n-1)) / \operatorname{RAD}(a(n-1))
\end{aligned}
$$

The result essentially removes any prime p such that $p \mid a(n-1)$ from r, leaving us with the same product of primes p that divide $a(n-2)$ but do not divide $a(n-1)$. Logically, we may write the following equivalent expression:

$$
\begin{aligned}
r & =\Pi\{p: p \mid a(n-2) \wedge p \nmid a(n-1)\} \\
& =\Pi\{p: p|a(n-2) \vee p| a(n-1)\} / \Pi\{p: p \mid a(n-1)\} \\
& =\Pi(S \backslash T) .
\end{aligned}
$$

The expression $r=R / \operatorname{RAD}(a(n-1))$ is necessary to remove primes p that divide $a(n-1)$ by means of simple division.

Figure 1. 1 og log scatterplot of 10^{5} terms, showing primes in red, perfect powers of primes in yellow, squarefree composites in green, and numbers neither squarefree nor prime powers in 6lue or purple. We accentuate powerful numbers that are not perfect powers of primes in purple. Note clustering of powerful numbers near $n=10^{5}$ and seeming association 6etween powers of 2 , primorials, and primes in the sequence for small values of n.
Given Lemma A1 and Theorem A2, we may approach generation of the sequence through the following practical means. A priori, we set $m(r)=1$ for all r. Upon input of the kernel r, we increment $m(r)$ until $m(r) \times r \neq a(j), j<n$. Hence, $m(r)$ behaves as a sort of counter or register that needs adjustment for the occasion $a(j)=m(r) \times r, j<n$, in other words, when the product already appears in the sequence. A natural consequence is that $a(n)$ are distinct.

We define a 2 -input function $f(x, y)$ defined to be as shown below:

$$
f(x, y)=m(r)^{++} \times r, r=\Pi(\{p: p \mid x\} \backslash\{p: p \mid y\})
$$

The result of this function is a multiple of the kernel r. Suppose that we apply the function $f(x, y)$ given x and y for the first time. Then we have the result $m(r) \times r=1 \times r=r$. Suppose that we reiterate the function given the same input. Then we have the result $2 \times r$. A third iteration gives the output $3 \times r$, and so on. This function implies global management of the register $m(r)$. Through this function we may rewrite the sequence definition instead as follows:

$$
\begin{aligned}
& a(1)=1, a(2)=2 \\
& \text { for } n>2, a(n)=k=f(x, y) \\
& \text { iterating } f(x, y) \text { until } k \neq a(j), j<n .
\end{aligned}
$$

[1.2]
Thus we describe practical means by which we may compute many of terms of the sequence, limited only by the efficacy of implementation of the RAD function, which requires factorization.

General Observations.

Examining the first 2^{26} terms, several conjectures seem evident.
Conjecture A. There is a chain $2^{i} \rightarrow \mathcal{P}(i) \rightarrow \operatorname{Prime}(i+1)$, where $\mathcal{P}(i)$ is the product of the smallest i primes, i.e., primorial A2110 (i).

Examples include $\{4,6,5\},\{8,30,7\}$, and $\{16,210,11\}$. See Appendix Tables A and B.
The conjecture is false, since $a(59)=13$ but $a(57)=26$. Furthermore, $a(621674)=67$ but the term preceding it is not a primorial.

Table 1: Composition of smallest 62 terms

```
    indicates p divides neither r nor m(r),
    hence p does not divide a(n).
o indicates p | r
x indicates p | m(r).
* indicates p divides both r and m(r).
```

	prime p	Cases
	11	
n \quad a(n) 235713	$r m(r)$	235713

1	1		1	1		< empty product
2	2	x....	1	2	F	< prime (1) = P(1)
3	3	. \times.	1	3	gF	< prime(2)
4	4	*	2	2	Bg	< 2^2
5	6	xo.	3	2	Ha	$<\mathrm{P}(2)$
6	5	x	1	5	CgF	< prime(3)
7	12	*o.	6	2	Bag	
8	10	x.o.	5	2	Hga	
9	9	.*.	3	3	CBg	< 3^2
10	20	*.0...	10	2	Bga	
11	15	.ox...	3	5	gat	
12	8	*	2	4	BgC	< 2^3
13	30	xoo...	15	2	Haa	< P(3)
14	7	. .x. .	1	7	CggF	< prime (4)
15	60	*00...	30	2	Baag	
16	14	x..o.	7	2	Hgga	
17	45	.*○...	15	3	CBag	
18	28	*..0..	14	2	Bgga	
19	75	.o*...	15	5	gaBg	
20	42	ox.0..	14	3	aHga	
21	25	. .*..	5	5	gCBg	$<5^{\wedge} 2$
22	84	*o.o..	42	2	Baga	
23	35	. .ox.	5	7	ggaH	
24	18	-*.	6	3	aBgC	
25	70	x.00..	35	2	Hgaa	
26	21	.o.x. .	3	7	CagH	
27	40	*.o...	10	4	BgaC	
28	63	.*.0..	21	3	gBga	
29	50	-.*.	10	5	agBg	
30	105	.oxo. .	21	5	gaHa	
31	16	*	2	8	BgCg	< 2^4
32	210	xooo..	105	2	Haaa	< P(4)
33	11	. . . x.	1	11	Cgggr	< prime (5)
34	420	*000..	210	2	Baaag	
35	22	x...o.	11	2	Hggga	
36	315	.*00..	105	3	CBaag	
37	44	*...o.	22	2	Bggga	
38	525	.o*०..	105	5	gaBag	
39	66	ox..o.	22	3	aHgga	
40	140	x.00..	35	4	HCaag	
41	33	.o. .o.	33	1	Cagga	
42	280	*.00..	70	4	Bgaag	
43	99	.*..o.	33	3	gBgga	
44	350	-.*o..	70	5	agBag	
45	132	xo..o.	33	4	Hagga	
46	175	. .*o.	35	5	CgBag	
47	198	-*..o.	66	3	abgga	
48	245	. .o*.	35	7	ggabg	
49	264	*o..0.	66	4	Bagga	
50	385	. .oox.	35	11	ggaaH	
51	24	*0...	6	4	BaggC	
52	770	x.000.	385	2	Hgaaa	
53	27	*.	3	9	CBggg	$<3^{\wedge} 3$
54	1540	*.000.	770	2	Bgaaa	
55	36	x*....	3	12	HBggg	$<2^{\wedge} 2 * 3 \wedge 2$
56	1155	. xooo.	385	3	CHaaa	
57	26	-....x	2	13	aCgggF	
58	2310	x0000.	1155	2	Haaag	$<\mathrm{P}(5)$
59	13 0	13	1	Cgggga	< prime (6)
60	4620	*0000.	2310	2	Baaaag	
61	39	.x. . 0	13	3	gHggga	
62	3080	*.000.	770	4	BCaaag	
63	78	xo... 0	39	2	Haggga	
64	1925	. .**0.	385	5	CgBaag	
65	156	*0...0	78	2	Baggga	
66	2695	. .o*o.	385	7	ggaBag	
67	234	-*...○	78	3	aBggga	
68	3465	.x000.	385	9	gHaaag	
69	52	*....○	26	2	BCggga	
70	5775	. $0 *$ *	1155	5	gaBaag	

Conjecture A.1. Primes appear in order as n increases. The conjecture is FALSE; $a(87723)=59$ but $a(91307)=53$. See Appendix Table A, Note A.

Conjecture A.2. Primorials appear in order as n increases. The conjecture is FALSE; $a(28709)=\mathcal{P}(14)$ and $a(87722)=\mathcal{P}(16)$; for $n \leq 2^{26}, \mathcal{P}(15)$ has not appeared. See Appendix Table B, Note B.
Conjecture A.3. Powers of 2 appear in order as n increases. This conjecture seems to be true, but we see the following. For $n \leq 2^{26}$, no power of 2 that exceeds 32 appears; the last power of 2 seen is $a(699)$ $=32$, but those powers of 2 that do appear indeed occur in order as n increases. (See Theorem G2.)
Conjecture B. Powerful numbers appear in clusters, e.g., for n roughly between 91200 and 91320 . See Appendix Table D.
Conjecture C. A369609 is a permutation of natural numbers.
Therefore we can show by construction that there does not exist a chain $2^{i} \rightarrow \mathcal{P}(i) \rightarrow \operatorname{PRIME}(i+1)$ except for $i<5$. We note that 32 precedes $\mathcal{P}(8) \rightarrow \operatorname{Prime}(9)=23$ (see Appendix Table F5), and that $\mathcal{P}(i)$ \rightarrow PRIME $(i+1)$ occurs more often, yet not always.

These conjectures inspire us to undertake further examination of oeis A369609.

B. Sequence Mechanics.

Given a dataset of terms, sensing prime factors of terms are kept small, we endeavor to examine the nature of kernel r and multiplier $m(r)$. The following notion is aided by Theorem A1 above and Theorems 5 and 8, and Corollary C4.1 below.

$$
\begin{equation*}
p \leq \operatorname{GPF}(a(n-1))+2 . \tag{2.1}
\end{equation*}
$$

As a consequence it is indeed meaningful to examine divisibility patterns among primes p that satisfy [2.1].
We can employ A087207 to visualize prime divisors $p \mid a(n)$, where A087207 is defined to be as follows:

$$
\begin{align*}
\text { For } x & =\prod_{i=1}^{\omega} p_{i}^{\delta_{i},} \\
\operatorname{A087207(x)} & =\sum_{i=1}^{\omega} 2^{\pi\left(p_{i}\right)-1} . \tag{2.2}
\end{align*}
$$

In the above, ω signifies the number of distinct prime factors of x. Example: $\operatorname{A0} 87207(126)=2^{0}+2^{1}+2^{3}=11$, since $126=2 \times 3^{2} \times 7$. The function ignores multiplicity of prime power factors, retaining only the prime indices and encoding them in a binary number.
We express A087207(r) as a series of bits from least to greatest, left to right. For example, we express A 087207 (126) as " 1101 " and then we replace 0's with "." and 1's with "०" for clarity, thus "oo.0".
If we express primes $p \mid m$ instead by " \mathbf{x} " when p does not also divide r, and by " \star " when both $p \mid r$ and $p \mid m$, we arrive at a compact means of examination of some of the sequence's mechanics.
Therefore, for example, $a(72)=6930=6 \times 1155$, so we perform the following operation:

$$
\begin{array}{rl}
\operatorname{RAD}(m(r))=\operatorname{RAD}(6)=2 \times 3 & \mathbf{x x} \ldots \ldots \\
\operatorname{RAD}(r)=\operatorname{RAD}(1155)=3 \times 5 \times 7 \times 11 & .0000 \ldots \\
r=\Pi(S \backslash T)=\mathcal{P}(5) & \mathbf{x * 0 0 0 \ldots}
\end{array}
$$

The downside of this protocol is that we lose multiplicity information, but such information merely pertains to the register $m(r)$. We know that $m(r)$ is a greedy function from Lemma A1; its behavior is relatively easy to understand. Therefore, the A087207 protocol focuses on relationships of Prime (i) to each of x, y, m, and k with respect to function $f(x, y)$. Table 1 exhibits notation based on Ao87207 for $a(n), n=1 \ldots 70$.

Define function $g(r, m(r))$ to be as follows:

$$
\begin{align*}
& \text { For } p=\operatorname{PRIME}(i), i=1 \ldots j, \\
& (p \mid r \Rightarrow 1)+(p \mid m(r) \Rightarrow 2) \tag{2.4}
\end{align*}
$$

Function output is an array such that terms are in order of prime i. Then we convert numerical output to symbols using the following replacement rules:

$$
\{0 \rightarrow ., 1 \rightarrow 0,2 \rightarrow \mathbf{x}, 3 \rightarrow *\}
$$

Thereby we represent the protocol described above in a logical manner in the form of a function.

Example: for $a(72)=6930=6 \times 1155$, we have $g(1155,6)$, which yields $\{2,3,1,1,1,0, \ldots\}$, and this converts to " $x * 000 \ldots$. ."

C. Divisibility Truth Table.

Recognizing that the RAD function requires factorization, we consider the effects of the definition of $f(x, y)$ as regards divisibility of x, y, and m by primes p.

First, we present several corollaries that follow from the expression $k=m(r) \times r$:
Corollary C1.1. $p \mid a(n-2)$ but $p \nmid a(n-1)$ implies $p \mid a(n)$ (See cases (A) (B).

Corollary C1.2. Primes p that divide both $a(n-2)$ and $a(n-1)$ do not also divide $a(n)$ unless $p \mid m$ (See cases (C)(D).
Corollary C1.3. $p \mid a(n-1)$ but $p \nmid m$ implies $p \nmid a(n)$ unless $p \mid$

Corollary C1.4. $p \mid m$ implies $p \mid a(n)$ (see cases (B) (D) © \oplus)
These inspire thought regarding a truth table whose values are consequences of sequence definition. We recognize, vis à vis the function $f(x, y)=k$, that $x=a(n-2), y=a(n-1)$, and $k=a(n)$, where the latter is accepted as a solution provided $k \neq a(j), j<n$.

Theorem C1. The truth table above is equivalent to the following logical formula: $(p \mid a(n-2) \wedge p \nmid a(n-1)) \vee p \mid m$.

This summarizes the Corollaries 1.1-1.4.
We examine some basic divisibility patterns, and conclude that R is a primorial.

Theorem C2. Case © implies $p \nmid a(n)$, but $p \mid a(n+1)$.
Proof. With respect to $a(n+1)$, Case (C) furnishes either Case (A) or Case (B), both of which results in $p \mid a(n+1)$.
Theorem C3. Case (G) implies $p \nmid a(n)$, but $p \mid a(n+1)$.
Proof. With respect to $a(n+1)$, Case (G) furnishes either Case (A) or Case (B), both of which results in $p \mid a(n+1)$.

Theorem C4. $p \mid a(j)$ implies either $p \mid a(j+1)$ or $p \mid a(j+2)$.
Proof. $p \mid a(j+1)$ results from $p \mid m$ via either Case (D) or Case \oplus, while $p \mid a(j+2)$ results from either Case © ${ }^{(A)}$ or Case (B).
Corollary C4.1. Both $a(n-2)$ and $a(n-1)$ are such that R is a primorial, i.e., $R=\mathcal{P}(i)=\mathrm{A} 2110(i)$.

We present constraints on the constitution of k, i.e., prime power decomposition of k, given that R is a primorial.
Let $Q=\operatorname{GPF}(R)=\operatorname{A653O}(R)$.
Theorem C5. Q is nondecreasing as n increases.
Proof. Consequence of Case © and Theorem C4.
Theorem C6. Both $R(n)=\mathcal{P}(i+1)$ and $a(n)=\mathcal{P}(i)$ imply the following:

$$
\begin{equation*}
a(n+1)=\operatorname{PRIME}(i+1) . \tag{3.1}
\end{equation*}
$$

Table 2.

	x	y	m	$a(n)$	$a(n+1)$	sym.
(E)	(E)	\rightarrow
©	.	.	T	T	(G) ${ }^{(1)}$	$\cdots \rightarrow \mathbf{x}$
(G)	.	T	.	.	(A) (B)	. @ \rightarrow.
(1)	.	T	T	T	(C)	. @ \rightarrow x
(A)	T	.	.	T	(G)®	@. \rightarrow -
(B)	T	.	T	T	(G)®	@. \rightarrow *
(C)	T	T	.	.	(A) (B)	@@ \rightarrow
(D)	T	T	T	T	(C)(1)	@@ \rightarrow x

Table 2 shows "." if prime p does not divide or " \uparrow " if p divides the entity shown in the column heading. The $a(n+1)$ column shows possible cases that follow the case listed in the first column. The "sym." column refers to the A087207 protocol function g defined as follows: "@" represents general divisibility, "." represents general indivisibility, "o" represents $p \nmid r \wedge p \nmid$ m, " x " represents $p \nmid r \wedge p \mid m$, and " \star " represents $p|r \wedge p| m$. The arrow indicates output. For example, Case (B) represents @ $\rightarrow \mathbf{x}$, which means that $p \mid x$ and $p \mid m$, but $p \nmid y$. Since both $p \mid r$ and $p \mid m$, we have \mathbf{x}.

Proof. Consequence of Case \oplus and Theorems 5 and 6.
Theorem C7. For any kernel r, there are $2^{\omega(k)}$ combinations of factors of r.
Proof. The kernel r is squarefree by definition, the result of taking squarefree kernels. The divisor counting function $\tau(r)$ is defined to be as follows:

$$
\tau(r)=\prod_{\left.p^{\delta}\right|_{r}} \delta+1,
$$

where δ is maximal such that $p^{\delta} \mid r$.
[3.2]
Since r is squarefree, $\delta=1$ in all cases, therefore, we have $2^{\omega(k)}$ divisors of r. ■

Corollary C7.1. Powerful number $k \in$ a 1694 implies $m(r) \geq r$.
Proof. A powerful number k is such that $\operatorname{RAD}(k)^{2} \mid k$, hence, since both $m(r) \mid k$ and $r \mid k$, with r squarefree such that $r \leq \operatorname{RAD}(k)$, we minimize $m(r)$ by maximizing r, which occurs when $r=\operatorname{RAD}(k)$. Therefore the multiplier $m(r)$ for squarefree r must be at least as large as r.

Corollary C7.2. Perfect prime power $k=p^{\delta}$, i.e., $k \in$ a246547, implies $m(r) \geq r$, where $r=p$, hence, $m(p) \geq p$.
Theorem C8. Regarding an arbitrary index $n>1$, let $Q=\operatorname{GPF}(R)$ and let \mathcal{M} be the maximum value of $m(r)$. Then we have the following:

$$
\begin{equation*}
\mathcal{M}<\operatorname{PRIME}(\pi(Q)+1) . \tag{3.3}
\end{equation*}
$$

Proof. Consequence of Case \oplus and Theorem C5.
See Table F15A for values of \mathcal{M} for $n \leq 2^{27}$.
Corollary C8.1. \mathcal{M} implies no powerful number k can appear as $a(j), j \leq n$, such that $\operatorname{Rad}(k)>\mathcal{M}$.
Example: if $\operatorname{GpF}(R)=Q=19$, then $\mathcal{M}<23$, hence there can be no powerful number $k=a(1 \ldots n)$ such that $k \geq 23^{2}=529$, which is equivalent to saying $\operatorname{RAD}(k) \geq 23$.
Corollary C8.2. The largest powerful number K in the sequence is governed by Q such that $K<\operatorname{PRIME}(\pi(Q)+1)^{2}$.
Theorem C9. Let s be a squarefree number. All s may appear in the sequence. Consequence of Corollary 1.4, i.e., Cases $(A)(B)(1) \oplus(1)$.

Table 2 summarizes logic in the above theorems and corollaries.

D. Extended Divisibility Patterns.

Through the logical formula [3.0] in Theorem C1 and the truth table (Table 2), we explore extended patterns of divisibility of x, y, m, and k by a given prime p by assuming both $p \mid m$ and $p \nmid m$, then following the resultant term by setting $x=a(n-1)$ and $y=k$. In this manner we can examine flow structures based on the 8 cases laid out in the truth table.

Theorem D1. Some extended divisibility patterns that are consequences of the truth table, replacing T with 1 for divisibility by p :

Table 3.

AGA	1.1.1	AGB	1.1.1	AHC	1.11	AHD	1.111
BGA	1.1.1	BGB	1.1 .1	BHC	1.11.	BHD	1.111
CAG	11.1	CAH	11.11	CBG	11.1.	CBH	11.11
DCA	111.1	DCB	111.1	DDC	1111.	DDD	11111
EEE							
FGA	. 1.1	FGB	. 1.1	FHA	. 1.1	FHB	. 1.1
GAG	.1.1	GAH	.1.1	GBG	.1.1	GBH	.1.1
HCA	.11.1	HCB	. 11.1	HDC	. 111.	HDD	. 1111

Table 3 is a consequence of the 8 cases described in the truth table, i.e., Table 2. In Table 3, we write a string of successive cases followed by the divisibility patterns.

Example: The entry aga 1.1 .1 represents the following:
Case (A) followed by Case © , then in turn followed by Case © ${ }^{(4)}$. Holding n constant, this results in the following:

$$
p|a(n-2), p \nmid a(n-1), p| a(n), p \nmid a(n+1), p \mid a(n+2) .
$$

From this we can see the following divisibility patterns:
Case (A) has $p \mid a(n-2), p \nmid a(n-1)$, and assume $p \mid m$, therefore we have k such that $p \mid k$.

We assume that $a(n)=k$.
Now for $a(n+1)$, we set $x=a(n-1)$ and $y=a(n)$. Assuming $p \mid m$, we obtain k such that $p \nmid k$. We assume that $a(n+1)=k$.

Finally, we we set $x=a(n)$ and $y=a(n+1)$ to project $a(n+2)$. Assuming $p \mid m$, we obtain k such that $p \mid k$.

We may summarize these patterns in the example using the respective cases showin in the truth table:

	x	y	m	k	k^{\prime}
(A)	T	.	.	T	(G) (1)
(${ }^{\text {c }}$.	T	.	.	(A)(B)
(A)	T	.	.	T	(G) (1)

For concision, we might abbreviate all of the above example as the entry AGA 1.1.1.

Some dependencies based on Table 3:
Corollary D1.1. Cases © ${ }^{(A)}$ or (B) lead to Cases © $\operatorname{(G)}$ or \oplus, which in turn lead to (A), (B), © , or (ㅁ).
Corollary D1.2. Cases (C) or (G) lead to Cases (A) or (B).
Corollary D1.3. Case \oplus leads to Cases © or ©
Corollary D1.4. A run of repeated Cases (D) implies $p \mid a(n)$ for as long as the run is unbroken by Case (C).
For $n \leq 2^{20}$, Case (D) appears at most only twice in a row. Duplex (D) first appears at a (1662), see Appendix Table F8 for analysis.
Corollary D1.5. Case © leads to Case © or itself; through Case (C), to either ${ }^{(A)}$ or (B).

Theorem D1.6. Cases (A), (B), © (© , (G) and © comprise a closed system. (See Theorem D1.8.)

Corollary D1.7. Case © $(\mathbb{C}$ is idempotent, i.e., Case © gives rise to itself. This is to say, if a prime p divides none of x, y, or m, then it also does not divide k. Prime p will not divide y so long as it does not divide m as we iterate function f and accept output.
Theorem D1.8. Case © introduces prime $p \mid a(n)$ solely through $p \mid m$. Then via Case © or Case \oplus, p does not divide $a(n+1)$, and thereafter, through either Case (A) or Case (B), $p \mid a(n+2)$.
Corollary D1.9. Patterns that alternate either Case (A) or Case (B), followed by Case © , imply alternating divisibility by prime p. This is to say, if prime p divides either $a(n-2)$ or $a(n-1)$ but not both, regardless of whether p also divides m, repeats divisibility or nondivisibility of $a(n)$ by p.
Theorem D2. For $p \leq Q p \nmid a(n)$ implies $p \mid a(n+1)$. This is to say that, after Case \bigodot introduces $p \mid a(n)$, such divisibility is interrupted at most by singleton terms as n increases through either Case (D) or Case (G. Consequence of Theorem C4.
Theorem D3. Change in alternating (A) © derives from m. Consequence of definitions of Cases in the truth table (Table 2).

Figure 2 summarizes extended divisibility patterns presented through the logic of Tables 2 and 3.

Figure 2.

Figure 2 demonstrates the following:
Repeated Nondivisibility Case (E)
Introduction of Divisibility Case \oplus
Alternating Divisibility Cases (A) (B)(G)
Repeated Divisibility Cases (D) (\rightarrow)
Transition from repeated to alternating cases, Case ©
For prime p, Case © ${ }^{(E)}$ implies Case © until $m(r)$ increments to p for some r, hence $a(j)=k$ such that $p \mid k$, and we have Case \oplus. Therefore, repeated Case (E) represents repeated nondivisibility with respect to $p \mid a(n)$. This repeated nondivisibility is finally broken through Case $€$, introducing divisibility of $a(j)$ by p, thereafter, for $n>j$, through Theorem C4, p divides either $a(n-1)$ or $a(n)$ or both.

In the course of sequence generation for $n>j$, so long as we have duplexes where Cases (A) (B) are followed by Case (G), we have an alternating divisibility pattern. However, if Case \oplus comes in place of Case (G) (i.e, in addition to $p \mid a(n-1), p$ also divides m), we exit the alternating divisibility pattern.

Case \oplus induces repeated divisibility, that is, p divides both $a(n)$ and $a(n+1)$. We have Case (D) if p divides all of $a(n-2), a(n-1)$, and m; so long as this situation lasts, p divides $a(n)$. When p fails to divide m as n increases, we have Case © and we exit repeated divisibility.
Among all the divisibility cases, alternating (A) (G) is the commonest. Primes p enter divisibility via sequence... (ㄷ)(ㄷ(G)(A).. until they are perturbed by $p \mid m$, transmuting (G) to \oplus. When \oplus is followed by ©, we have changed index parity of divisibility by p. See Appendix Table E for a study of case frequencies.

This, in a nutshell, completely describes divisibility patterns in this sequence with regard to an arbitrary prime p.

E. Alternating Divisibility Patterns.

Consider the bisection of A369609 by index parity, thus, we create 2 interleaved sequences $a(1,3,5, \ldots)$ and $a(2,4,6, \ldots)$. Bisection by index parity creates partially dependent sequences.

Define "alternating divisibility (patterns)" to be a sustained relationship $p \mid a(n)$ and $p \mid a(n+2)$ as n increments by 2 , which ends when such is no longer true for some n. The qualifier "alternating" is necessary given sequence definition.
Theorem E1. Cases (A), (B), and (G) do not affect the other bisection, consequence of Corollary D1.9.
Theorem E2. Cases $(\mathbb{H} \rightarrow(\mathrm{A}),(\oplus \rightarrow(B)$, and $(\mathrm{D}) \rightarrow(\mathrm{D})$ move divisibility by p to the opposite bisection.
Theorem E3. Case (D) \rightarrow (C) ends runs of divisibility by p. This is shown by Figure 2 and follows from sequence definition and Table 2.

Given $a(n)=p=\operatorname{PRIME}(i)$ and Theorem C4, we find interest in the duration ℓ of alternating divisibility. We define $\ell(i)$ to be as follows:

$$
\begin{align*}
& \text { With } a(n)=p=\operatorname{PRIME}(i) \text { and } k=1 \ldots \ell(i) / 2, \\
& \ell(i) \text { such that } p \mid a(n+2 k) . \tag{5.1}
\end{align*}
$$

We present data associated with for $n \leq 2^{24}$ in Table 4.

```
Table 4: Alternating divisibility duration \ell(i).
Key: i = table index, j = prime index, p = prime(j).
a(n) = p = prime(i).
\begin{tabular}{|c|c|c|c|c|}
\hline i & j & p & n & \(\ell\) \\
\hline 1 & 1 & 2 & 2 & 2 \\
\hline 2 & 2 & 3 & 3 & 16 \\
\hline 3 & 3 & 5 & 6 & 4 \\
\hline 4 & 4 & 7 & 14 & 8 \\
\hline 5 & 5 & 11 & 33 & 16 \\
\hline 6 & 6 & 13 & 59 & 52 \\
\hline 7 & 7 & 17 & 161 & 74 \\
\hline 8 & 8 & 19 & 363 & 78 \\
\hline 9 & 9 & 23 & 701 & 164 \\
\hline 10 & 10 & 29 & 1509 & 212 \\
\hline 11 & 11 & 31 & 2222 & 924 \\
\hline 12 & 12 & 37 & 4581 & 1708 \\
\hline 13 & 13 & 41 & 7827 & 7278 \\
\hline 14 & 14 & 43 & 20543 & 4702 \\
\hline 15 & 15 & 47 & 28710 & 23612 \\
\hline 16 & 17 & 59 & 87723 & 3244 \\
\hline 17 & 16 & 53 & 91307 & 97778 \\
\hline 18 & 20 & 71 & 384195 & 338418 \\
\hline 19 & 19 & 67 & 621674 & 126438 \\
\hline 20 & 18 & 61 & 810244 & 86074 \\
\hline 21 & 21 & 73 & 1080885 & 205632 \\
\hline 22 & 22 & 79 & 2814146 & 99986 \\
\hline 23 & 24 & 89 & 16009512 & 612522 \\
\hline
\end{tabular}
```

The table shows that primes $a(n)=p=\operatorname{PRIME}(i)$ can enjoy protracted alternating divisibility duration. Such protracted duration increases roughly along with the increase in n.

Indeed, certain alternating divisibility duration for prime (i) intercalates with same for prime $(i+1)$, noting index i versus $j=$ $\pi(\operatorname{PRIME}(i))$. For example, 2 divides $a(2)$ and $a(4)$ while 3 divides $a(3), a(5)$, etc. but 5 and 7 do not have intercalated alternating divisibility durations.

Durations of 71 and 67 overlap for 100939 terms, meaning that for $n=621693 \ldots 722613,71 \mid a(n)$ for n odd, and $67 \mid a(n)$ for n even. In these intercalating cases, kernels r that are products of smaller primes are locked out. This comprises some of the reason for paucity of powerful numbers in the sequence, as well as some of the reason for delayed emergence of primes other than the intercalated pair.

Let us examine those numbers that lie within the alternating divisibility duration. More precisely, let us examine an irregular triangle Λ defined to be as follows:

$$
\begin{gather*}
\text { For } a(n)=\operatorname{PRIME}(i)=p, \\
\Lambda(i, j)=a(n+2 j) / p, \\
j=0 \ldots k-1, \text { where } p \nmid a(n+2 k) . \tag{5.1}
\end{gather*}
$$

For example, for $i=5, a(33)=\operatorname{PRIME}(5)=11$. Thereafter, we have the following:
$a(35)=2 \times 11, a(37)=4 \times 11, a(39)=6 \times 11, a(41)=3 \times 11$, $a(43)=9 \times 11, a(45)=12 \times 11, a(47)=18 \times 11, a(49)=24 \times 11$, but $a(51)=24$, indivisible by 11 . Hence we have $\Lambda(5, j), j=0 \ldots 8$.
Table 5 below shows $\Lambda(i, j)$ for $i=1 \ldots 5$.

i: n	1	0	1	2	3	$\begin{aligned} & j \\ & 4 \end{aligned}$	5	6	7	8
1: 2	1	1	2							
2: 3	1	1	2	4	3	5	10	20	15	25
3: 6	1	1	2	4						
4: 14	1	1	2	4	6	12				
5: 33	I	1	2	4	6	3	9	12	18	24

An extended Table 5 (too large to print) demonstrates the following points:
1.) $\Lambda(i, j)$ is not always smaller than $\Lambda(i, j+1)$; the terms in the rows are not nondecreasing.
2.) $\Lambda(i, 2)$ is not always 2 . For $i \in\{6,7,12, \ldots\}, \Lambda(i, 2)=3$, while for $i \in\{11,14,15, \ldots\}, \Lambda(i, 2)=4$.
3.) Not all multiples of PRIME (i) in A3 69609 occur in row i of Λ. For instance, $a(21)=5^{2}, a(91273)=5^{3}$, despite row 3 of Λ missing 5 and 25 , respectively.
4.) Though not apparent in Λ, Appendix Table B shows that for some $i, \operatorname{PRIME}(i) \mid a(N)$ and $a(n)=\operatorname{PRIME}(i)$ for $N<n$. An example is $a(87723)=\mathcal{P}(16), a(91307)=\operatorname{PRIME}(16)$.
5.) Irregular table Λ does not demonstrate $m p$ in the sequence for m less than some limit.
6.) Despite point 5 above, powers $\operatorname{PRIME}(i)^{\delta}$ in row i of Λ do demonstrate $m p$ in the sequence for $m \leq \operatorname{Prime}(i)^{\delta}$, since $a(n)=m p=\operatorname{PRIME}(i)^{\delta} \times p$ is coprime to any $r \neq p$. Therefore it cannot arise by means of another kernel.
Despite the points shown above, Λ demonstrates "many small multiples" of $\operatorname{PRIME}(i)$ appear in an alternating run following the emergence of $a(n)=\operatorname{PRIME}(i)$. We need some other method of examining the entry of a certain $m(r) \times r$ in the sequence.
Particularly, we find interest in the entry of $m(r) \times r$ such that $\operatorname{RAD}(m(r)) \mid r$, since, as consequence of sequence definition, it can be shown that $k=m(r) \times r$ as described, in a sequence K_{r} of numbers that have the same squarefree kernel as r enter the sequence in order. We explore this in section G below.

Sequence definition, the truth table (Table 2), and Figure 2 indicate that alternating divisibility patterns bear significant insight into the gross operation of the sequence. Corollary D1.9 and Theorem E1 are the drivers of the exhibited alternating divisibility patterns in the sequence. Theorems E2 and E3 show that not everything about the sequence can be explained by alternating divisibility patterns. Sequence mechanics, particularly multiplier $m(r)$, explains the points listed above regarging irregular table Λ.

We have focused on terms that follow primes, but there is cause to find interest instead in terms that precede them in A369609.

Figure 3. Plot ofs(i) for $i=2^{8}+j, j \leq 2^{12}$, i.e., arranged according to [6.1], showing rows $k=0 \ldots 20$, given 1048576 terms in A369609. \mathcal{B} lack indicates undefined terms while gray indicates defined terms.

F. Kernel Coverage.

We turn to the question of whether all squarefree r occur in A369609. Given the truth table and its extension, Corollary C4.1 and Theorem C5, we can approach the question in a particularly organized manner.

Consider that $R=\mathcal{P}(k)$ is nondecreasing as n increases. In fact, k increments when R increases. Therefore, the question of whether or not r covers all divisors d_{k} of $\mathcal{P}(k)$, where $\operatorname{Prime}(k)=\operatorname{GPF}\left(d_{k}\right)$. Perhaps the ordering of coverage resembles irregular table AO19565, which begins as follows, where $\mathcal{P}(k)$ is the last d_{k} in row k.

```
1;
    6;
10, 15, 30;
7, 14, 21, 35, 42, 70, 105, 210;
11, 22, 33, 66, 55, 110, 165, 330, 77, 154, ..., 2310;
```

Lemma F1. For $k>1, \operatorname{AO19565}(k, 1)=\operatorname{Prime}(k)$ is the smallest term.
Lemma F2. For $k>1$, AO19565 $\left(k, 2^{(k-1)}\right)=\mathcal{P}(k)$ is the largest term.
This sequence maps to the natural numbers through $\pi(p) \rightarrow 2^{(k-1)}$ for $p \mid d_{k^{\prime}}$ then taking the sum of the powers 2^{k}. Define functions $g(x)$ and $h(x)$ to be as follows:

$$
\begin{gather*}
g(x)=\sum 2^{(k-1)} \text { for } \operatorname{PRIME}(k) \mid x . \\
h(x)=\Pi \operatorname{PRIME}(k+1) \tag{6.2}
\end{gather*}
$$

for x expressed in binary as a sum of 2^{k}.
Then we take mappings $g(x)$ across Ao19565. This transform yields the index of AO 19565 as shown below:

$$
\begin{aligned}
& 0 ; \\
& \text { 1; } 3 \text {; } \\
& \text { 4, 5, 6, 7; } \\
& \text { 8, 9, 10, 11, 12, 13, 14, 15; } \\
& 16,17,18,19,20,21,22,23,24,25,26, \ldots, 31 \text {; }
\end{aligned}
$$

The mappings $h(x)$ across natural numbers yields Ao19565. It is thus plain to see that $\operatorname{PRImE}(k) \rightarrow 2^{(k-1)}$ while $\mathcal{P}(k) \rightarrow\left(2^{k}-1\right)$. This transform becomes handy in tracking coverage of d_{k}.

A consequence of failure of r to cover an arbitrary $d_{k^{\prime}}$, squarefree number, is that d_{k} along with any d_{k}-coregular nonsquarefree number is missing from the sequence.

If we miss $d_{k^{\prime}}$, and if the smallest missing prime or powerful number exceeds d_{k}, then squarefree d_{k} is the smallest missing number u.

For $n=2^{20}, 671=11 \times 61=$ Ao19565(131088) is the smallest missing d_{k}, but the term in Ao19565 with the smallest index missing from A369609 is $746130=\mathcal{P}(8) / 13=$ AO19565 (223).

Define sequence S20240329 $=s$ with offset 0 to be as follows:

$$
\begin{equation*}
s(i)=n \text { such that } a(n)=h(i) \text {. } \tag{6.4}
\end{equation*}
$$

The first terms S20240329 of appear below:

$$
\begin{aligned}
& 1,2,3,5,6,8,11,13,14,16,26,20,23,25,30, \\
& 32,33,35,41,39,100,102,96,92,80,82,76, \\
& 50,52,56,58,59,57,61,63,73,75,83,79,93, \\
& 105, \\
& 103,
\end{aligned} 9,91,188,107,109,112,114,118,120, \ldots .6
$$

Seen as an irregular triangle as [6.1] above, s begins as follows:

$$
\begin{equation*}
1 ; \tag{6.5}
\end{equation*}
$$

5;
, 8, 11, 13
14, 16, 26, 20, 23, 25, 30, 32;
$33,35,41,39,100,102,96,92,80, \ldots, 52,56,58$;
This is the sequence of indices n in A369609 such that $a(n)$ is the squarefree number $h(i)$.
For example, suppose we are interested in the index n such that $a(n)=6$. Since Ao19565 (3) $=6$ and $s(3)=5, a(5)=6$.

Given A369609 $\left(1 \ldots 2^{24}\right)$, sequence s is defined for $i<223$, however the sequence features some singleton missing terms, but more often, runs of undefined terms (see Figure 3). Despite this, the sequence seems mostly defined for $n \leq \mathcal{P}(k)$ as k increases.

In order to demonstrate that the sequence is a permutation of natural numbers, a necessary but insufficient condition is the coverage of the set of squarefree numbers A5 117, represented by a completely defined s, i.e., a fully populated Figure 3.
Sequence s harbors implications for the nature of the smallest missing number u. Naively, we expect u to either be prime or powerful. Is it possible that the smallest missing number u is squarefree for some n ? Is it possible that u is in A332785 for some n ?

Table 6 shows the smallest squarefree $r=d_{k}$ missing from row k of s presented in the form of [6.3] for A369609 (1 ... $\left.2^{24}\right)$.

Table 6		2^(k-1)		Prime decomposition	
			1111223344455667778		
k	i		i r	23571379391713739171393	
1. . 6			COMPLETELY COVERED		
7	223	95	746130	xxxxx.xx	
8.9		COMPLETELY COVERED -----			
10	1112	88	40579	...xx.x...x	
11	2456	408	1245013	. . .xx. .xx. .x	
12	4384	288	12259	. .x.x. ${ }^{\text {. }}$ x	
13	8384	192	13889	.xx. . . . x	
14	16576	192	15181 xx.x	
15	32960	192	17119	. .xx. ${ }^{\text {x }}$	
16	69760	4224	45961	. . .x. . . .x. . .x	
17	131088	16	671	x. ${ }^{\text {x }}$	
18	327680	65536	3953	. x.x	
19	524352	64	1207x.x	
20	1050624	2048	2701	. .x.x	
21	2621440	524288	5609	x.x	
22	4194304	0	83	. . . x	
				1111223344455667778	
				23571379391713739171393	

In row $k=22$, the second smallest missing $r=d_{k}=3649=41 \times 89$ $=$ AO19565 (8392704).

Investigation related to Table 6 suggests that u "narrowly escapes" being weak (i.e., $u \in$ AO52485) as n increases, but does not prove that the smallest number missing from A369609 ($1 \ldots n$) is certainly either prime or a powerful number. The question remains open.

G. Coregular Sequences in A369609.

In section E , we examined $\Lambda(i, j)$, an array of terms divisible by $\operatorname{PRIME}(i)$ that follow $a(n)=\operatorname{PRIME}(i)=p$ with same index parity. We called this pattern "alternating divisibility" and is a consequence of Theorems E1 through E3. Having examined alternating divisibility duration, we saw in Table 4 that such can be quite protracted.
In this section, we go beyond the question of whether r appears, and attempt to determine to what extent it appears. Rather, how many k such that $\operatorname{RAD}(k)=r$ appear in A369609, knowing that for squarefree $r>1$, there are an infinite number of such k.
Theorem G1. Though $p \mid \Lambda(i, j), \operatorname{Rad}(\Lambda(i, j)) \neq p$ implies $r \neq p$. The proposition is tautological since $r=\operatorname{RAD}(\Lambda(i, j))$.

Interest in the entry of $m(r) \times r$ such that $\operatorname{RAD}(m(r)) \mid r$ arises so as to examine the depth of the occurrence of the "template" r in the sequence. We generalize interest from prime p to squarefree r. We are lead to the following:
Question: How many numbers that share the same set of prime factors as r appear in the sequence? This question probes several other questions about the sequence:
1.) Section F explored coverage of A5 117 by r and remains inconclusive. For $r>1$, there are an infinite number of k such that $\operatorname{RAD}(k)=r$. This question attempts to find out how many k appear in the sequence such that $\operatorname{RAD}(k)=r$.
2.) Numbers k that are perfect powers of primes and powerful numbers have squarefree kernels $\operatorname{RAD}(k)=r$. Therefore the question addresses the paucity of such numbers in the sequence.
Let $K_{r}(i)$ be the sorted set of numbers k that share the same set of prime factors as squarefree r. This is to say that k is such that the squarefree kernel $\operatorname{RAD}(k)=r$. We may say that all the terms $k \in K_{r}$ are r-coregular, since k such that $\operatorname{rad}(k) \mid r$ are said to be r-regular. For example, is shown below.

$$
\begin{aligned}
K_{6} & =\{6,12,18,24,36,48,54,72,96,108, \ldots\} \\
& =\text { Aо33 } 45=6 \times \text { A } 3586
\end{aligned}
$$

The following basic lemmas are self evident:
Lemma G2.0. The set K_{r} is countably infinite for $r>1$. For $r=1$, the cardinality of K_{1} is 1 , since there exists only 1 empty product.
Lemma G2.1. Then $K_{r}(1)=r$ is the minimum, and for $i>1, K_{r}(i)=k$ $=m r$, where $\operatorname{RAD}(m) \mid r$.
Lemma G2.2. Prime r implies prime $K_{r}(1)$, and $K_{r}(i), i>1$ is a perfect power of prime r.
Lemma G2.3. Composite r implies composite squarefree $K_{r}(1)=r$, and $K_{r}(i)=k$ is a tantus number, meaning that at least 1 prime $p \mid k$ is such that p^{2} also divides k, i.e., $k \in$ A126706.
Theorem G2. Terms k in K_{r} enter in order. Consequence of Lemma 16.1 and the greedy nature of m. Proves Conjecture A. 3 provided no prohibition.
Corollary G2.4. The first term in K_{r} to appear in A369609 is the number $K_{r}(1)=r$ itself.
Corollary G2.5. Powers p^{δ} enter A369609 in order of δ, where p itself is the first power of p that appears in A369609.

Therefore we have interest in the "penetration" $D(r)$ of kernel r in A369609 defined to be the following:

$$
D(r)=j \text { such that } a(n)=K_{r}(i), i=1 \ldots j \text { for some } n . \quad[7.1]
$$

Showing that $a(n)=K_{r}(i)$ for all i, and additionally, all r appear in A369609 enables a conclusion that A369609 is a permutation of \mathbb{N}.

This amounts more precisely to the following question:
Is $D(r)=\infty$ for all $r \in$ A5 117?
Given the nature of the sequence, we could settle for showing $D(r)$ can reach ∞ as n increases, for all divisors d_{k} of $P(k)$, where primorial $\mathcal{P}(k)=R \times \operatorname{PRIME}(k)=\mathcal{P}(k-1) \times \operatorname{PRIME}(k)$ through Corollary C4.1 and Theorem C5.
Given Appendix Table D, we see powerful numbers rarely enter the sequence, and from this we conclude that $D(r)$ is relatively shallow. For example, after 2^{27} terms, we have not seen $64=2^{6}$, hence we conclude that $D(2)=5$.
Using the functions g and h, we can create a sequence Δ that registers penetration at a given threshold N. Define sequence Δ to be the following:

$$
\begin{gather*}
A(i)=j \text { such that } a(n)=K_{h(i)}(j), \\
\text { where } j \text { is maximal and } n \leq N . \tag{7.2}
\end{gather*}
$$

Setting $N=2^{24}$ and using offset 0 , sequence Δ begins as follows:

$$
\begin{aligned}
& 1,5,4,10,3,9,5,8,2,5,4,6,3,7,4,4,2,7, \\
& 6,10,4,8,5,7,4,11,6,9,5,9,6,7,2,6,4,6 \text {, } \\
& 3,5,6,8,3,6,5,9,4,8,5,6,3,7,5,9,4,8, \\
& 3,4,4,5,5,6,5,7,5,4,2,6,4,6,1,3,2,
\end{aligned}
$$

Seen as an irregular triangle as [6.1] above, A begins as follows:

$$
\begin{aligned}
& \text { 1; } \\
& 5 ; \\
& 4,10 ; \\
& 3,9,5,8 ; \\
& 2,5,4,6,3,7,4,4 ; \\
& 2,7,6,10,4,8,5,7,4,11,6,9,5,9,6,7 ;
\end{aligned}
$$

This sequence is useful merely because it is relatively stable for small values. Many of the first columns above advanced 1-3 terms after the spate of powerful numbers entered for $n=91217 \ldots 91305$.

From this data, we see that the largest power of 2 in the sequence is $t(1)=5$. The largest 3 -smooth number in the sequence is $K_{6}(t(3))$ $=108$, the 10th term in K_{6}. For $N=2^{24}$, the kernel with the deepest penetration $j=22$ is $r=2 \times 3 \times 5 \times 7 \times 11 \times 19 \times 29 \times 83=$ 105643230, diagrammed below:
-0000. .०.०.
The following table shows the indices of first terms in K_{r} for $r \in\{6$, $10,15,30\}$:

n	K_6	n	K_10	n	K_15	n	K_30
5	6	8	10	11	15	13	30
7	12	10	20	17	45	15	60
24	18	27	40	19	75	681	90
51	24	29	50	691	135	683	120
55	36	685	80	91267	225	689	150
695	48	687	100	?	375	693	180
697	54	91271	160			91265	240
91299	72	91275	200			91269	270
91303	96	91277	250			?	300
91305	108	?	320				
?	144	(? means n > 2^27, if it exists)					

Though some headway is made to support Conjecture A. 3 via Theorem G2, we are not able to show $D(r)=\infty$ for all $r \in$ A5 117. Our sense remains that indeed, Theorem G2 is only repressed by circumstance in A369609, and thus, we desire to explore the repression. Section J explores what might be repressing Theorem G2 and causing what is thwarting Conjecture A. 3 and inducing Conjecture B.

H. Coherent Alternating Divisibility Patterns.

In Section C we developed 8 cases of divisibility of $a(n-2), a(n-$ 2), and m regarding an arbitrary prime p in Tables 1, 2, and Figure 2.

We introduced alternating divisibility patterns in Section E regarding prime p. We attempted to determine whether kernel r covers all squarefree numbers A5 117 through $\Lambda(i, j)$.

Perhaps more relevant to this section, in Section G, we attempted to determine how deep this sequence penetrates the set K_{r} through the function $D(r)$.

Now we move beyond examining individual arbitrary primes p to examine these patterns across all primes $p \leq Q$, the latter as defined before Theorem C5.

We note a "coherent" resonance across a range of primes that can be seen in Table 1 in the vicinity of $a(59)=13$. A more prominent example regards Table 7 below. In this way we might explore the emergence of primorials and primes in the sequence, but also the appearance of powerful terms.

Remark H1. Some remarks on Table 7 and coherence in general:
1.) For $n<701$ in Table 7, a "resonant" or coherent state exists among many primes $p \leq Q$ where all primes p divide one term, but generally do not divide the next, etc.
2.) The coherent state is characterized by alternating divisibility in phase across many primes, shown by alternating ०.०., etc. (vertically) for a given prime. This equates to alternating Cases (A) and (G), which is stable unless perturbed by substitution of Case (G) with Case \oplus. In the graph above, this is an occurrence of an \mathbf{x} where there should be a ".".
3.) Most change induced by Case \oplus and follow-on Cases $(\subset$ or (() occurs for small p.
4.) The appearance of prime $a(701)=23$ introduces unraveling and erosion of coherence as n increases. This is be-
cause divisibility by 23 , the largest $p \leq Q$ occurs out of phase with divisibility of $a(n)$ by smaller primes.
5.) Table 4 shows that for $23=\operatorname{Prime}(9), \ell(9)=164$. This goes to show that the alternating divisibility pattern associated with the largest $p \leq Q$ prove rather stubborn. This seems to suggest that once coherence is lost, it may take a long time for it to materialize again.

Already by $n=680$, we can see r is a product 24871 of $7,11,13$, 17, and 19. As n increases, m that are products of small primes confer divisibility of r by this or that small prime. Since even n harbor a product of 24871, $a(n)$ with odd n are generally shielded from divisibility by large primes, and we see a couple powerful numbers enter.
Association with powerful numbers. Appendix Table H shows a protracted cluster of powerful numbers that enter the sequence at $91207 \leq n \leq 91305$, which demands explanation. Why do so many powerful numbers enter the sequence within this narrow range, when the sequence proves generally one of weak numbers?
Through examination of the various coherent intervals in A369609 documented in Appendix Tables F and H, we see that such intervals are shallow aside from the intervals $n=682 \ldots 700$ in Table 6 and $n=90970 \ldots 91306$ in Appendix Table H. In the interval $n=$ $754467 \ldots 754786, \operatorname{GPF}(r) \approx \operatorname{PRIME}(9)$ tends to be too high to supply powerful numbers.
Intervals $n=682 \ldots 700$ and $n=90970 \ldots 91306$ are characterized both by small $\operatorname{GPF}(r)$ and $\omega(r)$.

Conjecture H2. Protracted coherent alternating divisibility patterns across primes $p \leq Q$ may yield a rash of powerful numbers.
1.) Coherent divisibility patterns such that $a(2 n)$ approaches R and $a(2 n+1)$ has minimized $\operatorname{GPF}(r)$ and $\omega(r)$ (or parity reversed), along with $m(r) \in K_{r}$, make for powerful numbers in the sequence.
2.) If $r=1$, then the smallest missing number u enters the sequence via $m(r) \times r=m(1) \times 1=u$. See Appendix Table F5 and Sections J and K.
3.) If prime p is already in the sequence and m is a power of p, then we have a perfect power of p in the sequence. (Section K, specifically Theorem K1, addresses the appearance of primes.)
4.) If $r=\mathcal{P}(k)$ new to the sequence, $\mathcal{P}(k)$ enters the sequence via $m(r) \times r=m(\mathcal{P}(k)) \times 1=\mathcal{P}(k)$.
In order to prove this conjecture, we would need to address the emergence of coherence and show how the actions described in Remark H1 arise. This would seem to present significant complexity.

Recovery of lost coherence. Appendix Table F15 or F19 serve as examples of incoherent intervals that predominate A369609. Appendix Table G illustrates gradual partial recovery of coherent alternating divisibility pattern from a more disorganized state, for $n=$ 3940 ... 3980. Recovery of coherence is a complex process that might be described as "random".

Suppose we want to create a $\pi(Q)$-bit binary number that is predominantly comprised of zeros, except for 1 s in small places. It follows that such becomes increasingly less likely as $\pi(Q)$ increases. Therefore we expect proper coherence to arise increasingly rarely as n increases.

We have attempted to find a new protracted coherent phase but such has not materialized for $n \leq 2^{27}$.

J. On the Smallest Missing Number u.

Lexically earliest sequences (LES) normally involve a greedy approach to solutions such that we can identify the smallest number u that is not in the sequence $a(1 \ldots n)$. We present the general theorem for lexically earliest sequences (LES):

Let $R(n)$ be the largest number in $a(1 \ldots n)$.
Let $u(n)$ be the minimum of the sequence U of numbers that are not in the sequence. If the reference range $V=\mathbb{N}$ as it is for A369609, then we have the following:

$$
\begin{gather*}
U=\mathbb{N} \backslash a(1 \ldots n), \\
u(n)=\min (U) . \tag{9.1}\\
R(n)=\max (a(1 \ldots n)) . \tag{9.2}
\end{gather*}
$$

Theorem. We can break the reference range y of a lexically earliest sequence (LES) into at least 2 or at most 3 intervals.
(1) The saturated interval $[\min (U) \ldots u(n))$,
(2) The mixed interval $[u(n) \ldots R(n)]$
(3) The clear interval of $k>R(n)$.

Proof. A priori, before definition, we begin with (3). A sequence that begins with its first term $\min (y)$ either by definition or natural operation of $f(x)$ given an initial value for x has $R(n)=\min (y)$. Since a number k is either in the sequence or not, and given the greedy nature of the sequence function, given $R(n)=\min (y)$, we have at least (1) and (3), otherwise we have (2) and (3). A sequence that proceeds from $R(n)=\min (y)$ to incorporate all terms of y in order becomes y itself, and only ever has the intervals (1) and (3). Sequences that through operation of $f(x)$ incorporates certain terms in Y before others has either (2) and (3), but if it began with $R(n)=\operatorname{MIN}(y)$, it has all three intervals.

Corollary. For $f(x)=k, k<u(n)$ implies reiteration of $f(x)$ until its output $k \geq u(n)$.
Corollary. For $f(x)=k, u(n) \leq k<R(n)$ requires testing to see if k is in the sequence; if so, then we reiterate $f(x)$ until either output $k>$ $R(n)$ or we can show that k is not already a term.

Corollary. For $f(x)=k, k>R(n)$ is immediately acceptable; furthermore, $R(n+1)=k$.
Remark. The mixed interval (2) tends to be dense with terms already in the sequence for k not much larger than $u(n)$, and progressively rarifed in such terms as k approaches $R(n)$.

Conjecture J1. Given the nature of the sequence presented thus far, especially the summaries in Appendix Tables A and D, we might expect $u(n)$ to feature terms that are either prime or powerful as n increases.

Define sequence W to be sorted A8578 U A1694, a sequence that begins as follows:
$1,2,3,4,5,7,8,9,11,13,16,17,19,23,25,27$,
$29,31,32,36,37,41,43,47,49,53,59,61,64,67$,
$71,72,73,79,81,83,89,97,100,101,103,107,108$,
$109,113,121,125,127,128,131,137,139,144, \ldots$

Therefore, Conjecture J1 expects $u \in W$.

Challenges to this conjecture include faults in coverage described in Section F, and sufficiently slow incorporation of r-coregular terms described in Section G. For example, suppose that for $R \geq \mathcal{P}(k)$, some small composite kernel $r=d_{k}$ in row k of A019565 does not materialize. Then $u=d_{k}$ if all nonsquarefree numbers smaller than d_{k} enter the sequence ahead of it. If we can show that some reason prevents d_{k} from entering, then A369609 is not a permutation of \mathbb{N}.

Table 8 below summarizes distinct smallest missing $u(i)$ that first emerges at n for $n \leq 2^{27}$. Asterisks denote composite u. Parenthetic $u(i)$ appear by definition, while bracketed $u(i)$ appear via Theorem J6. The abbreviated divisibility pattern which brings about $a(n(i+1))=$ $u(i)$ appears in the "patt." column. The suppressed primes appear in column (C). The circumstance of $a(n(i+1))=u(i)$ appears in the listed table.

Tal i	$\text { le } 8: \frac{\mathrm{Sr}}{\mathrm{n}}$	llest u		ssing patt.	number (C)	u (i) Table
1	0	(1)		-	.	1
2	1	(2)		.	.	1
3	2	[3]		gF	.	1
4	3	4	*	gB	.	1
5	4	[5]		$\overline{\mathrm{CgF}}$	2	1
6	6	[7]		CgF	2	1
7	14	[11]		CgF	2	1
8	33	13		Cga	2	1
9	59	17		Cga	2	F2
10	161	19		Cga	3	F4
11	363	[23]		CgF	2	F5,7
12	701	29		Cga	3	F7
13	1509	31		Cga	2	F10
14	2222	37		Cga	2	F12
15	4581	41		Cga	3	F14
16	7827	43		Cga	2	F16
17	20543	47		Cga	2	F18
18	28710	49	*	CgB	2	H
19	91283	[53]		CgH	2×3	F22,
20	91307	61		Cga	2	F28
21	810244	64	*			

For example, $u(11)=23$, which emerges when $a(363)=19$, therefore, for $\mathrm{n}=363$. When $a(701)=23$, it appears through the divisibility pattern Cgggggggr, where Case © pertains to $p=2$, suppressing divisibility by 2 while Case \oplus furnishes divisibility by $p=23$, and Case (G) suppresses divisibility by all other primes $p \leq Q$, hence CgF. Appendix Table F5 and Table 7 detail the entry of 23 into the sequence A369609.
Circumstances for entry of missing numbers. The smallest missing number is merely a special case of a number that is not in the sequence, meaning a potential term. There are several modes of admitting missing numbers into the sequence. These can be stated in terms of the cases described in Section C.
Returning to divisibility cases in Table 2, we note the following consequences of the truth table:
Theorem J2. Cases that suppress divisibility of primes p such that $p \mid a(n-1)$ and $a(n)$ include Case (G, i.e., p only divides $a(n-1)$, and Case (C), where p divides both $a(n-2)$ and $a(n-1)$ but not $m(r)$.
Theorem J3. All other cases deliver divisibility by p to $a(n)$ via TheoremC4. The most common mode in the sequence is alternating Cases (A) and (G).
Theorem J4. Case (A) implies p only divides $a(n-2)$ and thus $p \mid r$. It is distinguished from Cases $(B)(\mathbb{D} \subseteq(\oplus)$ since it does not require prime $p \mid m(r)$.
Corollary J4.1. Case (A) alone (i.e., aside from (G) and ©) cannot generate nonsquarefree $a(n)$ since the case produces squarefree r.
Theorem J5. Case © implies prime $m(r)=p$, with $r=R=\mathcal{P}(k)$.
Corollary J5.1. Case \Subset is the only case that can yield terms alone. $a(2)=2$ can be construed as the result of singleton Case \Subset. Consequence of Theorem J5, the definition of Case \ominus, and $a(1)=1$.
$\operatorname{Corollary~J5.2.~For~} a(n)=p=\operatorname{Prime}(k+1)$ brought in by Case \oplus, $a(n-1)=m(\mathcal{P}(k)) \times \mathcal{P}(k)$.

Theorem J6. Kernel $r=1$ implies $a(n)=u$.
Proof. Consequence of sequence definition, specifically, given the greedy approach to $m(r)$ and the following:

$$
\begin{align*}
a(n) & =k=m(r) \times r, \text { with minimal } k \neq a(j), j<n \\
& =m(1) \times 1=u . \tag{9.3}
\end{align*}
$$

This, since we increment $m(r)$ until we encounter the smallest number not in the sequence, which is u by definition.

Expected smallest missing numbers. Whereupon we see $a(n)=2^{6}$, $W(22)=83$, but if 83 enters the sequence before 64 , then we expect $W(22)=101$ instead. The smallest powerful numbers not in the sequence after 64 are 128 and 144 . We might expect these to enter in a flurry of powerful numbers that attend a new deeply coherent phase.

Coherent Divisibility Modes of Entry. We examine various modes for numbers to enter the sequence, with attention to the smallest missing number u. Entry modes are governed by Theorem C7 and corollaries. For composite u, there is more than 1 way for $u=m(r) \times$ r, with squarefree r to enter.

Mode CgF.

This mode is restricted to bringing in primes $p=\operatorname{Nextprime}(Q)$.
Early in the sequence a few smallest missing numbers $u(i)$ enter with $m(r)=p=\operatorname{NEXTPRIME}(Q)$, which is Case \Subset introducing prime p. Primes $q<p$ are suppressed by Case (G) and for $i>4$, Case © for at least 1 small prime q that divided $m(r)$ for $n-1$. See Table 1 for examples. Corollary J5.2 pertains to Mode CgF when it results in $a(n)=p$.

Mode Cga.

Mode Cga is the means of delivery associated with a prime $p \mid r$, but is not restricted to prime $a(n)=p$.

This is the most common mode of furnishing divisibility by primes p such that p divides u seems to be Case (A), where $p \mid a(n-2)$ but does not divide $a(n-1)$, hence $p \mid r$, and divisibility by all other primes $q \neq p, q \leq Q$ are suppressed by Case (G) and for $i>4$, Case (C) for at least 1 small prime q that divided $m(r)$ for $n-1$. Aside from Case (C) applying to 3 rather than 2 , the entry of $u(10)=19$ is exemplary:

n	a (n)	$\begin{array}{r} \text { prime } p \\ 1111 \\ 23571379 \end{array}$	$\begin{aligned} & \text { Cases } \\ & 1111 \\ & 23571379 \end{aligned}$	
361	171	.*.....。	gBggggga	
362	510510	0x00000.	aHaaaag	P(7)
363	19	\bigcirc	gCggggga	prime (8)
		Modes Cg	-D-H.	

Smallest missing u that are prime squares p^{2} are often brought about through Case (B) instead of Case (A), where p divides both $m(r)$ and $a(n-2)$ but p does not divide $a(n-1)$.

Case \oplus may substitute, where p divides both $m(r)$ and $a(n-1)$ but p does not divide $a(n-2)$.

Case (D) may also appear instead of © or \oplus, where p divides all of $a(n-2), a(n-1)$, and $m(r)$. This mode has not yet been observed.

Divisibility by all other primes $q \neq p, q \leq Q$ are suppressed by Cases (G) or (C). Theorem C7 also admits entry of $u=p^{2}$ via Theorem J2, that is, via $m(r)=p^{2}$.

Prime $u(19)=53$ enters via CgH.
Mode CgB-D-H is the means of delivery associated with primes p that divide $m(r)$.

Combination Modes.

Theorem J7. Any combination of Cases $(A)(B)(1) \oplus(H)$ may usher a number k such that $\omega(k)>1$ into the sequence. This is a consequence of Theorem J3, specifically, all these cases serve to confer divisibility by primes that produce $a(n)$.
Corollary J7.1. Any combination of Cases (B)(D) (1) may usher a nonsquarefree number into A369609. Hence, numbers $a(n)$ that are neither prime powers nor squarefree, including powerful numbers are the fruit of any combination of Cases (B)(D) (H), excluding (A) via Corollary J4.1 and \Subset through Corollary J5.2.

For $n \leq 2^{27}$, The most common combination mode that produces powerful numbers is CgB. Mode _gB pertains to $\{4,108,250,1089\}$, _gB-D to $\{54,100\}$, _gB-H to $\{36,200\}$, and _gH to 96 . Therefore, missing number 144 is expected to come via Corollary J7.1.

Singleton Modes for Perfect Powers of Primes.

Theorem J8. Perfect powers of primes $p^{\delta}, \delta>1$, may enter through one of Cases (B), (D), or \oplus, excluding (A) via Corollary J4.1 and \oplus through Corollary J5.2.
Corollary J8.1. For $a(n)=p^{\delta}, \delta>1$, Case © implies the squarefree $r=p$ and $m(r)=p^{(\delta-1)}$, since Case (B) implies $p \mid a(n-2)$ but p does not divide $a(n-1)$ by definition.
Corollary J8.2. For $a(n)=p^{\delta}, \delta>1$, both Cases © and \oplus imply squarefree $r=1$ and $m(r)=p^{\delta}$, since these cases imply $p \mid a(n-1)$ but p does not divide $a(n-2)$ by definition.

We anticipate $u=64$ to enter through Case (B) since $m(r)$ is minimized, but it is possible that it comes in through either (D) or \oplus © .

K. Occasion of Primes in a369609.

We focus attention on the appearance of primes p in A369609. Appendix Table A lists primes in the sequence for $n \leq 2^{27}$, while Appendix Table B shows primorials.
Since we are dealing with a single prime factor, we can trace emergence of a given prime to a certain case in the truth table (Table 2). Theorem J2 shows that Cases (©) and © suppress divisibility of $a(n)$ by primes q such that both $q \mid R$ and $q \neq p$. Theorem J3 shows that Cases $(\mathbb{A},(B),(\square), ~ ©$, and \oplus furnish $p \mid a(n)$. Therefore we have winnowed the provenance of primes in the sequence to those 5 cases.
Theorem K1. Cases (B) and (D) imply composite $a(n)$.
Proof. Case (B) implies prime p divides both r and $m(r)$. Because $a(n)=m(r) \times r, p^{2} \mid a(n)$.
Corollary K1.1. Cases $\oplus \in, \oplus$, and \oplus may produce prime $a(n)$, as consequence of both Theorem J3 and K 1 . Case \Subset is a consequence of Theorem J5.
Lemma K2.1. Case © implies prime $a(n)=p$, when Case (A) applies to a sole prime p such that $p \mid R$, while all other prime factors $q \mid R$ are suppressed by Theorem J2. Consequence of squarefree R.
Lemma K2.2. Case \oplus implies prime $m(r)=a(n)=p$, when Case \oplus applies to a sole prime p such that $p \mid R$, while all other prime factors $q \mid R$ are suppressed by Theorem J2. Consequence of squarefree R.

Therefore, Case (A) has prime $a(n)=p$ derive from $p \mid a(n-2)$ while Case \oplus has prime $m(r)=a(n)=p$.

Theorem K2. Primes $p \leq Q$ such that $p \nmid a(n-1)$ enter the sequence as consequence of Theorem C7 and sequence definition. Primes arise through 1 of the following 4 modes:
(0). By definition. Applies to $p=2$.
(1). $r=p, m(r)=1$ through Case (A), p only divides $a(n-2)$.
(2). $r=1, m(r)=p$ through Case \oplus, p only divides $m(r)$.
(3). $r=1, m(r)=p$ through Case ©,$p=Q$.

Mode (1), a consequence of Theorems J4 and Lemma K2.1, applies to most primes, first instance is $a(59)=13$.
Mode (2) is a consequence of Theorems J4 and Lemma K2.2. Induced by $a(n-1)=R=P(k)$, the mode is only observed for $a(91307)=53$.
Mode (3), a consequence of Theorems J5 and J6. Induced by $a(n-1)$
$=R=\mathcal{P}(k)$, this mode yields the primes $\{(2), 3,5,7,11,23\}$.
Theorem K2 summarizes the entry modes of primes p in A369609.
Primes "coming over the top" of R. Theorem J5 describes introduction of prime $p=Q$ to the sequence through Mode (3), i.e., Case \Subset, for examples see Table 1 or Appendix Table F5.

Skipping primes. Conjecture A.1, proved wrong, anticipated that primes appear in order in A369609 as n increases. This observed contradiction raises a couple key questions.
1.) How does a skipped prime enter the sequence?
2.) How do $59,71,89$, and 103 enter ahead of schedule?

Turning to question 1 above, in essence, we see that primes enter through primes $q \leq Q$ such that $q \nmid a(n-1)$. The following corollaries address the issue of skipped primes.
Corollary K2.3. Suppose $a(n-1)=R / p$, where $R=\mathcal{P}(k)$, a primorial, and $p=\operatorname{PrImE}(i), i \leq k$. Then if $p \nmid m$, and if $a(h) \neq p, h<n$, $a(n)=p$. Consequence of Case (A), Theorems J4, and Lemma K2.1. For 2 examples, see Appendix Tables F27 for $a(621674)=67$, and F28 for $a(810244)=61$.

810242	122	\bigcirc	agCggggggggggggggagg
810243	*	x0000000000000000.00	Haaaaaaaaaaaaaaagaa
810244	61	O	Cggggggggggggggggagg
		$=P(20) / 61$	

Corollary K2.4. Special case of Corollary K2.3: With $R=\mathcal{P}(k)$ and $a(n-1)=\mathcal{P}(k-1)$, if both $m \neq \operatorname{Prime}(k)$ and $a(h) \neq \operatorname{PRIME}(k)$, $a(n)=\operatorname{PRIME}(k)$. This is the most common mode of entry for prime p through Case (A). Appendix Tables F21 for an example.

```
87721 531 .*.............. (.. gBgggggggggggggga
8 7 7 2 2 ~ P ( 1 6 ) ~ 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . ~ a H a a a a a a a a a a a a a a g g
```


Corollary K2.5. Suppose $a(n-1)=R=\mathcal{P}(k)$, and $p=\operatorname{Prime}(i)$, $i \leq k$. Then if $p \mid m$, and if $a(h) \neq p, h<n, a(n)=p$. Consequence of Case \oplus, Theorems J4 and Lemma K2.2. The only observed example is $a(91307)=53$, see Appendix Table F22.

91305	108	**.	BBgggggggggggggggg
91306	P (17)	xx000000000000000	HHaaaaaaaaaaaaaaa
91307	53	x.	CCgggggggggggggg g

Hence A369609 is able to "cure" the issue of skipped primes through a single prime gap in $a(n-1)$ via Mode (1), Case (A) described in Corollaries K2.3 and K2.4, or for $a(n-1)=R$ and $p \mid m$ via Mode (2), Case \oplus and Corollary K2.5.

Corollary K2.6. Corollaries K2.4 and K2.5 have primes succeed primorials in the sequence, while Corollary K2.3 furnishes primes that do not succeed primorials.

We address question 2 above. How do primes "jump the queue" and enter "early"?

Dilation. Theorem C4 and the original definition of A369609 define R to be a primorial with greatest factor $Q=\operatorname{PRImE}(k+j), j>0$. Examination of the primorials $\mathcal{P}(k)$ in A369609 ($1 \ldots 2^{27}$) shows that primorials do not enter the sequence in order. Hence we turn attention to the difference j which we call "dilation".
Appendix Table C shows the advancement of $R=P(k)$ as $n \leq 2^{27}$ increases. Table J tracks change in dilation as n increases to 2^{27}.
We note the following regarding Table J:
1.) "Hitting the ceiling": $j=0$.

Increase in R conflated with emergence of a prime.
$a(n)=\mathcal{P}(k)=R \rightarrow a(n+1)=\operatorname{prime}(k+1) \rightarrow R=\mathcal{P}(k+1)$.
Prime Mode (3) (Case (\ddagger) through Theorem J6.
Pertains to cases $k \in\{(1), 2,3,4,5,9, \ldots\}$.
2.) "Topping off": $j=1$.

Increase in R ahead of emergence of corresponding prime.
$a(n)=\mathcal{P}(k-1) \rightarrow a(n+1)=\operatorname{prime}(k)$.
Prime Mode (1) (Case © ${ }^{\text {A }}$) through Corollary K2.4.
Pertains to most observed cases.
3.) "Catching up": $j>1$.
$R=\mathcal{P}(k+j), a(n)=\mathcal{P}(k+j-1)$.
Followed by $a(n+1)=$ prime $(k+j)$ in observed cases.
Prime Mode (1) (Case © ${ }^{(A)}$) through Corollary K2.4.
Pertains to $\mathcal{P}(k)$ with $k \in\{16,19,23,26, \ldots\}$.
4.) "Coming up short": $j>1$. (Not observed).
$R=\mathcal{P}(k+j), a(n)=\mathcal{P}(k+i), i<j-1$.
Not followed by a prime, but instead a number that is not a prime power, via Cases (A) and (B).
We see $a(28709)=\mathcal{P}(14)$. For $n=82279, R=\mathcal{P}(17)$, then $a(87722)=\mathcal{P}(16) . \mathcal{P}(15)$ is not seen after 67 million terms. Hence $n=82279$ is a landmark in the sequence that represents dilation $j=3$.

Skipped primorials. A hypothetical way that the skipped primorial $\mathcal{P}(15)$ could enter the sequence for $n>2^{27}$ and $Q=\operatorname{PRImE}(27)$ appears below.

```
x.............000000000000 2 x P(28)/P(15)
x00000000000000........... 2 x P(15)/2 = P(15)
.x............000000000000 3 x P(28)/P(15)
```

Note that we do not have a prime follow this skipped primorial, but some composite number that is not a prime power, since it is the product of a run of largest primes $p \leq Q$.
The trouble with this arrangement is that a number composed of complementary runs of divisibility and nondivisibilty, i.e., contiguous repeated Case (G) and repeated Case (A) except for limited small primes is not observed for $n>80000$. Much more common are numbers like the arrangement that are products of largest primes $p<Q$, with Q stubbornly out of phase.
What is more likely, very much later in the sequence, is that $\mathcal{P}(15)$ appears for an immense primorial R, when m has sufficient incrementation to be in the vicinity of $\mathcal{P}(15)$. We have not proved that the pattern shown is impossible but should be quite rare.
It appears that item 3 "Catching up" is more common because of the observed prevalence of prime Q out of phase with smaller primes.
Primes do not always follow primorials: this we see regarding 61 and 67 . Remark 4 above shows that primorials do not always precede primes.

L. On the Potential of a Reverse Permutation.

Conjecture C asserts that A369609 is a permutation of natural numbers. We aren't able to prove such through the methods used in this sequence.

Theorem L1. The sequence is infinite.
Proof. Since $a(n)=k=m(r) \times r$, minimal $m(r)$ such that $a(h) \neq k$, and given squarefree r resulting from Theorem A2. Theorem J6 covers the occasion $R=a(n-1)$, hence $r=1$, and $a(n)=u$, the smallest missing number.

The following questions are not answered. If the answer to at least 1 of these questions is negatory, then we show the sequence is not a permutation of natural numbers.
1.) Section F : are all squarefree numbers r in the sequence?
2.) Section G: r-coregular numbers enter the sequence in order per Theorem G2. We demonstrated some penetration. Are all r-coregular numbers in the sequence?
3.) Section H : do all powerful numbers appear in the sequence? This question is a special case of Question 2.
4.) Section J: do all smallest missing numbers eventually enter the sequence? Critically, do all primes appear in the sequence? This is a special case of Question 1.
5.) Section K: do skipped primorials eventually appear in the sequence? This question is a special case of Question 1.
It is our hunch that the sequence is a permutation of natural numbers. The range of frequent values of m increases but remains small for large values of \mathcal{M} and Q. Furthermore, it seems plausible that all r appear and do so infinitely. Countervailing this assertion is the fact that r is a product of a rather uniform jumble of primes $p \leq Q$, and that a small r requires protracted coherence that seems to arise only in rare, relatively short runs.

An analogy is inviting kindergartners to flip light switches and expecting the room to go dark. Suppose we ask a single 5 year old to toggle $k=1$ switches. It is easy for the room to go dark. As we increase the number k of kids, one per switch (i.e., k such that $R=$ $\mathcal{P}(k))$ it is easy to see that as k increases, it becomes less likely to observe any coordination, much less the room to go totally dark.

Laying these questions aside, we contemplate the reverse permutation. Essentially, we create a new sequence $b(k)=n$, where $a(n)=k$. The reverse permutation begins with the following terms. Asterisks denote terms $n>2^{27}$ if they exist.
$1,2,3,4,6,5,14,12,9,8,33,7,59,16,11,31$, $161,24,363,10,26,35,701,51,21,57,53,18,1509$, 13, 2222, 699, 41, 159, 23, 55, 4581, 365, 61, 27, 7827, 20, 20543, 37, 17, 703, 28710, 695, 91283, 29, 163, 69, 91307, 697, 100, 91279, 359, 1511, 87723, 15, 810244, 2220, 28, *, 73, 39, 621674, 177, 709, 25, 384195, 91299, 1080885, 4579, 19, 367, 80, 63, 2814146, 685, 91301, 7829, *, 22, 151, 20541, 1505, 108, 16009512, 681, 93, 705, 2214, 28708, 375, 91303, 29524905, 91281, 43, 687, *, 165, *, 71, 30, 91309, *, 91305, *, 102, 4583, 91285, *, 357, 725, 1513, 224, 87725, 131, ...

M. Conclusion.

This investigation concerns a lexically earliest sequence A369609 based on prime decomposition that behaves like a cellular automaton, alternating states unless perturbed by multiplier m. We are able to create a truth table (Table 2) and study extended patterns of the states in the truth table so as to arrive at dependencies that appear in Figure 3.

Certain naive questions arose before study regarding the relationship of primorials with primes, conjecturing that these numbers appeared in order. These questions furnished impetus to study the sequence further.
With data in Appendix Tables A and B we found counterexamples and know that these numbers do not appear together all the time, and do not appear in order. Conjecture A. 3 asserted that powers of 2 appear in order; Theorem G2 confirms that those powers in the sequence indeed do appear in order, but it is unknown whether $r=$ 2 occurs infinitely.

Conjecture C asserts that A369609 is a permutation of natural numbers. Section L lays down unanswered questions associated with the matter, and gives the first 119 terms of the reverse permutation if indeed A369609 is such.
The following list is a summary of findings in this paper.
1.) Conjecture A. There is a chain $2^{i} \rightarrow \mathcal{P}(i) \rightarrow \operatorname{Prime}(i+1)$, where $\mathcal{P}(i)$ is the product of the smallest i primes, i.e., primorial A2 $110(i)$, shown to be FALSE; $a(59)=13$ but $a(57)=26$.
2.) Conjecture A.1. Primes appear in order as n increases. Shown to be FALSE; $a(87723)=59$ but $a(91307)=53$.
3.) Conjecture A.2. Primorials appear in order as n increases. Shown to be FALSE; $a(28709)=\mathcal{P}(14)$ and $a(87722)=\mathcal{P}(16)$.
4.) Conjecture A.3. Powers of 2 appear in order as n increases. True via Theorem G2, however, it is uncertain whether A79 is a subset of A369609.
5.) Conjecture B. Powerful numbers appear in clusters, e.g., for n roughly between 91200 and 91320. Explored in Section H, Tables 1 and 7, and in Appendix Tables F and H.
6.) Conjecture C. A369609 is a permutation of natural numbers.
7.) Theorem C 1 summarizes logic associated with divisibility relations $(p \mid a(n-2) \wedge p \nmid a(n-1)) \vee p \mid m$. See truth Table 2.
8.) Figure 2 summarizes extended divisibility patterns and dependencies of cases presented in Table 2.
a.) Repeated Nondivisibility Case (E)
b.) Introduction of Divisibility Case \oplus
c.) Alternating Divisibility Cases (A) (B)(G)
d.) Repeated Divisibility Cases (D) (1)
e.) Transition from repeated to alternating cases, Case ©
9.) Disruption of alternating Cases (A) (G) and introduction of divisibility of $a(n)$ by p through Case $€$ arises from $m(r)=p=\mathcal{M}$.
10.) Record $m(r)=\mathcal{M}$ implies no powerful number $a(j)=k, j \leq n$, such that $\operatorname{RAD}(k)>\mathcal{M}$. (Corollary C8.1.)
11.) Given $a(n)=p, p \mid a(n+2 j), j \geq 0$ for a significantly large j.
12.) All squarefree numbers may appear in the sequence (Theorem C9). Do all squarefree r occur in A369609? See Section F, which examines coverage of r across A5117, specifically Table 6.
13.) Do all numbers k such that $\operatorname{RAD}(k)=r$ appear in $\operatorname{A3} 69609$? See Section G.
14.) Numbers k such that $\operatorname{RAD}(k)=r$ appear in order, Theorem $G 2$.
15.) Conjecture J1. The smallest missing number u is either prime or a powerful number.
16.) Suppression of $p \mid a(n)$ via Cases (G) and (C). Theorem J2.
17.) Deliverance of $p \mid a(n)$ via Cases $(\mathbb{A}(B)(D) \oplus(\oplus)$. Theorem J3.
18.) Among the above, Case ${ }^{(A)}$ alone cannot generate nonsquarefree $a(n)$.
19.) Case \Subset implies prime $m(r)=p, r=R=\mathcal{P}(k)$. Theorem J5.
20.) Kernel $r=1$ implies $a(n)=u$, smallest missing number. Theorem J6. For $n \leq 2^{27}$, smallest missing number $u=64$.
21.) Any combination of Cases (A) (B)(D) $\oplus \oplus$ may usher a number k such that $\omega(k)>1$ into the sequence. Theorem J7.
22.) Any combination of Cases $(B)(\mathbb{D} \oplus$ may usher a nonsquarefree number into A369609 (including powerful k). Corollary J7.1.
23.) Case (B) is the most likely source of $a(n)=p^{\delta}, \delta>1$.
24.) Cases (B) and (D) imply composite $a(n)$. Theorem K1.
25.) Lone Case (A) has prime $a(n)=p$ derive from $p \mid a(n-2)$ while Lone Case \oplus has prime $m(r)=a(n)=p$.
26.) Primes $p \leq Q$ such that $p \nmid a(n-1)$ enter the sequence as consequence of Theorem C7 and sequence definition. Primes arise through 1 of the following 4 modes:
(0). By definition. Applies to $p=2$.
(1). $r=p, m(r)=1$ through Case (A), p only divides $a(n-2)$.
(2). $r=1, m(r)=p$ through Case $(\oplus), p$ only divides $m(r)$.
(3). $r=1, m(r)=p$ through Case $\Subset, p=Q$.
22.) Section K addresses skipped primes and primorials using the concept of dilation j, where $\mathcal{P}(k)$ is the largest primorial in the sequence and $Q=\operatorname{Prime}(k+j), j>0$. See Appendix Tables C and J. Nicknames for 4 consequences of dilation:
a.) "Hitting the ceiling", $j=0$ for $k \in\{(1), 2,3,4,5,9, \ldots\}$.
b.) "Topping off": $j=1$, for most k.
c.) "Catching up": $j>1$ for $k \in\{16,19,23,26, \ldots\}$.
d.) "Coming up short": $j>1$. (Not observed).

Cases a-c involve a primorial followed by prime, but case d would have a primorial not followed by a prime.
23.) Some loss of confidence in Conjecture C:
a.) Case 22 d involves a special case of coherence with 2 or 3 runs of the same divisibility cases, which seems hard to get.
b.) Skipped primorials $\mathcal{P}(k)$ could also show when average m ranges in the scale of $\mathcal{P}(k)$, therefore, for very large n.
24.) We can project a reverse permutation $b(k)=n$, where $a(n)=k$, shown in Section L.
Sycamore's sequence A369609 presents interesting questions related to prime decomposition and a behavior akin to a cellular automaton through alternating divisibility Cases ©(A). Some of these questions are not answered, including whether the sequence is a permutation of natural numbers, whether all powerful numbers and primorials appear. Can the smallest missing number be anything but

Concerns Sequences:

A1694, A2 1 10, A3586, A5 1 17, A6530, A7947, A8578, A019565,
A033845, A052485, A067255, A087207, A126706, A246547, A332785, A369609.

References:

[1] N. J. A. Sloane, The Online Encyclopedia of Integer Sequences, retrieved April 2024.
Code:
[C1] Generate a million terms of the sequence:

```
nn = 2^20;
c[_] := False; m[_] := 1;
f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]];
Array[Set[{a[#], c[#], m[#]}, {#, True, 2}] &, 2];
i = 1; j = r = 2;
Monitor[Do[(While[c[Set[k,#m[#]]], m[#]++]) &[r/f[j]];
    Set[{a[n], c[k], i, j, r},
        {k, True, j, k, f[j^k]}], {n, 3, nn}], n];
a369609 = Array[a, n];
```

[C2] Generate the sequence of multipliers m and a sequence of bina-ry-compactified squarefree kernels r :

```
nn = 2^20;
c[_] := False; m[_] := 1;
f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]];
Array[Set[{a[#], c[#], m[#]}, {#, True, 2}] &, 2];
i = 1; j = r = 2;
A067255[n_] :=
    If[n== \overline{1},{0},
        Function[f,
            ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@
                Map[PrimePi@ First@ # -> Last@ # &, f]]@
            FactorInteger@ n]
Set[{a369609pb, a369609m},
    Transpose@
        Reap[Monitor[
            Do[(While[c[Set[k, # m[#]]], m[#]++];
            Sow[{FromDigits[Reverse@ A067255[#], 2], m[#]}]) &
                [r/f[j]];
            Set[{a[n], c[k], i, j, r},
                    {k, True, j, k, f[j*k]}],
                {n, 3, nn}], n]][[-1, 1]] ]
```

[C3] Generate data associated with Appendix Tables A, B, and C:

```
nn = 2^20;
Q = FoldList[Times, Prime@ Range[64]];
c[_] := False; m[_] := 1;
f[\overline{x_] := Times @@ FactorInteger[x][[All, 1]];}
Array[Set[{a[#], c[#], m[#]}, {#, True, 2}] &, 2];
i = ii = 1; j = jj = r = 2; u = 3; mm = 1; sa = sb = 2;
ra[1] = rb[1] = {2, 0, 1, 2}; rc[1] = {2, 2};
Reap[Monitor[
    Do[(While[c[Set[k, # m[#]]], m[#]++]) &[r/f[j]];
            If[PrimeQ[k], Set[ra[sa], {n, ii, jj, k}]; sa++];
            If[MemberQ[Q, k],
                Set[rb[sb], {n, ii, jj,
                    StringJoin["P(",
                    ToString[FirstPosition[Q, k][[1]]], ") "]}];
                    sb++];
            Set[{c[k], h, i, j, hh, ii, jj, q},
                    {True, i, f[j], k, ii, jj,
                k, f[j*k]}];
            If[q != r, mm++; Set[rc[mm], {n, k}]]; r = q,
        {n, 3, nn}], n] ][[-1, 1]];
    Set[{a369609pp, a369609qq, a369609mm},
    {Array[ra, sa - 1],
        Array[rb, sb - 1],
        Array[rc, mm]}];
```

[C4] Generate data associated with Appendix Table D:

```
nn = 2^20;
c[_] := False; m[_] := 1;
f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]];
Array[Set[{a[#], c[#], m[#]}, {#, True, 2}] &, 2];
i = 1; j = r = 2;
Reap[Monitor[
    Do[(While[c[Set[k, # m[#]]], m[#]++]) &[r/f[j]];
        If[Divisible[k,f[k]^2], Sow[{n, i, j, k}]];
        Set[{c[k], i, j, r},
            {True, f[j], k, f[j*k]}], {n, 3, nn}],
        n]][[-1, 1]]
```


[C5] Generate a textual plot of divisibility patterns between $a(n-k)$ and $a(n+k)$ as seen in Tables F. Set j to show patterns associated with PRIME $(1 \ldots j)$. Key to the plot appears below code:

```
n = 1509; j \(=24\)
w = ConstantArray[0, j]; k = 12;
rule1 = \{0 -> ".", 1 -> "x", 2 -> "○", 3 -> "*"\};
t = StringJoin @@ \# \& /@
    Array[\#2 + \#1 /. Dispatch[rule1] \& @@
        \{If[a369609m[[\#]] == 1, w,
            ReplacePart[w, Map[\# -> 1 \&, PrimePi /@
                FactorInteger[a369609m[[\#]]][[All, 1]] ] ] ]
                    ReplacePart[w, Map[\# -> \(2 \&\)
                    Position[Reverse@
                            IntegerDigits[a369609pb[[\#]], 2], 1]
                        [[All, 1]] ] ]\} \&,
            \(2 \mathrm{k}, \mathrm{n}-\mathrm{k}-2]\);
Array[\{n - k + \# - 1, a369609[[n - k + \# - 1] ], t[[\#]],
    Times @@ Prime@ Position[Reverse@
        IntegerDigits[a369609pb[[n - k + \# - 3]], 2], 1]
            [[All, 1]], a369609m[[n - k + \# - 3]]\} \&,
        Length[t]] ] // TableForm
(*
    Key :
            indicates \(p\) divides neither \(r\) nor \(m(r)\),
                    hence \(p\) does not divide \(a(n)\)
            0 indicates \(p\) | \(r\)
            x indicates p | m(r)
            * indicates \(p\) divides both \(r\) and \(m(r)\).
                                    *)
```


 सq-

泣

崖

Figure 4. Aggregate divisi6ility pattern exhibited in A369609. Plot PRIME $(i) \mid \operatorname{A369609}(n)$ at $(x, y)=(n, i)$ for $n=2 \ldots 8194$ in strips of 512 terms. If PRIme (i)|r but not m, we show such in 6lue. We show PRIME(i) $\mid m$ in red, Gut if PRIME(i) also divides r, we use gold. If $m=1$, we show dark 6lue. The strip under the plot shows primes in red, perfect powers of primes in gold, squarefree composites in green, primorials in bright green, and numbers neither prime powers nor squarefree in 6fue or magenta, the latter color representing numbers that are also powerful.

Some data based on a dataset of $2^{\wedge} 27=134217728$ terms:
Table A. Primes in the sequence:

	$a(n-2)$	a ($\mathrm{n}-1$)	$a(n)$	SMN	Case Mode	Diagram Table *
2	-	1	(2)	(u)	(F)	1
3	1	2	[3]	u	F	1
6	4	6	[5]	u	F	1
14	8	30	[7]	u	F	1
33	16	210	[11]	u	F	1
59	26	2310	13	u	A	1
161	34	P (6)	17	u	A	F2
363	171	P (7)	19	u	A	F4
701	32	P (8)	[23]	u	F	F5
1509	261	P (9)	29	u	A	F7
2222	62	P (10)	31	u	A	F10
4581	74	P (11)	37	u	A	F12
7827	369	P (12)	41	u	A	F14
20543	86	P (13)	43	u	A	F16
28710	94	P(14)	47	u	A	F18
87723	531	P (16)	59		A	F21 <-A
91307	108	P (17)	[53]	u	H	F22
384195	639	P (19)	71		A	F26
621674	134	$\mathrm{P}(20) / 67$	67		A	F27
810244	122	P (20) /61	61	u	A	F28
1080885	657	P (20)	73		A	F30
2814146	711	P (21)	79		A	F32
16009512	178	P (23)	89		A	F35
29524905	873	P (24)	97		A	
94188167	927	P (26)	103		A	

Parentheses indicate given terms.
Brackets indicate primes that come in via Theorem J6.
SMN = smallest missing number.
Note A: For $n>=87723$, primes are not in order.

Table B: Primorials in the sequence:

n	$a(n-2)$	$a(n-1)$	$a(n)$	Diagram
Table *				

Note B: $P(15)$ is missing. For $n>87722$, primorials are not in order.

Table C: First occasions of $R(k)=\operatorname{rad}(a(n-2) * a(n-1))=P(k)$:

k $n \quad a(n) \quad$| Diagram |
| :---: |
| Table * |

1	2	2	1	
2	3	3	1	
3	6	5	1	
4	14	7	1	
5	33	11	1	
6	57	26	1	
7	125	595	F1	
8	287	209	F3	
9	701	23	F5	$<-C$
10	1029	21489	F6	
11	1898	84227	F9	
12	4557	4255	F11	
13	7125	4879	F13	
14	15595	582521	F15	
15	26138	595631	F17	
16	52449	4036109	F19	
17	82279	42067	F20	$<-$ D
18	135396	2257	F23	
19	328641	91321	F24	
20	373179	2627	F25	
21	1037245	4199179	F29	
22	2067803	8943961661600459	F31	
23	5238559	818560837103471656403	F33	
24	6177592	18769372247	F34	
25	22983553	231478957		
26	41827189	3999317898971997931		
27	56618797	656499995352641		

Note $C: n=701$ represents $R(9)$ and $a(701)=$ prime (9) $=23$. Note $D: \operatorname{rad}(a(n-2) * a(n-1))$ increases to $P(17)$ before $P(16)$ enters the sequence.

Table D: Powerful numbers in the sequence:

k	n a ($\mathrm{n}-2$)		a ($\mathrm{n}-1$)	a (n)	
1	4	2	3	4	2^2
2	9	6	10	9	3^2
3	12	10	15	8	2^3
4	21	15	42	25	5^2
5	31	10	105	16	2^4
6	53	6	770	27	3^3
7	55	3	1540	36	$2^{\wedge} 2 \times 3^{\wedge} 2$
8	110	22	2730	121	11^2
9	228	39	39270	169	$13^{\wedge} 2$
10	558	34	1141140	289	17^2
11	687	10	1939938	100	$2^{\wedge} 2 \times 5^{\wedge} 2$
12	699	6	4849845	32	2^5
13	3145	58	13831757940	841	29^2
14	4505	46	17440042620	529	23^2
15	91217	154	87398197734282392685	484	$2^{\wedge} 2 \times 11^{\wedge} 2<-E$
16	91247	33	291327325780941308950	1089	$3^{\wedge} 2 \times 11^{\wedge} 2$
17	91267	30	128184023343614175938	225	$3^{\wedge} 2 \times 5^{\wedge} 2$
18	91273	10	384552070030842527814	125	5^3
19	91275	5	769104140061685055628	200	$2^{\wedge} 3 \times 5^{\wedge} 2$
20	91283	14	274680050022030377010	49	7^2
21	91299	42	320460058359035439845	72	$2^{\wedge} 3 \times 3^{\wedge} 2$
22	91301	6	640920116718070879690	81	3^4
23	91305	6	1602300291795177199225	108	$2^{\wedge} 2 \times 3^{\wedge} 3$
24	135394	74	103932991900227710220	1369	37^2

Note E: A cluster of powerful numbers appear in the sequence in the interval $n=\left[91217 .{ }^{2} 91305\right]$.

Table E: Number of instances of cases for $n<=2^{\wedge} 20$:

* For a diagram of terms around the landmark (primes, primorials, etc.) see the noted Table, either Table 1 or one of the Appendix Tables F. For instance, to see how the sequence behaves around primorial $P(8)=9699690$, prime (9) $=23$, and $R(9)=P(9)=223092870$, see Appendix Table F9.

Case	Count
©	21
(9450758
$\stackrel{(}{+}$	323929
(4)	9200604
(B)	613456
©	323907
(1)	1322

Appendix Table F, a group of tables showing composition and cases for sequence landmarks shown in Appendix Tables A through D
Table $\mathrm{F} 1: \mathrm{R}(7)$ for $\mathrm{n}=125$.

Table F4: $P(7)$ and prime (8) $=19$.
prime p Cases
$1111 \quad 111$

		1111	1111	
n	a (n)	23571379	23571379	
357	114	-0..... 0	aagCggga	
358	170170	x.00000.	Hgaaaaag	
359	57	.0.....o	Caggggga	
360	340340	*.00000.	Bgaaaaag	
361	171	*. . . . 0	gBggggga	
362	510510	0x00000.	aHaaaag	P(7)
363	19	. 0	gCggggga	prime (8)
364	1021020	*000000.	Baaaaag	
365	38	x......。	Hgggggga	
366	255255	. 000000.	Caaaaag	

Table F5: $P(8)$, prime (9) $=23, R(9)$.

		$\begin{array}{r} \text { prime p } \\ 11112 \end{array}$	Cases 11112	
n	a (n)	235713793	235713793	
695	48	* 0 .	BaCggggg	
696	3233230	x.000000	Hgaaaaaa	
697	54	x*	DBgggggg	
698	4849845	.x000000	CHaaaaa	
699	32	*.	BCgggggg	2^5
700	9699690	x0000000	Haaaaaaa	P (8)
701	23 \times	Cgggggggr	< E
702	19399380	*0000000.	Baaaaaaag	
703	46	x.......o	Hggggggga	
704	14549535	. *000000.	CBaaaaaag	
Note	E: prime (9)	9) $=u, \mathrm{R}(9)$	at $\mathrm{n}=701$	

Table F11: $R(12)$ for $n=4557$.
prime p Cases
1111223311112233
n \quad a(n) $235713793917 \quad 235713793917$

4552	9592023441	.0.0*000.00.	gagaBaaagaa	
4553	5290	-.o.....*	agagggggBgg	
4554	10464025572	x*.00000.00.	HBgaaaaagaa	
4555	2875	. .*.....०.	CgBgggggagg	
4556	12208029834	00.*0000.00.	aagBaaaagaa	
4557	4255	. .o......○. . \times	ggagggggaggF	<- R(12)
4558	13952034096	*0.00000.00.	Bagaaaaagaag	
4559	8510	x.0.....०..○	Hgagggggagga	
4560	11336027703	.0.00*00.00.	CagaaBaagaag	
4561	17020	*.०.....०..○	Bgagggggagga	
) and prime (12) $=37$.				
		$\begin{aligned} & \text { prime p } \\ & 11112233 \end{aligned}$	Cases 11112233	
n	a (n)	235713793917	235713793917	

4575	740	*.o.	Bgagggggggga	
4576	60168147039	.*.00000000.	gBgaaaaaaag	
4577	1480	*.o.	Bgagggggggga	
4578	100280245065	. 0x00000000.	gaHaaaaaaag	
4579	74	○.... \bigcirc	agCgggggggga	
4580	200560490130	x0000000000.	Haaaaaaaaag	P(11)
4581	37	. . 0	Cgggggggggga	prime (12)
4582	401120980260	*0000000000.	Baaaaaaaaag	
4583	111	.x. 0	gHggggggggga	
4584	66853496710	0.000000000 .	aCaaaaaaaag	

Table F13: $\mathrm{R}(13)$ for $\mathrm{n}=7125$.
111122334 Cases
$\begin{array}{ccrr} & & 111122334 & 111122334 \\ n & a(n) & 2357137939171 & 2357137939171 \\ 7120 & 62359143990 & \text { xoo.00.00000. } & \text { Haagaagaaaa }\end{array}$

7120	62359143990	x00.00.00000.	Haagaagaaaaa
7121	3808	x..0..0.....	Dggaggaggggg
7122	93538715985	.$* 0.00 .00000$.	CBagaagaaaaa
7123	4046	$0 . .0 . . \ldots \ldots$.	aggaggBggggg

7124124718287980 xoo.00.00000. Haagaagaaaaa
71254879 ...o....... 4 CggaggagggggF <- R(13)
7126187077431970 o*0.00.00000. abagaagaaaaag

7128 155897859975 .0*.00.00000. CaBgaagaaaaag
712919516 *..o.......。 Bggaggaggggga
Table F14: $P(12)$ and prime (13) $=41$.
prime p Cases
$111122334 \quad 111122334$

n	a (n)	2357137939171	2357137939171	
7821	246	00. 0	aagCgggggggga	
7822	2473579378270	x.0000000000.	Hgaaaaaaaaaag	
7823	123	. ○. 0	Cagggggggggga	
7824	4947158756540	*.0000000000.	Bgaaaaaaaaag	
7825	369	*. ০	gBgggggggggga	
7826	7420738134810	0x0000000000.	aHaaaaaaaaag	P (12)
7827	41	-	gCgggggggggga	prime(13)
7828	14841476269620	*00000000000.	Baaaaaaaaaag	
7829	82	x. 0	Hggggggggggga	
7830	3710369067405	. 00000000000.	Caaaaaaaaaag	

Table F15: $R(14)$ for $n=15595$. prime p 1111223344 23571379391713

Table F15: $\mathrm{R}(14)$ for $\mathrm{n}=15595$.				
prime p				
		1111223344	Cases	1111223344
n	$\mathrm{a}(\mathrm{n})$	23571379391713	23571379391713	

Table 2 (Key to Case Letters)

	x	y	m	$a(n)$	$a(n+1)$	sym.
(E)	(E)	\cdots
©	.	.	T	T	(G) (1)	$\ldots \rightarrow$ x
(${ }^{\text {c }}$.	T	.	.	(A)(B)	.@ \rightarrow
\oplus	.	T	T	T	(C)(1)	.@ \rightarrow x
(A)	T	.	.	T	(G)®	@ . \rightarrow O
(B)	T	.	T	T	(G)®	@. \rightarrow *
(T	T	.	.	(A) (B)	@@ \rightarrow
(D)	T	T	T	T	(C)(1)	@@ \rightarrow x

Table 2 shows "." if prime p does not divide or " T " if p divides the entity shown in the column heading. The $a(n+1)$ column shows possible cases that follow the case listed in the first column. The "sym." column refers to the A087207 protocol function g defined as follows: "@" represents general divisibility, ". " represents general indivisibility, "o" represents $p \nmid r \wedge p \nmid$ m, "x" represents $p \nmid r \wedge p \mid m$, and " \star " represents $p|r \wedge p| m$. The arrow indicates output. For example, Case (B) represents @ $\rightarrow \mathbf{x}$, which means that $p \mid x$ and $p \mid m$, but $p \nmid y$. Since both $p \mid r$ and $p \mid m$, we have \mathbf{x}.

Table F16: $P(13)$ and prime (14) $=43$.
prime p 1111223344
a(n) 23571379391713
n

20537	258	xо............ 0	Haggggggggggga	
20538	50708377254535	. .00000000000.	Cgaaaaaaaaaag	
20539	516	*0. 0	Baggggggggggga	
20540	152125131763605	. x00000000000.	gHaaaaaaaaaag	
20541	86	0	aCggggggggggga	
20542	304250263527210	x000000000000.	Haaaaaaaaaaag	P(13)
20543	43 0	Cgggggggggggga	prime(14)
20544	608500527054420	*000000000000.	Baaaaaaaaaaag	
20545	172	x.............。	Hgggggggggggga	
20546	456375395290815	*00000000000.	CBaaaaaaaaaag	

Table F17: $R(15)$ for $n=26138$.
prime p
11112233444
n
n \quad a(n) $235713793917137 \quad 235713793917137$

26133	3613166942385	.00*000. . .0000.	gaaBaaagggaaaa	
26134	582958	○......o*o.	aggggggaBagggg	
26135	4129333648440	x000000...0000.	Haaaaaagggaaaa	
26136	367517	. -0*	CggggggaaBgggg	
26137	5161667060550	00*0000...0000.	aaBaaaagggaaaa	
26138	595631	. $000 . .$. . x	gggggggaaaggggr	<- R(15)
26139	6194000472660	**00000...0000.	BBaaaaagggaaaag	
26140	1191262	x. $000 . .$. .	Hggggggaaagggga	
26141	4645500354495	.*00000. . .0000.	CBaaaaagggaaaag	
26142	2382524	*. - . . . -	Bggggggaaagggga	

Table F18: $\mathrm{P}(14)$ and prime (15) $=47$.
prime p
11112233444
Cases
11112233444
235713793917137

n	a (n)	235713793917137	235713793917137	
28704	282	xo. 0	Hagggggggggggga	
28705	2180460221945005	. .000000000000.	Cgaaaaaaaaaaag	
28706	564	*о. 0	Bagggggggggggga	
28707	6541380665835015	.x000000000000.	gHaaaaaaaaaaag	
28708	94	○...... 0	aCgggggggggggga	
28709	13082761331670030	x0000000000000.	Haaaaaaaaaaaag	P (14)
28710	47	\bigcirc	Cggggggggggggga	prime (15)
28711	26165522663340060	*0000000000000.	Baaaaaaaaaaaag	
28712	188	x. 0	Hggggggggggggga	
28713	19624141997505045	. *000000000000.	CBaaaaaaaaaaaag	

Table F19: $\mathrm{R}(16)$ for $\mathrm{n}=52449$.
prime p
111122334445
a (n) 2357137939171373

n	a (n)	2357137939171373	2357137939171373
52444	64595199935760	x00..000.0000.0.	Haaggaaagaaaaga
52445	3274579	, oo. . . - . . . *	CggaagggaggggBg
52446	72669599927730	-*0..000.0000.0.	aBaggaaagaaaaga
52447	3731497	. . **...○....o..	gggBagggaggggag
52448	80743999919700	*0*..000.0000.0.	BaBggaaagaaaaga
52449	4036109	. .oo. . .o....o.x	gggaagggaggggagF <- R(16)
52450	96892799903640	**0..000.0000.0.	BBaggaaagaaaagag
52451	8072218	x..00...0....0.0	Hggaagggaggggaga
52452	68632399931745	.00..0*0.0000.0.	CaaggaBagaaaagag
52453	16144436	*..oo...0....o.o	Bggaagggaggggaga

Table F20: $R(17)$ for $n=82279$.

> prime p

1111223344455
Cases
a (n) 23571379391713739

n	a (n)	23571379391713739	23571379391713739
82274	159974831234453235	.00*0000.0.00000.	gaaBaaaagagaaaaa
82275	44206	-.......0.*	agggggggagBggggg
82276	182828378553660840	x0000000.0.00000.	Haaaaaaagagaaaaa
82277	22103	\bigcirc	CgggggggagBggggg
82278	228535473192076050	00*00000.0.00000.	aaBaaaaagagaaaaa
82279	42067 - . - . . . \times	ggggggggagagggggF <- R(17)
82280	274242567830491260	**000000.0.00000.	BBaaaaaagagaaaaag
82281	84134	x.......o.o.....○	Hgggggggagaggggga
82282	205681925872868445	.*000000.0.00000.	CBaaaaaagagaaaaag
82283	168268	*. -.০.....。	Bgggggggagaggggga

Simple Sequence Analysis • Article 20240314.

	x	y	,	$a(n)$	$(n+1)$	sym.
(E)	.	.	.		(E)	$\cdots \rightarrow$.
©	.	-	T	T	(G)①	$\rightarrow \mathbf{x}$
(G)	.	T	.		(A)(B)	.@ \rightarrow
\oplus	.	T	T	T	(C)(1)	. @ \rightarrow x
(A)	T	.	.	T	(G)①	@. \rightarrow -
(B)	T	.	T	T	(G) (1)	@. \rightarrow
(C)	T	T	.		(A)(B)	@@ \rightarrow
(D)	T	T	T	T	(C)(1)	@@ \rightarrow x

Table F19A: m such that $a(n)=m \times r$ for small r. Asterisks denote powerful $m \times r$.

$r=$	7
n	m

16	2
91283	$7 *$
91285	16

$\mathrm{r}=10$		$\mathrm{r}=11$		$r=13$	
n	m	n	m	n	m
10	2	35	2	59	1
27	4	110	11*	61	3
29	5	112	13	73	5
685	8	281	16	228	13*
689	15	287	19	230	16
91271	16	91219	25		

$r=$	
n	14

18	2
20	3
91281	7
91287	9

$r=15$	
n	m
13	2
17	3
19	5
683	8
691	9
693	12
91267	15*
91269	18

$r=$	
n	23
----1	
703	2
4501	16
4505	$23 *$
4507	25

$r=$		
n	29	
---1509	1	
1511	2	
3133	24	91
3145	$29 *$	
3147	31	

29	$r=30$		$r=33$	
m	n	m	n	m
1	15	2	41	1
2	681	3	43	3
24	91265	8	45	4
29*			277	9
31			279	11
			91237	18
			91239	22
			91245	27
			91247	33*

Next expected powerful numbers,
in no particular order:
64, 144, 196, 216, 400

$$
\begin{aligned}
\text { Key: } & \text {. indicates } p \text { divides neither } r \text { nor } m(r), \\
& \text { hence } p \text { does not divide } a(n) . \\
& \circ \text { indicates } p \mid r \\
& x \text { indicates } p \mid m(r) \text {. } \\
& \star \text { indicates } p \text { divides both } r \text { and } m(r) .
\end{aligned}
$$

Table 2 (Key to Case Letters)

ses

35713793917137391

Table F31: $R(22)$ for $n=1037245$.
prime p
111122334445566777
a (n) 2357137939171373917139
n

2067798 2067799 2067800 2067801 2067802 2067803 2067804 2067805 $2067806 \quad 5216463452292015$ 2067807616824942179342 .0000.0.0x00.......000.

Cases

111122334445566777 2357137939171373917139
(E)
©

Table F32: $P(21)$ and prime (22) $=79 . \quad$ prime p
111122334445566777
a (n) 2357137939171373917139

Cases

111122334445566777

$2814142 \quad 237$.o....................... Caggggggggggggggggggga
281414327153120399499349433747548980 *.0000000000000000000. Bgaaaaaaaaaaaaaaaag

2814146

281414540729680599249024150621323470 ox0000000000000000000. aHaaaaaaaaaaaaaaaag
281414781459361198498048301242646940
. *00000000000000000000. Baaaaaaaaaaaaaaaaaaag 00000000000000000000 Hgggggggggggggggggggga 20364840299624512075310661735 . о०००००००००००००००००००. Caaaaaaaaaaaaaaaaag

HaaBagagagaaggggggaaa CggggagagaggaaaaBaggg aBBaagagagaaggggggaaa gggggagagaggaaaaaBggg Baaagagagaaggggggaaa gggggagagaggaaaaaagggF <- R(22) aaaaagBgagaaggggggaaag Hggggagagaggaaaaaggga CaaaagagaHaaggggggaaag aggggagagCggaaaaaaggga

P(21)
prime (22)

Table F33: $\mathrm{R}(23)$ for $\mathrm{n}=1037245$.

prime p	Cases
1111223344455667778	1111223344455667778
23571379391713739171393	23571379391713739171393

5238554	4893915703950	-**0.00.0......o....oo.	abBagaagaggggggaggggaa
5238555	6607659769389469997470.0.000000.00*0.	ggggaggagaaaaaagaaBagg
5238556	5220176750880	*000.00.0......o....oo.	Baaagaagaggggggaggggaa
5238557	7002146919800781639110..0.000000.000*	ggggaggagaaaaaagaaaBgg
5238558	5546437797810	0000.0*.0......০....o০.	aaaagaBgaggggggaggggaa
5238559	818560837103471656403	.0.0.000000.0000..x	ggggaggagaaaaagaaaaggF <- R (23)
5238560	5872698844740	**00.00.0......o....oo.	BBaagaagaggggggaggggaag
5238561	1637121674206943312806	x...0.0.000000.0000..0	Hgggaggagaaaaaagaaaagga
5238562	4404524133555	.*00.00.0......o....oo.	CBaagaagaggggggaggggaag
5238563	3274243348413886625612	*...0.0.000000.0000..0	Bgggaggagaaaaagaaaagga

Table $\mathrm{F} 34: \mathrm{R}(24)$ for $\mathrm{n}=6177592$. prime $\mathrm{p} \quad$ Cases
$11112233444556677788 \quad 11112233444556677788$
n
a(n) 235713793917137391713939235713793917137391713939
617758710764041730337001907005205 .00000*0000...o.o.00000. gaaaaaBaaaagggagagaaaaa

6177587
617758825728802406

617758912030399580964884484299935 6177590
$6177591 \quad 126635785062788$
12663578506278825772947300
13929936356906708350242030
617759513296757431592767061594665
617759675077488988
○...........00.o.*......
.000000*000...0.0.00000.
*..........000.o.o......
x0*00000000...0.0.00000.
............000.0.0......x
0000*000000...0.0.00000.
x...........00.0.0.....。
.*0*0000000...0.0.00000.
*.ooo.o.o. . . . o
gaaaaaBaaaagggagagaaaaa aggggggggggaaagagBggggg gaaaaaaBaaagggagagaaaaa Bggggggggggaaagagaggggg HaBaaaaaaagggagagaaaaa CggggggggggaaagagagggggF <- R(24) aaaaBaaaaagggagagaaaaag Hggggggggggaaagagaggggga CBaBaaaaaagggagagaaaaag Bggggggggggaaagagaggggga

Table F35: P(23) and prime (24) $=89$.
prime p
11112233444556677788
a (n) 235713793917137391713939

Cases
11112233444556677788 235713793917137391713939
16009506 x 534 xo Haggggggggggggggggggggga

\qquad a acagggggggggggga gHaaaaaaaaaaaaaaaaaang aCgggggggggggggggggggggga Haaaaaaaaaaaaaaaaaang $P(23)$ Cgggggggggggggggggggggga prime(24) 16009512

178	○ . 0
267064515689275851355624017992790	x0000000000000000000000.
89	

Table G: Example of a transition from low to high alternating divisibility coherence.

Table J: $\underset{Q}{\text { Dilation }} \mathrm{j}$.

n	$\underset{k+j}{Q}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{k} \end{aligned}$	j	p	
2	1	1	0	>2F	
3	2		1	(2F)	
5		2	0	>3F	
6	3	.	1	(3F)	
13	.	3	0	>4F	
14	4		1	(4F)	
32	.	4	0	>5F	
33	5	.	1	(5F)	
57	6	.	2		
58		5	1	>6A	
125	7		2		
160		6	1	>7A	
287	8		2		
362		7	1	>8A	Table J Key:
700	9	8	1	>9F	$Q(k+j)$ is the largest prime
701 1029	9 10	.	1	(9F)	factor seen in $a(1 \ldots n)$.
1508		9	1	>10A	
1898	11	.	2		$\mathcal{P}(k)$ is the largest primorial
2221		10	1	>11A	seen in $a(1 \ldots n)$.
4557	12		2		
4580		11	1	>12A	j represents dilation.
7125	13		2		
7826		12	1	>13A	"." represents no change
15595	14		2		from the figure above.
20542	.	13	1	>14A	
26138	15		2		p : ">" represents the prime
28709		14	1	>15A	that follows $\mathcal{P}(k)$.
52449	16	.	2		
82279	17		3		Parentheses represent $a(n)$
87722		16	1	$\xrightarrow{>17 \mathrm{~A}}$	$=\operatorname{Prime}(i)$, where i is the
91306 135396		17	0	>16H	number in parentheses. The
135396	18	.	1		number in parentheses. The
328641	19	\cdot	2		letter is the mode of entry of
373179	20		3		$\text { PRIME }(i) \text {. }$
384194	.	19	1	>20A	
621674	.	.	.	(19A)	
810244 1037245	21	-	2	(18A)	$a(32)=\mathcal{P}(4) \text { and } a(33)$
1080884		20	1	>21A	$=\operatorname{PRIME}(5)$, coming in via
2067803	22		2		Case $® . a(33)$ is the point
2814145 5238559		21	1	>22A	where $Q=\operatorname{Prime}(5)$.
5238559 6177592	23	.	2		
6177592 16009511	24		3		$a(810244)=\operatorname{PRIME}(18)$,
16009511	25	23	1	>24A	coming in through Case (A),
29524904	25	24	1	>25A	while $\mathcal{P}(19)$ is the largest
41827189	26		2		
56618797	27		3		primorial in the sequence
94188166	.	26	1	>27A	and $Q=\operatorname{PRIME}(20)$.

Table J Key:
$Q(k+j)$ is the largest prime
factor seen in $a(1 \ldots n)$.
$\mathcal{P}(k)$ is the largest primorial een in $a(1 \ldots n)$
"." represents no change
$p: ">"$ represents the prime that follows $\mathcal{P}(k)$.

Parentheses represent $a(n)$ $\mathrm{ME}(i)$, where i is the letter is the mode of entry of ME(
$a(32)=\mathcal{P}(4)$ and $a(33)$ $=\operatorname{PRIME}(5)$, coming in via Case ©. $a(33)$ is the point where $Q=\operatorname{PRIME}(5)$
(810244) = PRIME(18), while $\mathcal{P}(19)$ is the largest and $Q=\operatorname{PRImE}(20)$.

Table $\mathrm{H}:$ Coherent interval $\mathrm{n}=91217$. 91305

