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Abstract.
We examine some qualities of a lexically earliest sequence (LES) 

based on divisibility of prime p that resemble a 1 dimensional cellu-
lar automaton that is affected by multiplication of a squarefree kernel 
r by kernel register m(r). The sequence moves into and out of “co-
herence”, defined in the paper, and in rare, intermittent, highly qua-
sicoherent phases, admits primes and their perfect powers as well as 
composite powerful numbers. Otherwise the sequence is dominated 
by weak composites (as opposed to powerful numbers).

A. Introduction.
David Sycamore wrote an integer sequence A369609 defined to be 

as follows:
a(1) = 1, a(2) = 2; 
for n > 2, a(n) = k = m(r) × r, 
with minimal k ≠ a(j), j < n, where
R = rad(a(n–2) × a(n–1)) and
r = R/rad(a(n–1)). [1.0]

The rad(x) function yields the squarefree kernel A7947(x).
First terms of the sequence are shown below (see Code [C1]):
1, 2, 3, 4, 6, 5, 12, 10, 9, 20, 15, 8, 30, 7, 60, 14, 
45, 28, 75, 42, 25, 84, 35, 18, 70, 21, 40, 63, 50, 105, 
16, 210, 11, 420, 22, 315, 44, 525, 66, 140, 33, 280, 
99, 350, 132, 175, 198, 245, 264, 385, 24, 770, ...

Lemma A1:
Minimal k implies minimal m(r), since r is held constant.

The above lemma implies approaching the solution to a(n) from 
below via incrementation on m(r). An approach from below (a 
greedy approach) ensures that no multiple k of the squarefree num-
ber r will go missing provided input r materializes infinitely as n in-
creases to infinity.

Let S = { p : p | a(n–2) } be the set of prime factors of a(n–2).
Let T = { p : p | a(n–1) } be the set of prime factors of a(n–1).

Theorem A2. r = ∏(S \ T), that is, r is the product of the set differ-
ence of S and T.
Proof. The expression ∏(S \ T) signifies removal of any prime p 
such that p | a(n–1) from set S of primes p that also divide a(n–2). 
We are left with a product r of primes p such that while p | a(n–2), 
the same prime p ∤ a(n–1). 
Expand the expression shown below:

 r = R/rad(a(n–1))
 = rad(a(n–2) × a(n–1)) / rad(a(n–1)) [1.1]

The result essentially removes any prime p such that p | a(n–1) from 
r, leaving us with the same product of primes p that divide a(n–2) 
but do not divide a(n–1). Logically, we may write the following 
equivalent expression:

 r = ∏ { p : p | a(n–2) ∧ p ∤ a(n–1) }
 = ∏ { p : p | a(n–2) ∨ p | a(n–1) } / ∏ { p :  p | a(n–1) }
 = ∏(S \ T). [1.2]

The expression r = R/rad(a(n–1)) is necessary to remove primes p 
that divide a(n–1) by means of simple division. ∎

Figure 1. Log log scatterplot of 10⁵ terms, showing primes in red, 
perfect powers of primes in yellow, squarefree composites in green, and 
numbers neither squarefree nor prime powers in blue or purple. We 
accentuate powerful numbers that are not perfect powers of primes in 
purple. Note clustering of powerful numbers near n = 10⁵ and seeming 
association between powers of 2, primorials, and primes in the sequence 
for small values of n.

Given Lemma A1 and Theorem A2, we may approach generation 
of the sequence through the following practical means. A priori, we 
set m(r) = 1 for all r. Upon input of the kernel r, we increment m(r) 
until m(r) × r ≠ a(j), j < n. Hence, m(r) behaves as a sort of counter or 
register that needs adjustment for the occasion a(j) = m(r) × r, j < n, 
in other words, when the product already appears in the sequence. A 
natural consequence is that a(n) are distinct.

We define a 2-input function f(x, y) defined to be as shown below:

 f(x, y) = m(r)++ × r, r = ∏({ p : p | x } \ { p : p | y }). [1.1] 

The result of this function is a multiple of the kernel r. Suppose 
that we apply the function f(x, y) given x and y for the first time. 
Then we have the result m(r) × r = 1 × r = r. Suppose that we reiterate 
the function given the same input. Then we have the result 2 × r. A 
third iteration gives the output 3 × r, and so on. This function implies 
global management of the register m(r). Through this function we 
may rewrite the sequence definition instead as follows:

a(1) = 1, a(2) = 2; 
for n > 2, a(n) = k = f(x, y), 
iterating f(x, y) until k ≠ a(j), j < n. [1.2]

Thus we describe practical means by which we may compute many 
of terms of the sequence, limited only by the efficacy of implementa-
tion of the rad function, which requires factorization.

General Observations.
Examining the first 2²⁶ terms, several conjectures seem evident.

Conjecture A. There is a chain 2i → P(i) → prime(i+1), where P(i) 
is the product of the smallest i primes, i.e., primorial A2110(i). 

Examples include {4, 6, 5}, {8, 30, 7}, and {16, 210, 11}. See 
Appendix Tables A and B. 

The conjecture is false, since a(59) = 13 but a(57) = 26. Further-
more, a(621674) = 67 but the term preceding it is not a primorial.
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Conjecture A.1. Primes appear in order as n increases. The con-
jecture is false; a(87723) = 59 but a(91307) = 53. See Appendix 
Table A, Note A.

Conjecture A.2. Primorials appear in order as n increases. The 
conjecture is false; a(28709) = P(14) and a(87722) = P(16); for 
n ≤ 2²⁶, P(15) has not appeared. See Appendix Table B, Note B.

Conjecture A.3. Powers of 2 appear in order as n increases. This 
conjecture seems to be true, but we see the following. For n ≤ 2²⁶, no 
power of 2 that exceeds 32 appears; the last power of 2 seen is a(699) 
= 32, but those powers of 2 that do appear indeed occur in order as n 
increases. (See Theorem G2.)

Conjecture B. Powerful numbers appear in clusters, e.g., for n 
roughly between 91200 and 91320. See Appendix Table D.

Conjecture C. A369609 is a permutation of natural numbers.

Therefore we can show by construction that there does not exist a 
chain 2i → P(i) → prime(i+1) except for i < 5. We note that 32 pre-
cedes P(8) → prime(9) = 23 (see Appendix Table F5), and that P(i) 
→ prime(i+1) occurs more often, yet not always.

These conjectures inspire us to undertake further examination of 
OEIS A369609.

B. Sequence Mechanics.
Given a dataset of terms, sensing prime factors of terms are kept 

small, we endeavor to examine the nature of kernel r and multiplier 
m(r). The following notion is aided by Theorem A1 above and Theo-
rems 5 and 8, and Corollary C4.1 below.

 p ≤ gpf(a(n–1)) + 2. [2.1]

As a consequence it is indeed meaningful to examine divisibility 
patterns among primes p that satisfy [2.1].  

We can employ A087207 to visualize prime divisors p | a(n), where 
A087207 is defined to be as follows: 

 For x =  
ω
∏
i=1

 pi
δi,

 A087207(x) =  
ω
∑
i=1

 2π(pi)–1. [2.2]

In the above, ω signifies the number of distinct prime factors of x. 
Example: A087207(126) = 2⁰ + 2¹ + 2³ = 11, since 126 = 2 × 3² × 7. 
The function ignores multiplicity of prime power factors, retaining 
only the prime indices and encoding them in a binary number.

We express A087207(r) as a series of bits from least to greatest, left 
to right. For example, we express A087207(126) as “1101” and then 
we replace 0’s with “.” and 1’s with “o” for clarity, thus “oo.o”.

If we express primes p | m instead by “x” when p does not also 
divide r, and by “*” when both p | r and p | m, we arrive at a compact 
means of examination of some of the sequence’s mechanics.

Therefore, for example, a(72) = 6930 = 6 × 1155, so we perform 
the following operation:

 rad(m(r)) =rad(6) = 2 × 3  xx......
 rad(r) = rad(1155) = 3 × 5 × 7 × 11  .oooo...
 r = ∏(S \ T) = P(5) x*ooo... [2.3]
The downside of this protocol is that we lose multiplicity informa-

tion, but such information merely pertains to the register m(r). We 
know that m(r) is a greedy function from Lemma A1; its behavior is 
relatively easy to understand. Therefore, the A087207 protocol fo-
cuses on relationships of prime(i) to each of x, y, m, and k with re-
spect to function f(x, y). Table 1 exhibits notation based on A087207 
for a(n), n = 1…70. 

Table 1: Composition of smallest 62 terms

. indicates p divides neither r nor m(r), 
  hence p does not divide a(n).
o indicates p | r
x indicates p | m(r).
* indicates p divides both r and m(r).

          prime p           Cases (see Table 2)
              11                11
 n   a(n) 235713     r m(r) 235713
----------------------------------
 1     1  ......     1   1  .       < empty product
 2     2  x.....     1   2  F       < prime(1) = P(1)
 3     3  .x....     1   3  gF      < prime(2)
 4     4  *.....     2   2  Bg      < 2^2
 5     6  xo....     3   2  Ha      < P(2)
 6     5  ..x...     1   5  CgF     < prime(3)
 7    12  *o....     6   2  Bag
 8    10  x.o...     5   2  Hga
 9     9  .*....     3   3  CBg     < 3^2
10    20  *.o...    10   2  Bga
11    15  .ox...     3   5  gaH
12     8  *.....     2   4  BgC     < 2^3
13    30  xoo...    15   2  Haa     < P(3)
14     7  ...x..     1   7  CggF    < prime(4)
15    60  *oo...    30   2  Baag
16    14  x..o..     7   2  Hgga
17    45  .*o...    15   3  CBag
18    28  *..o..    14   2  Bgga
19    75  .o*...    15   5  gaBg
20    42  ox.o..    14   3  aHga
21    25  ..*...     5   5  gCBg    < 5^2
22    84  *o.o..    42   2  Baga
23    35  ..ox..     5   7  ggaH
24    18  o*....     6   3  aBgC
25    70  x.oo..    35   2  Hgaa
26    21  .o.x..     3   7  CagH
27    40  *.o...    10   4  BgaC
28    63  .*.o..    21   3  gBga
29    50  o.*...    10   5  agBg
30   105  .oxo..    21   5  gaHa
31    16  *.....     2   8  BgCg    < 2^4
32   210  xooo..   105   2  Haaa    < P(4)
33    11  ....x.     1  11  CgggF   < prime(5)
34   420  *ooo..   210   2  Baaag
35    22  x...o.    11   2  Hggga
36   315  .*oo..   105   3  CBaag
37    44  *...o.    22   2  Bggga
38   525  .o*o..   105   5  gaBag
39    66  ox..o.    22   3  aHgga
40   140  x.oo..    35   4  HCaag
41    33  .o..o.    33   1  Cagga
42   280  *.oo..    70   4  Bgaag
43    99  .*..o.    33   3  gBgga
44   350  o.*o..    70   5  agBag
45   132  xo..o.    33   4  Hagga
46   175  ..*o..    35   5  CgBag
47   198  o*..o.    66   3  aBgga
48   245  ..o*..    35   7  ggaBg
49   264  *o..o.    66   4  Bagga
50   385  ..oox.    35  11  ggaaH
51    24  *o....     6   4  BaggC
52   770  x.ooo.   385   2  Hgaaa
53    27  .*....     3   9  CBggg   < 3^3
54  1540  *.ooo.   770   2  Bgaaa
55    36  x*....     3  12  HBggg   < 2^2*3^2
56  1155  .xooo.   385   3  CHaaa
57    26  o....x     2  13  aCgggF
58  2310  xoooo.  1155   2  Haaaag  < P(5)
59    13  .....o    13   1  Cgggga  < prime(6)
60  4620  *oooo.  2310   2  Baaaag
61    39  .x...o    13   3  gHggga
62  3080  *.ooo.   770   4  BCaaag
63    78  xo...o    39   2  Haggga
64  1925  ..*oo.   385   5  CgBaag
65   156  *o...o    78   2  Baggga
66  2695  ..o*o.   385   7  ggaBag
67   234  o*...o    78   3  aBggga
68  3465  .xooo.   385   9  gHaaag
69    52  *....o    26   2  BCggga
70  5775  .o*oo.  1155   5  gaBaag
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Define function g(r, m(r)) to be as follows:

 For p = prime(i), i = 1…j, 
 (p | r ⇒ 1) + (p | m(r) ⇒ 2). [2.4]

Function output is an array such that terms are in order of prime 
i. Then we convert numerical output to symbols using the following 
replacement rules:

 {0 → ., 1 → o, 2 → x, 3 → *} [2.5]

Thereby we represent the protocol described above in a logical 
manner in the form of a function.

Example: for a(72) = 6930 = 6 × 1155, we have g(1155, 6), which 
yields {2, 3, 1, 1, 1, 0, …}, and this converts to “x*ooo...”.

C. Divisibility Truth Table.
Recognizing that the rad function requires factorization, we con-

sider the effects of the definition of f(x, y) as regards divisibility of x, 
y, and m by primes p.

First, we present several corollaries that follow from the expression 
k = m(r) × r:

Corollary C1.1. p | a(n–2) but p ∤ a(n–1) implies p | a(n) (See 
cases ⒶⒷ).

Corollary C1.2. Primes p that divide both a(n–2) and a(n–1) do 
not also divide a(n) unless p | m (See cases ⒸⒹ).

Corollary C1.3. p | a(n–1) but p ∤ m implies p ∤ a(n) unless p | 
a(n–2) (See cases ⒸⒹⒼⒽ).

Corollary C1.4. p | m implies p | a(n) (see cases ⒷⒹⒻⒽ).

These inspire thought regarding a truth table whose values are 
consequences of sequence definition. We recognize, vis à vis the 
function f(x, y) = k, that x = a(n–2), y = a(n–1), and k = a(n), where 
the latter is accepted as a solution provided k ≠ a(j), j < n .

Theorem C1. The truth table above is equivalent to the following 
logical formula: ( p | a(n–2) ∧ p ∤ a(n–1) ) ∨ p | m.  [3.0]

This summarizes the Corollaries 1.1-1.4.

We examine some basic divisibility patterns, and conclude that R is 
a primorial.

Theorem C2. Case Ⓒ implies p ∤ a(n), but p | a(n+1).
Proof. With respect to a(n+1), Case Ⓒ furnishes either Case Ⓐ or 
Case Ⓑ, both of which results in p | a(n+1). ∎ 

Theorem C3. Case Ⓖ implies p ∤ a(n), but p | a(n+1).
Proof. With respect to a(n+1), Case Ⓖ furnishes either Case Ⓐ or 
Case Ⓑ, both of which results in p | a(n+1). ∎
Theorem C4. p | a(j) implies either p | a(j+1) or p | a(j+2).
Proof. p | a(j+1) results from p | m via either Case Ⓓ or Case Ⓗ, 
while p | a(j+2) results from either Case Ⓐ or Case Ⓑ. ∎
Corollary C4.1. Both a(n–2) and a(n–1) are such that R is a pri-
morial, i.e., R = P(i) = A2110 (i).

We present constraints on the constitution of k, i.e., prime power de-
composition of k, given that R is a primorial.

Let Q = gpf(R) = A6530(R).

Theorem C5. Q is nondecreasing as n increases.
Proof. Consequence of Case Ⓕ and Theorem C4.

Theorem C6. Both R(n) = P(i+1) and a(n) = P(i) imply the following:

 a(n+1) = prime(i+1). [3.1]

Proof. Consequence of Case Ⓕ and Theorems 5 and 6.

Theorem C7. For any kernel r, there are 2ω(k) combinations of fac-
tors of r.
Proof. The kernel r is squarefree by definition, the result of taking 
squarefree kernels. The divisor counting function τ(r) is defined to 
be as follows:
 τ(r) = ∏

pδ|r
 δ + 1, 

 where δ is maximal such that pδ | r. [3.2]

Since r is squarefree, δ = 1 in all cases, therefore, we have 2ω(k) divisors 
of r. ∎
Corollary C7.1. Powerful number k ∈ A1694 implies m(r) ≥ r.
Proof. A powerful number k is such that rad(k)² | k, hence, since 
both m(r) | k and r | k, with r squarefree such that r ≤ rad(k), we 
minimize m(r) by maximizing r, which occurs when r = rad(k). 
Therefore the multiplier m(r) for squarefree r must be at least as large 
as r. ∎
Corollary C7.2. Perfect prime power k = pδ, i.e., k ∈ A246547, im-
plies m(r) ≥ r, where r = p, hence, m(p) ≥ p.

Theorem C8. Regarding an arbitrary index n > 1, let Q = gpf(R) and 
let M be the maximum value of m(r). Then we have the following:

 M < prime(π(Q)+1). [3.3]

Proof. Consequence of Case Ⓕ and Theorem C5. 
See Table F15A for values of M for n ≤ 2²⁷.

Corollary C8.1. M implies no powerful number k can appear as 
a(j), j ≤ n, such that rad(k) > M.
Example: if gpf(R) = Q = 19, then M < 23, hence there can be 
no powerful number k = a(1…n) such that k ≥ 23² = 529, which is 
equivalent to saying rad(k) ≥ 23.

Corollary C8.2. The largest powerful number K in the sequence is 
governed by Q such that K < prime(π(Q)+1)².

Theorem C9. Let s be a squarefree number. All s may appear in the 
sequence. Consequence of Corollary 1.4, i.e., Cases ⒶⒷⒹⒻⒽ.

Table 2 summarizes logic in the above theorems and corollaries.

Table 2.

x y m a(n) a(n+1) sym.
Ⓔ · · · · Ⓔ .. → .

Ⓕ · · ⊤ ⊤ ⒼⒽ .. → x

Ⓖ · ⊤ · · ⒶⒷ .@ → .

Ⓗ · ⊤ ⊤ ⊤ ⒸⒹ .@ → x

Ⓐ ⊤ · · ⊤ ⒼⒽ @. → o

Ⓑ ⊤ · ⊤ ⊤ ⒼⒽ @. → *

Ⓒ ⊤ ⊤ · · ⒶⒷ @@ → .

Ⓓ ⊤ ⊤ ⊤ ⊤ ⒸⒹ @@ → x

Table 2 shows “.” if prime p does not divide or “⊤” if p divides the entity 
shown in the column heading. The a(n+1) column shows possible cases 
that follow the case listed in the first column. The “sym.” column refers to 
the A087207 protocol function g defined as follows: “@” represents general 
divisibility, “.” represents general indivisibility, “o” represents p ∤ r ∧ p ∤ 
m, “x” represents p ∤ r ∧ p | m, and “*” represents p | r ∧ p | m. The arrow 
indicates output. For example, Case Ⓑ represents @. → x, which means 
that p | x and p | m, but p ∤ y. Since both p | r and p | m, we have x.
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D. Extended Divisibility Patterns.
Through the logical formula [3.0] in Theorem C1 and the truth 

table (Table 2), we explore extended patterns of divisibility of x, y, 
m, and k by a given prime p by assuming both p | m and p ∤ m, then 
following the resultant term by setting x = a(n–1) and y = k. In this 
manner we can examine flow structures based on the 8 cases laid out 
in the truth table.

Theorem D1. Some extended divisibility patterns that are conse-
quences of the truth table, replacing ⊤ with 1 for divisibility by p:

Table 3.
AGA 1.1.1 AGB 1.1.1 AHC 1.11. AHD 1.111
BGA 1.1.1 BGB 1.1.1 BHC 1.11. BHD 1.111
CAG 11.1. CAH 11.11 CBG 11.1. CBH 11.11
DCA 111.1 DCB 111.1 DDC 1111. DDD 11111
EEE .....
FGA ..1.1 FGB ..1.1 FHA ..1.1 FHB ..1.1
GAG .1.1. GAH .1.1. GBG .1.1. GBH .1.1.
HCA .11.1 HCB .11.1 HDC .111. HDD .1111

Table 3 is a consequence of the 8 cases described in the truth table, 
i.e., Table 2. In Table 3, we write a string of successive cases followed 
by the divisibility patterns. 

Example: The entry AGA 1.1.1 represents the following:

Case Ⓐ followed by Case Ⓖ, then in turn followed by Case Ⓐ. 
Holding n constant, this results in the following:

p | a(n–2), p ∤ a(n–1), p | a(n), p ∤ a(n+1), p | a(n+2).

From this we can see the following divisibility patterns:

Case Ⓐ has p | a(n–2), p ∤ a(n–1), and assume p | m, therefore we 
have k such that p | k. 

We assume that a(n) = k.
Now for a(n+1), we set x = a(n–1) and y = a(n). Assuming p | m, 

we obtain k such that p ∤ k. We assume that a(n+1) = k.
Finally, we we set x = a(n) and y = a(n+1) to project a(n+2). As-

suming p | m, we obtain k such that p | k.
We may summarize these patterns in the example using the respec-

tive cases showin in the truth table:
x y m k k'

Ⓐ ⊤ · · ⊤ ⒼⒽ
Ⓖ · ⊤ · · ⒶⒷ
Ⓐ ⊤ · · ⊤ ⒼⒽ

For concision, we might abbreviate all of the above example as the 
entry AGA 1.1.1. 

Some dependencies based on Table 3:

Corollary D1.1. Cases Ⓐ or Ⓑ lead to Cases Ⓖ or Ⓗ, which in 
turn lead to Ⓐ, Ⓑ, Ⓒ, or Ⓓ.

Corollary D1.2. Cases Ⓒ or Ⓖ lead to Cases Ⓐ or Ⓑ.

Corollary D1.3. Case Ⓗ leads to Cases Ⓒ or Ⓓ.

Corollary D1.4. A run of repeated Cases Ⓓ implies p | a(n) for as 
long as the run is unbroken by Case Ⓒ. 

For n ≤ 2²⁰, Case Ⓓ appears at most only twice in a row. Duplex Ⓓ 
first appears at a(1662), see Appendix Table F8 for analysis.

Corollary D1.5. Case Ⓓ leads to Case Ⓒ or itself; through Case 
Ⓒ, to either Ⓐ or Ⓑ.

Theorem D1.6. Cases Ⓐ, Ⓑ, Ⓒ, Ⓓ, Ⓖ, and Ⓗ comprise a closed 
system. (See Theorem D1.8.)

Corollary D1.7. Case Ⓔ is idempotent, i.e., Case Ⓔ gives rise to 
itself. This is to say, if a prime p divides none of x, y, or m, then it also 
does not divide k. Prime p will not divide y so long as it does not 
divide m as we iterate function f and accept output.

Theorem D1.8. Case Ⓕ introduces prime p | a(n) solely through 
p | m. Then via Case Ⓖ or Case Ⓗ, p does not divide a(n+1), and 
thereafter, through either Case Ⓐ or Case Ⓑ, p | a(n+2).

Corollary D1.9. Patterns that alternate either Case Ⓐ or Case Ⓑ, 
followed by Case Ⓖ, imply alternating divisibility by prime p. This 
is to say, if prime p divides either a(n–2) or a(n–1) but not both, 
regardless of whether p also divides m, repeats divisibility or nondi-
visibility of a(n) by p.

Theorem D2. For p ≤ Q, p ∤ a(n) implies p | a(n+1). This is to say 
that, after Case Ⓕ introduces p | a(n), such divisibility is interrupted 
at most by singleton terms as n increases through either Case Ⓓ or 
Case Ⓖ. Consequence of Theorem C4.

Theorem D3. Change in alternating ⒶⒼ derives from m. Conse-
quence of definitions of Cases in the truth table (Table 2).

Figure 2 summarizes extended divisibility patterns presented 
through the logic of Tables 2 and 3. 

Figure 2.

Ⓒ

Ⓕp | m

Ⓔ
ⒶⒷ Ⓖ

Ⓗ Ⓓ

Figure 2 demonstrates the following:
Repeated Nondivisibility Case Ⓔ
Introduction of Divisibility Case Ⓕ
Alternating Divisibility Cases ⒶⒷⒼ
Repeated Divisibility Cases ⒹⒽ
Transition from repeated to alternating cases, Case Ⓒ

For prime p, Case Ⓔ implies Case Ⓔ until m(r) increments to 
p for some r, hence a(j) = k such that p | k, and we have Case Ⓕ. 
Therefore, repeated Case Ⓔ represents repeated nondivisibility with 
respect to p | a(n). This repeated nondivisibility is finally broken 
through Case Ⓕ, introducing divisibility of a(j) by p, thereafter, for 
n > j, through Theorem C4, p divides either a(n–1) or a(n) or both.

In the course of sequence generation for n > j, so long as we have 
duplexes where Cases ⒶⒷ are followed by Case Ⓖ, we have an al-
ternating divisibility pattern. However, if Case Ⓗ comes in place of 
Case Ⓖ (i.e, in addition to p | a(n–1), p also divides m), we exit the 
alternating divisibility pattern.

Case Ⓗ induces repeated divisibility, that is, p divides both a(n) 
and a(n+1). We have Case Ⓓ if  p divides all of a(n–2), a(n–1), and 
m; so long as this situation lasts, p divides a(n). When p fails to divide 
m as n increases, we have Case Ⓒ and we exit repeated divisibility.

Among all the divisibility cases, alternating ⒶⒼ is the common-
est. Primes p enter divisibility via sequence …ⒺⒻⒼⒶ… until 
they are perturbed by p | m, transmuting Ⓖ to Ⓗ. When Ⓗ is fol-
lowed by Ⓒ, we have changed index parity of divisibility by p. See 
Appendix Table E for a study of case frequencies.

 This, in a nutshell, completely describes divisibility patterns in 
this sequence with regard to an arbitrary prime p.
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E. Alternating Divisibility Patterns.
Consider the bisection of A369609 by index parity, thus, we create 

2 interleaved sequences a(1, 3, 5, …) and a(2, 4, 6, …). Bisection by 
index parity creates partially dependent sequences.

Define “alternating divisibility (patterns)” to be a sustained rela-
tionship p | a(n) and p | a(n+2) as n increments by 2, which ends 
when such is no longer true for some n. The qualifier “alternating” is 
necessary given sequence definition.

Theorem E1. Cases Ⓐ, Ⓑ, and Ⓖ do not affect the other bisection, 
consequence of Corollary D1.9. 

Theorem E2. Cases Ⓗ→Ⓐ, Ⓗ→Ⓑ, and Ⓓ→Ⓓ move divisibility by 
p to the opposite bisection. 

Theorem E3. Case Ⓓ→Ⓒ ends runs of divisibility by p. This is 
shown by Figure 2 and follows from sequence definition and Table 2.

Given a(n) = p = prime(i) and Theorem C4, we find interest in the 
duration ℓ of alternating divisibility. We define ℓ(i) to be as follows:

 With a(n) = p = prime(i) and k = 1…ℓ(i)/2,
 ℓ(i) such that p | a(n + 2k). [5.1]

We present data associated with for n ≤ 2²⁴ in Table 4.
Table 4: Alternating divisibility duration ℓ(i).
Key: i = table index, j = prime index, p = prime(j).
a(n) = p = prime(i). 

 i    j    p          n        ℓ
--------------------------------
 1    1    2          2        2
 2    2    3          3       16
 3    3    5          6        4
 4    4    7         14        8
 5    5   11         33       16
 6    6   13         59       52
 7    7   17        161       74
 8    8   19        363       78
 9    9   23        701      164
10   10   29       1509      212
11   11   31       2222      924
12   12   37       4581     1708
13   13   41       7827     7278
14   14   43      20543     4702
15   15   47      28710    23612
16   17   59      87723     3244
17   16   53      91307    97778
18   20   71     384195   338418
19   19   67     621674   126438
20   18   61     810244    86074
21   21   73    1080885   205632
22   22   79    2814146    99986
23   24   89   16009512   612522

The table shows that primes a(n) = p = prime(i) can enjoy pro-
tracted alternating divisibility duration. Such protracted duration 
increases roughly along with the increase in n. 

Indeed, certain alternating divisibility duration for prime(i) 
intercalates with same for prime(i+1), noting index i versus j = 
π(prime(i)). For example, 2 divides a(2) and a(4) while 3 divides 
a(3), a(5), etc. but 5 and 7 do not have intercalated alternating di-
visibility durations. 

Durations of 71 and 67 overlap for 100939 terms, meaning that for 
n = 621693…722613, 71 | a(n) for n odd, and 67 | a(n) for n even. 
In these intercalating cases, kernels r that are products of smaller 
primes are locked out. This comprises some of the reason for paucity 
of powerful numbers in the sequence, as well as some of the reason 
for delayed emergence of primes other than the intercalated pair.

Let us examine those numbers that lie within the alternating divis-
ibility duration. More precisely, let us examine an irregular triangle Λ 
defined to be as follows:

 For a(n) = prime(i) = p,
 Λ(i, j) = a(n + 2j)/p,
 j =0…k–1, where p ∤ a(n + 2k). [5.1]

For example, for i = 5, a(33) = prime(5) = 11. Thereafter, we have 
the following:

a(35) = 2 × 11, a(37) = 4 × 11, a(39) = 6 × 11, a(41) = 3 × 11, 
a(43) = 9 × 11, a(45) = 12 × 11, a(47) = 18 × 11,  a(49) = 24 × 11,  
but a(51) = 24, indivisible by 11. Hence we have Λ(5, j), j =0…8.

Table 5 below shows Λ(i, j) for i = 1…5.
Table 5: Λ(i,j) for i = 1..5.
                          j
i:  n  |  0   1   2   3   4   5   6   7   8
-------------------------------------------
1:  2  |  1   2
2:  3  |  1   2   4   3   5  10  20  15  25
3:  6  |  1   2   4
4: 14  |  1   2   4   6  12
5: 33  |  1   2   4   6   3   9  12  18  24
          ...

An extended Table 5 (too large to print) demonstrates the follow-
ing points:

1.) Λ(i, j) is not always smaller than Λ(i, j+1); the terms in the 
rows are not nondecreasing. 

2.) Λ(i, 2) is not always 2. For i ∈ {6, 7, 12, …}, Λ(i, 2) = 3, 
while for i ∈ {11, 14, 15, …}, Λ(i, 2) = 4.

3.) Not all multiples of prime(i) in A369609 occur in row i of 
Λ. For instance, a(21) = 5², a(91273) = 5³, despite row 3 
of Λ missing 5 and 25, respectively.

4.) Though not apparent in Λ, Appendix Table B shows that 
for some i, prime(i) | a(n) and a(n) = prime(i) for n < n. An 
example is a(87723) = P(16), a(91307) = prime(16).

5.) Irregular table Λ does not demonstrate mp in the sequence 
for m less than some limit.

6.) Despite point 5 above, powers prime(i)δ in row i of Λ do 
demonstrate mp in the sequence for m ≤ prime(i)δ, since 
a(n) = mp = prime(i)δ  × p is coprime to any r ≠ p. There-
fore it cannot arise by means of another kernel.

Despite the points shown above, Λ demonstrates “many small 
multiples” of prime(i) appear in an alternating run following the 
emergence of a(n) = prime(i). We need some other method of ex-
amining the entry of a certain m(r) × r in the sequence. 

Particularly, we find interest in the entry of m(r) × r such that 
rad(m(r)) | r, since, as consequence of sequence definition, it can 
be shown that k = m(r) × r as described, in a sequence Kr of numbers 
that have the same squarefree kernel as r enter the sequence in order. 
We explore this in section G below.

Sequence definition, the truth table (Table 2), and Figure 2 indi-
cate that alternating divisibility patterns bear significant insight into 
the gross operation of the sequence. Corollary D1.9 and Theorem 
E1 are the drivers of the exhibited alternating divisibility patterns in 
the sequence. Theorems E2 and E3 show that not everything about 
the sequence can be explained by alternating divisibility patterns. Se-
quence mechanics, particularly multiplier m(r), explains the points 
listed above regarging irregular table Λ.

We have focused on terms that follow primes, but there is cause to 
find interest instead in terms that precede them in A369609.
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F. Kernel Coverage.
We turn to the question of whether all squarefree r occur in 

A369609. Given the truth table and its extension, Corollary C4.1 
and Theorem C5, we can approach the question in a particularly or-
ganized manner. 

Consider that R = P(k) is nondecreasing as n increases. In fact, 
k increments when R increases. Therefore, the question of whether 
or not r covers all divisors dk of P(k), where prime(k) = gpf(dk). 
Perhaps the ordering of coverage resembles irregular table A019565, 
which begins as follows, where P(k) is the last dk in row k.

 1; [6.1]
 2;
 3,  6;
 5, 10, 15, 30;
 7, 14, 21, 35, 42,  70, 105, 210;
11, 22, 33, 66, 55, 110, 165, 330, 77, 154, ..., 2310;
...

Lemma F1. For k > 1, A019565(k, 1) = prime(k) is the smallest term.

Lemma F2. For k > 1, A019565(k, 2(k–1)) = P(k) is the largest term.

This sequence maps to the natural numbers through π(p) → 2(k–1) 
for p | dk, then taking the sum of the powers 2k. Define functions g(x) 
and h(x) to be as follows:

 g(x) = ∑ 2(k–1) for prime(k) | x. 

 h(x) = ∏ prime(k+1) 
 for x expressed in binary as a sum of 2k. [6.2]

Then we take mappings g(x) across A019565. This transform yields 
the index of A019565 as shown below:

 0; [6.3]
 1;
 2,  3;
 4,  5,  6,  7;
 8,  9, 10, 11, 12, 13, 14, 15;
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, ..., 31;
...

The mappings h(x) across natural numbers yields A019565. It is 
thus plain to see that prime(k) → 2(k–1) while P(k) → (2k – 1). This 
transform becomes handy in tracking coverage of dk.

A consequence of failure of r to cover an arbitrary dk, a squarefree 
number, is that dk along with any dk-coregular nonsquarefree num-
ber is missing from the sequence.

If we miss dk, and if the smallest missing prime or powerful num-
ber exceeds dk, then squarefree dk is the smallest missing number u.

For n = 2²⁰, 671 = 11 × 61 = A019565(131088) is the smallest 
missing dk, but the term in A019565 with the smallest index missing 
from A369609 is 746130 = P(8)/13 = A019565(223).

Define sequence S20240329 = s with offset 0 to be as follows:

 s(i) = n such that a(n) = h(i). [6.4]

The first terms S20240329 of appear below:
1, 2, 3, 5, 6, 8, 11, 13, 14, 16, 26, 20, 23, 25, 30, 
32, 33, 35, 41, 39, 100, 102, 96, 92, 80, 82, 76, 74, 
50, 52, 56, 58, 59, 57, 61, 63, 73, 75, 83, 79, 93, 95, 
103, 99, 91, 188, 107, 109, 112, 114, 118, 120, ...

Seen as an irregular triangle as [6.1] above, s begins as follows:

 1; [6.5]
 2;
 3,  5;
 6,  8, 11, 13;
14, 16, 26, 20,  23,  25, 30, 32;
33, 35, 41, 39, 100, 102, 96, 92, 80, ..., 52, 56, 58;
...

This is the sequence of indices n in A369609 such that a(n) is the 
squarefree number h(i). 

For example, suppose we are interested in the index n such that 
a(n) = 6. Since A019565(3) = 6 and s(3) = 5, a(5) = 6. 

Given A369609(1…2²⁴), sequence s is defined for i < 223, how-
ever the sequence features some singleton missing terms, but more 
often, runs of undefined terms (see Figure 3). Despite this, the se-
quence seems mostly defined for n ≤ P(k) as k increases.

In order to demonstrate that the sequence is a permutation of nat-
ural numbers, a necessary but insufficient condition is the coverage 
of the set of squarefree numbers A5117, represented by a completely 
defined s, i.e., a fully populated Figure 3.

Sequence s harbors implications for the nature of the smallest 
missing number u. Naively, we expect u to either be prime or power-
ful. Is it possible that the smallest missing number u is squarefree for 
some n? Is it possible that u is in A332785 for some n?

Table 6 shows the smallest squarefree r = dk missing from row k of 
s presented in the form of [6.3] for A369609(1…2²⁴).

                               Prime decomposition
Table 6                            1111223344455667778
 k        i  2^(k-1)-i      r  23571379391713739171393
1..6       ----- COMPLETELY COVERED -----
 7      223      95    746130  xxxxx.xx
8..9       ----- COMPLETELY COVERED -----
10     1112      88     40579  ...xx.x...x
11     2456     408   1245013  ...xx..xx..x
12     4384     288     12259  .....x..x...x
13     8384     192     13889  ......xx.....x
14    16576     192     15181  ......xx......x
15    32960     192     17119  ......xx.......x
16    69760    4224     45961  .......x....x...x
17   131088      16       671  ....x............x
18   327680   65536      3953  ................x.x
19   524352      64      1207  ......x............x
20  1050624    2048      2701  ...........x........x
21  2621440  524288      5609  ...................x.x
22  4194304       0        83  ......................x
    ...                            1111223344455667778
                               23571379391713739171393

In row k = 22, the second smallest missing r = dk = 3649 = 41 × 89 
= A019565(8392704).

Investigation related to Table 6 suggests that u “narrowly escapes” 
being weak (i.e., u ∈ A052485) as n increases, but does not prove that 
the smallest number missing from A369609(1…n) is certainly either 
prime or a powerful number. The question remains open.

Figure 3. Plot of s(i) for i = 2δ + j, j ≤ 2¹², i.e., arranged according 
to [6.1], showing rows k = 0…20, given 1048576 terms in A369609. 
Black indicates undefined terms while gray indicates defined terms.
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G. Coregular Sequences in A369609.
In section E, we examined Λ(i, j), an array of terms divisible by 

prime(i) that follow a(n) = prime(i) = p with same index parity. We 
called this pattern “alternating divisibility” and is a consequence of 
Theorems E1 through E3. Having examined alternating divisibility 
duration, we saw in Table 4 that such can be quite protracted. 

In this section, we go beyond the question of whether r appears, 
and attempt to determine to what extent it appears. Rather, how 
many k such that rad(k) = r appear in A369609, knowing that for 
squarefree r > 1, there are an infinite number of such k.

Theorem G1. Though p | Λ(i, j), rad(Λ(i, j)) ≠ p implies r ≠ p. The 
proposition is tautological since r = rad(Λ(i, j)).

Interest in the entry of m(r) × r such that rad(m(r)) | r arises so 
as to examine the depth of the occurrence of the “template” r in the 
sequence. We generalize interest from prime p to squarefree r. We are 
lead to the following:

Question: How many numbers that share the same set of prime 
factors as r appear in the sequence? This question probes several oth-
er questions about the sequence:

1.) Section F explored coverage of A5117 by r and remains in-
conclusive. For r > 1, there are an infinite number of k such 
that rad(k) = r.  This question attempts to find out how 
many k appear in the sequence such that rad(k) = r.

2.) Numbers k that are perfect powers of primes and power-
ful numbers have squarefree kernels rad(k) = r. Therefore 
the question addresses the paucity of such numbers in the 
sequence.

Let Kr(i) be the sorted set of numbers k that share the same set 
of prime factors as squarefree r. This is to say that k is such that the 
squarefree kernel rad(k) = r. We may say that all the terms k ∈ Kr are 
r-coregular, since k such that rad(k) | r are said to be r-regular. For 
example, is shown below.

 K₆ = {6, 12, 18, 24, 36, 48, 54, 72, 96, 108, …} 
 = A033845 = 6 × A3586.

The following basic lemmas are self evident: 

Lemma G2.0. The set Kr is countably infinite for r > 1. For r = 1, the 
cardinality of K₁ is 1, since there exists only 1 empty product.

Lemma G2.1. Then Kr(1) = r is the minimum, and for i > 1, Kr(i) = k 
= mr, where rad(m) | r.

Lemma G2.2. Prime r implies prime Kr(1), and Kr(i), i > 1 is a perfect 
power of prime r. 

Lemma G2.3. Composite r implies composite squarefree Kr(1) = r, 
and Kr(i) = k is a tantus number, meaning that at least 1 prime p | k is 
such that p² also divides k, i.e., k ∈ A126706.

Theorem G2. Terms k in Kr enter in order. Consequence of Lemma 
16.1 and the greedy nature of m. Proves Conjecture A.3 provided no 
prohibition.

Corollary G2.4. The first term in Kr to appear in A369609 is the 
number Kr(1) = r itself.

Corollary G2.5. Powers pδ enter A369609 in order of δ, where p 
itself is the first power of p that appears in A369609.

Therefore we have interest in the “penetration” D(r) of kernel r in 
A369609 defined to be the following:

D(r) = j such that a(n) = Kr(i), i = 1…j for some n. [7.1]

Showing that a(n) = Kr(i) for all i, and additionally, all r appear in 
A369609 enables a conclusion that A369609 is a permutation of ℕ.

This amounts more precisely to the following question:
Is D(r) = ∞ for all r ∈ A5117?
Given the nature of the sequence, we could settle for showing D(r) 

can reach ∞ as n increases, for all divisors dk of P(k), where primo-
rial P(k) = R × prime(k) = P(k–1) × prime(k) through Corollary 
C4.1 and Theorem C5.

Given Appendix Table D, we see powerful numbers rarely enter 
the sequence, and from this we conclude that D(r) is relatively shal-
low. For example, after 2²⁷ terms, we have not seen 64 = 2⁶, hence we 
conclude that D(2) = 5.

Using the functions g and h, we can create a sequence Д that regis-
ters penetration at a given threshold N. Define sequence Д to be the 
following: Д(i) = j such that a(n) = Kh(i)(j),
 where j is maximal and n ≤ N. [7.2]

Setting N = 2²⁴ and using offset 0, sequence Д begins as follows:
1, 5, 4, 10, 3, 9, 5, 8, 2, 5, 4, 6, 3, 7, 4, 4, 2, 7, 
6, 10, 4, 8, 5, 7, 4, 11, 6, 9, 5, 9, 6, 7, 2, 6, 4, 6, 
3, 5, 6, 8, 3, 6, 5, 9, 4, 8, 5, 6, 3, 7, 5, 9, 4, 8, 
3, 4, 4, 5, 5, 6, 5, 7, 5, 4, 2, 6, 4, 6, 1, 3, 2, ...

Seen as an irregular triangle as [6.1] above, Д begins as follows:

1; [7.3]
5;
4, 10;
3,  9, 5,  8;
2,  5, 4,  6, 3, 7, 4, 4;
2,  7, 6, 10, 4, 8, 5, 7, 4, 11, 6, 9, 5, 9, 6, 7;
...

This sequence is useful merely because it is relatively stable for 
small values. Many of the first columns above advanced 1-3 terms 
after the spate of powerful numbers entered for n = 91217…91305.

From this data, we see that the largest power of 2 in the sequence 
is t(1) = 5. The largest 3-smooth number in the sequence is K₆(t(3)) 
= 108, the 10th term in K₆. For N = 2²⁴, the kernel with the deep-
est penetration j = 22 is r = 2 × 3 × 5 × 7 × 11 × 19 × 29 × 83 = 
105643230, diagrammed below: 

ooooo..o.o............o

The following table shows the indices of first terms in Kr for r ∈ {6, 
10, 15, 30}:

    n  K_6      n  K_10     n  K_15     n  K_30
----------  ----------  ----------  -----------
    5    6      8   10     11   15     13   30
    7   12     10   20     17   45     15   60
   24   18     27   40     19   75    681   90
   51   24     29   50    691  135    683  120
   55   36    685   80  91267  225    689  150
  695   48    687  100      ?  375    693  180
  697   54  91271  160              91265  240
91299   72  91275  200              91269  270
91303   96  91277  250                  ?  300
91305  108      ?  320
    ?  144     (? means n > 2^27, if it exists)

Though some headway is made to support Conjecture A.3 via 
Theorem G2, we are not able to show D(r) = ∞ for all r ∈ A5117. Our 
sense remains that indeed, Theorem G2 is only repressed by circum-
stance in A369609, and thus, we desire to explore the repression. Sec-
tion J explores what might be repressing Theorem G2 and causing 
what is thwarting Conjecture A.3 and inducing Conjecture B.
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H. Coherent Alternating Divisibility Patterns.
In Section C we developed 8 cases of divisibility of a(n–2), a(n–

2), and m regarding an arbitrary prime p in Tables 1, 2, and Figure 2. 
We introduced alternating divisibility patterns in Section E regard-

ing prime p. We attempted to determine whether kernel r covers all 
squarefree numbers A5117 through Λ(i, j). 

Perhaps more relevant to this section, in Section G, we attempted 
to determine how deep this sequence penetrates the set Kr through 
the function D(r). 

Now we move beyond examining individual arbitrary primes p to 
examine these patterns across all primes p ≤ Q, the latter as defined 
before Theorem C5.  

We note a “coherent” resonance across a range of primes that can 
be seen in Table 1 in the vicinity of a(59) = 13. A more prominent 
example regards Table 7 below. In this way we might explore the 
emergence of primorials and primes in the sequence, but also the 
appearance of powerful terms.
Table 7: Coherent zone that yields {100, 32, P(8), 23}:
                    Primes
                        111122
      n        a(n) 2357137939        r m(r) notes
     ---------------------------------------------------
     680    323323  ...ooxoo..    24871  13
     681        90  o*o.......       30   3
     682    646646  x..ooooo..   323323   2
     683       120  xoo.......       15   8
     684    969969  .x.ooooo..   323323   3
     685        80  *.o.......       10   8
     686   1939938  xo.ooooo..   969969   2
     687       100  x.*.......        5  20  < 2^2*5^2
     688   2909907  .*.ooooo..   969969   3
     689       150  ox*.......       10  15
     690   1293292  x..ooooo..   323323   4
     691       135  .*o.......       15   9
     692   2586584  *..ooooo..   646646   4
     693       180  x*o.......       15  12
     694   1616615  ..xooooo..   323323   5
     695        48  *o........        6   8
     696   3233230  x.oooooo..  1616615   2
     697        54  x*........        3  18
     698   4849845  .xoooooo..  1616615   3
     699        32  *.........        2  16  < 2^5
     700   9699690  xooooooo..  4849845   2  < P(8)
     701        23  ........x.        1  23  < prime(10)
     702  19399380  *ooooooo..  9699690   2
     703        46  x.......o.       23   2
     704  14549535  .*oooooo..  4849845   3
     705        92  *.......o.       46   2
     706  24249225  .o*ooooo..  4849845   5
     707       138  ox......o.       46   3
     708   6466460  x.oooooo..  1616615   4

Remark H1. Some remarks on Table 7 and coherence in general:

1.) For n < 701 in Table 7, a “resonant” or coherent state exists 
among many primes p ≤ Q where all primes p divide one 
term, but generally do not divide the next, etc.

2.) The coherent state is characterized by alternating divisi-
bility in phase across many primes, shown by alternating 
o.o., etc. (vertically) for a given prime. This equates to 
alternating Cases Ⓐ and Ⓖ, which is stable unless per-
turbed by substitution of Case Ⓖ with Case Ⓗ. In the 
graph above, this is an occurrence of an x where there 
should be a “.”.

3.) Most change induced by Case Ⓗ and follow-on Cases Ⓒ 
or Ⓓ occurs for small p.

4.) The appearance of prime a(701) = 23 introduces unrav-
eling and erosion of coherence as n increases. This is be-

cause divisibility by 23, the largest p ≤ Q, occurs out of 
phase with divisibility of a(n) by smaller primes.

5.) Table 4 shows that for 23 = prime(9), ℓ(9) = 164. This 
goes to show that the alternating divisibility pattern asso-
ciated with the largest p ≤ Q prove rather stubborn. This 
seems to suggest that once coherence is lost, it may take a 
long time for it to materialize again.

Already by n = 680, we can see r is a product 24871 of 7, 11, 13, 
17, and 19. As n increases, m that are products of small primes con-
fer divisibility of r by this or that small prime. Since even n harbor a 
product of 24871, a(n) with odd n are generally shielded from divis-
ibility by large primes, and we see a couple powerful numbers enter.

Association with powerful numbers. Appendix Table H shows a 
protracted cluster of powerful numbers that enter the sequence at 
91207 ≤ n ≤ 91305, which demands explanation. Why do so many 
powerful numbers enter the sequence within this narrow range, 
when the sequence proves generally one of weak numbers?

Through examination of the various coherent intervals in A369609 
documented in Appendix Tables F and H, we see that such inter-
vals are shallow aside from the intervals n = 682…700 in Table 6 
and n = 90970…91306 in Appendix Table H. In the interval  n = 
754467…754786, gpf(r) ≈ prime(9) tends to be too high to supply 
powerful numbers.

Intervals n = 682…700 and n = 90970…91306 are characterized 
both by small gpf(r) and ω(r).

Conjecture H2. Protracted coherent alternating divisibility pat-
terns across primes p ≤ Q may yield a rash of powerful numbers.

1.) Coherent divisibility patterns such that a(2n) approaches 
R and a(2n+1) has minimized gpf(r) and ω(r) (or parity 
reversed), along with m(r) ∈ Kr, make for powerful num-
bers in the sequence.

2.) If r = 1, then the smallest missing number u enters the se-
quence via m(r) × r =  m(1) × 1 = u. See Appendix Table 
F5 and Sections J and K.

3.) If prime p is already in the sequence and m is a power of 
p, then we have a perfect power of p in the sequence. (Sec-
tion K, specifically Theorem K1, addresses the appearance 
of primes.)

4.) If r = P(k) new to the sequence, P(k) enters the sequence 
via m(r) × r = m(P(k)) × 1 = P(k).

In order to prove this conjecture, we would need to address the 
emergence of coherence and show how the actions described in Re-
mark H1 arise. This would seem to present significant complexity.

Recovery of lost coherence. Appendix Table F15 or F19 serve as 
examples of incoherent intervals that predominate A369609. Ap-
pendix Table G illustrates gradual partial recovery of coherent al-
ternating divisibility pattern from a more disorganized state, for n = 
3940…3980. Recovery of coherence is a complex process that might 
be described as “random”. 

Suppose we want to create a π(Q)-bit binary number that is pre-
dominantly comprised of zeros, except for 1s in small places. It fol-
lows that such becomes increasingly less likely as π(Q) increases. 
Therefore we expect proper coherence to arise increasingly rarely as 
n increases.

We have attempted to find a new protracted coherent phase but 
such has not materialized for n ≤ 2²⁷.
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J. On the Smallest Missing Number u.
Lexically earliest sequences (LES) normally involve a greedy ap-

proach to solutions such that we can identify the smallest number u 
that is not in the sequence a(1…n). We present the general theorem 
for lexically earliest sequences (LES):

Let R(n) be the largest number in a(1…n).
Let u(n) be the minimum of the sequence U of numbers that are 

not in the sequence. If the reference range У = ℕ as it is for A369609, 
then we have the following:

 U = ℕ \ a(1…n),
 u(n) = min(U). [9.1]

 R(n) = Max(a(1…n)).  [9.2]

Theorem. We can break the reference range У of a lexically earliest 
sequence (LES) into at least 2 or at most 3 intervals.

① The saturated interval [min(U)…u(n)),
② The mixed interval [u(n)…R(n)]
③ The clear interval of k > R(n).

Proof. A priori, before definition, we begin with ③. A sequence 
that begins with its first term min(У) either by definition or natural 
operation of f(x) given an initial value for x has R(n) = min(У). Since 
a number k is either in the sequence or not, and given the greedy na-
ture of the sequence function, given R(n) = min(У), we have at least 
① and ③, otherwise we have ② and ③. A sequence that proceeds 
from R(n) = min(У) to incorporate all terms of У in order becomes 
У itself, and only ever has the intervals ① and ③. Sequences that 
through operation of f(x) incorporates certain terms in У before oth-
ers has either ② and ③, but if it began with R(n) = min(У), it has all 
three intervals. ∎
Corollary. For f(x) = k, k < u(n) implies reiteration of f(x) until its 
output k ≥ u(n).

Corollary. For f(x) = k, u(n) ≤ k < R(n) requires testing to see if k 
is in the sequence; if so, then we reiterate f(x) until either output k > 
R(n) or we can show that k is not already a term.

Corollary. For f(x) = k, k > R(n) is immediately acceptable; fur-
thermore, R(n +1) = k.

Remark. The mixed interval ② tends to be dense with terms al-
ready in the sequence for k not much larger than u(n), and progres-
sively rarifed in such terms as k approaches R(n).

Conjecture J1. Given the nature of the sequence presented thus 
far, especially the summaries in Appendix Tables A and D, we might 
expect u(n) to feature terms that are either prime or powerful as n 
increases.

Define sequence W to be sorted A8578 ⋃ A1694, a sequence that 
begins as follows:

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 
29, 31, 32, 36, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 
71, 72, 73, 79, 81, 83, 89, 97, 100, 101, 103, 107, 108, 
109, 113, 121, 125, 127, 128, 131, 137, 139, 144, ...

Therefore, Conjecture J1 expects u ∈ W.
Challenges to this conjecture include faults in coverage described 

in Section F, and sufficiently slow incorporation of r-coregular terms 
described in Section G. For example, suppose that for R ≥ P(k), 
some small composite kernel r = dk in row k of A019565 does not 
materialize. Then u = dk if all nonsquarefree numbers smaller than 
dk enter the sequence ahead of it. If we can show that some reason 
prevents dk from entering, then A369609 is not a permutation of ℕ. 

Table 8 below summarizes distinct smallest missing u(i) that first 
emerges at n for n ≤ 2²⁷. Asterisks denote composite u. Parenthetic 
u(i) appear by definition, while bracketed u(i) appear via Theorem J6.  
The abbreviated divisibility pattern which brings about a(n(i+1)) = 
u(i) appears in the “patt.” column. The suppressed primes appear in 
column Ⓒ. The circumstance of a(n(i+1)) = u(i) appears in the list-
ed table.

Table 8: Smallest missing number u(i)
 i       n    u     patt.   (C)   Table
---------------------------------------
 1       0   (1)      .      .      1
 2       1   (2)      .      .      1
 3       2   [3]     _gF     .      1
 4       3    4  *   _gB     .      1
 5       4   [5]     CgF     2      1
 6       6   [7]     CgF     2      1
 7      14  [11]     CgF     2      1
 8      33   13      Cga     2      1
 9      59   17      Cga     2     F2
10     161   19      Cga     3     F4
11     363  [23]     CgF     2     F5,7
12     701   29      Cga     3     F7
13    1509   31      Cga     2     F10
14    2222   37      Cga     2     F12
15    4581   41      Cga     3     F14
16    7827   43      Cga     2     F16
17   20543   47      Cga     2     F18
18   28710   49  *   CgB     2     H
19   91283  [53]     CgH    2×3    F22, H
20   91307   61      Cga     2     F28
21  810244   64  *

For example, u(11) = 23, which emerges when a(363) = 19, there-
fore, for n = 363. When a(701) = 23, it appears through the divisibil-
ity pattern CgggggggF, where Case Ⓒ pertains to p = 2, suppressing 
divisibility by 2 while Case Ⓕ furnishes divisibility by p = 23, and 
Case Ⓖ suppresses divisibility by all other primes p ≤ Q, hence CgF. 
Appendix Table F5 and Table 7 detail the entry of 23 into the se-
quence A369609.

Circumstances for entry of missing numbers. The smallest missing 
number is merely a special case of a number that is not in the se-
quence, meaning a potential term. There are several modes of admit-
ting missing numbers into the sequence. These can be stated in terms 
of the cases described in Section C.

Returning to divisibility cases in Table 2, we note the following 
consequences of the truth table:

Theorem J2. Cases that suppress divisibility of primes p such that 
p | a(n–1) and a(n) include Case Ⓖ, i.e., p only divides a(n–1), and 
Case Ⓒ, where p divides both a(n–2) and a(n–1) but not m(r).

Theorem J3. All other cases deliver divisibility by p to a(n) via The-
oremC4. The most common mode in the sequence is alternating 
Cases Ⓐ and Ⓖ. 

Theorem J4. Case Ⓐ implies p only divides a(n–2) and thus p | r. 
It is distinguished from Cases ⒷⒹⒻⒽ since it does not require 
prime p | m(r).

Corollary J4.1. Case Ⓐ alone (i.e., aside from Ⓖ and Ⓒ) cannot 
generate nonsquarefree a(n) since the case produces squarefree r.

Theorem J5. Case Ⓕ implies prime m(r) = p, with r = R = P(k).

Corollary J5.1. Case Ⓕ is the only case that can yield terms alone. 
a(2) = 2 can be construed as the result of singleton Case Ⓕ. Conse-
quence of Theorem J5, the definition of Case Ⓕ, and a(1) = 1.

Corollary J5.2. For a(n) = p = prime(k+1) brought in by Case Ⓕ, 
a(n–1) = m(P(k)) × P(k).
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Theorem J6. Kernel r = 1 implies a(n) = u. 
Proof. Consequence of sequence definition, specifically, given the 
greedy approach to m(r) and the following:

 a(n) = k = m(r) × r, with minimal k ≠ a(j), j < n
 = m(1) × 1 = u.  [9.3]

This, since we increment m(r) until we encounter the smallest 
number not in the sequence, which is u by definition. ∎

Expected smallest missing numbers. Whereupon we see a(n) = 2⁶, 
W(22) = 83, but if 83 enters the sequence before 64, then we expect 
W(22) = 101 instead. The smallest powerful numbers not in the se-
quence after 64 are 128 and 144. We might expect these to enter in a 
flurry of powerful numbers that attend a new deeply coherent phase.

Coherent Divisibility Modes of Entry. We examine various modes 
for numbers to enter the sequence, with attention to the smallest 
missing number u. Entry modes are governed by Theorem C7 and 
corollaries. For composite u, there is more than 1 way for u = m(r) × 
r, with squarefree r to enter.

Mode CgF.

This mode is restricted to bringing in primes p = nextprime(Q). 
Early in the sequence a few smallest missing numbers u(i) enter 

with m(r) = p = nextprime(Q), which is Case Ⓕ introducing prime 
p. Primes q < p are suppressed by Case Ⓖ and for i > 4, Case Ⓒ for at 
least 1 small prime q that divided m(r) for n–1. See Table 1 for exam-
ples. Corollary J5.2 pertains to Mode CgF when it results in a(n) = p.

Mode Cga.

Mode Cga is the means of delivery associated with a prime p | r, 
but is not restricted to prime a(n) = p.

This is the most common mode of furnishing divisibility by 
primes p such that p divides u seems to be Case Ⓐ, where p | a(n–2) 
but does not divide a(n–1), hence p | r, and divisibility by all other 
primes q ≠ p, q ≤ Q are suppressed by Case Ⓖ and for i > 4, Case Ⓒ 
for at least 1 small prime q that divided m(r) for n–1. Aside from Case 
Ⓒ applying to 3 rather than 2, the entry of u(10) = 19 is exemplary:

              prime p   Cases
                  1111      1111
  n      a(n) 23571379  23571379
--------------------------------
361      171  .*.....o  gBggggga
362   510510  oxooooo.  aHaaaaag  P(7)
363       19  .......o  gCggggga  prime(8)

Modes CgB-D-H.

Smallest missing u that are prime squares p² are often brought 
about through Case Ⓑ instead of Case Ⓐ, where p divides both m(r) 
and a(n–2) but p does not divide a(n–1). 

Case Ⓗ may substitute, where p divides both m(r) and a(n–1) but 
p does not divide a(n–2).

Case Ⓓ may also appear instead of Ⓑ or Ⓗ, where p divides all 
of a(n–2), a(n–1), and m(r). This mode has not yet been observed.

Divisibility by all other primes q ≠ p, q ≤ Q are suppressed by Cas-
es Ⓖ or Ⓒ. Theorem C7 also admits entry of u = p² via Theorem J2, 
that is, via m(r) = p².

Prime u(19) = 53 enters via CgH.
Mode CgB-D-H is the means of delivery associated with primes p 

that divide m(r).

Combination Modes.

Theorem J7. Any combination of Cases ⒶⒷⒹⒻⒽ may usher a 
number k such that ω(k) > 1 into the sequence. This is a consequence 
of Theorem J3, specifically, all these cases serve to confer divisibility 
by primes that produce a(n).

Corollary J7.1. Any combination of Cases ⒷⒹⒽ may usher a 
nonsquarefree number into A369609. Hence, numbers a(n) that are 
neither prime powers nor squarefree, including powerful numbers 
are the fruit of any combination of Cases ⒷⒹⒽ, excluding Ⓐ via 
Corollary J4.1 and Ⓕ through Corollary J5.2.

For n ≤ 2²⁷, The most common combination mode that produces 
powerful numbers is CgB. Mode _gB pertains to {4, 108, 250, 1089}, 
_gB-D to {54, 100}, _gB-H to {36, 200}, and  _gH to 96. Therefore, 
missing number 144 is expected to come via Corollary J7.1.

Singleton Modes for Perfect Powers of Primes.

Theorem J8. Perfect powers of primes pδ, δ > 1, may enter through 
one of Cases Ⓑ, Ⓓ, or Ⓗ, excluding Ⓐ via Corollary J4.1 and Ⓕ 
through Corollary J5.2.

Corollary J8.1. For a(n) = pδ, δ > 1, Case Ⓑ implies the squarefree 
r = p and m(r) = p(δ–1), since Case Ⓑ implies p | a(n–2) but p does not 
divide a(n–1) by definition.

Corollary J8.2. For a(n) = pδ, δ > 1, both Cases Ⓓ and Ⓗ imply 
squarefree r = 1 and m(r) = pδ, since these cases imply p | a(n–1) but 
p does not divide a(n–2) by definition.

We anticipate u = 64 to enter through Case Ⓑ since m(r) is min-
imized, but it is possible that it comes in through either Ⓓ or Ⓗ.

K. Occasion of Primes in A369609.
We focus attention on the appearance of primes p in A369609. Ap-

pendix Table A lists primes in the sequence for n ≤ 2²⁷, while Appen-
dix Table B shows primorials.

Since we are dealing with a single prime factor, we can trace emer-
gence of a given prime to a certain case in the truth table (Table 2). 
Theorem J2 shows that Cases Ⓖ and Ⓒ suppress divisibility of a(n) 
by primes q such that both q | R and q ≠ p. Theorem J3 shows that 
Cases Ⓐ, Ⓑ, Ⓓ, Ⓕ, and Ⓗ furnish p | a(n). Therefore we have win-
nowed the provenance of primes in the sequence to those 5 cases.

Theorem K1. Cases Ⓑ and Ⓓ imply composite a(n).
Proof. Case Ⓑ implies prime p divides both r and m(r). Because 
a(n) = m(r) × r, p² | a(n). ∎
Corollary K1.1. Cases Ⓐ, Ⓕ, and Ⓗ may produce prime a(n), as 
consequence of both Theorem J3 and K1. Case Ⓕ is a consequence 
of Theorem J5.

Lemma K2.1. Case Ⓐ implies prime a(n) = p, when Case Ⓐ applies 
to a sole prime p such that p | R, while all other prime factors q | R are 
suppressed by Theorem J2. Consequence of squarefree R.

Lemma K2.2. Case Ⓗ implies prime m(r) = a(n) = p, when Case Ⓗ 
applies to a sole prime p such that p | R, while all other prime factors 
q | R are suppressed by Theorem J2. Consequence of squarefree R.

Therefore, Case Ⓐ has prime a(n) = p derive from p | a(n–2) while 
Case Ⓗ has prime m(r) = a(n) = p.
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Theorem K2. Primes p ≤ Q such that p ∤ a(n–1) enter the sequence 
as consequence of Theorem C7 and sequence definition. Primes 
arise through 1 of the following 4 modes:

⓪. By definition. Applies to p = 2.
①. r = p, m(r) = 1 through Case Ⓐ, p only divides a(n–2).
②. r = 1, m(r) = p through Case Ⓗ, p only divides m(r).
③. r = 1, m(r) = p through Case Ⓕ, p = Q.

Mode ①, a consequence of Theorems J4 and Lemma K2.1, applies 
to most primes, first instance is a(59) = 13.

Mode ② is a consequence of Theorems J4 and Lemma K2.2. Induced 
by a(n–1) = R = P(k), the mode is only observed for a(91307) = 53.

Mode ③, a consequence of Theorems J5 and J6. Induced by a(n–1) 
= R = P(k), this mode yields the primes {(2), 3, 5, 7, 11, 23}.

Theorem K2 summarizes the entry modes of primes p in A369609. 

Primes “coming over the top” of R. Theorem J5 describes introduc-
tion of prime p = Q to the sequence through Mode ③, i.e., Case Ⓕ, 
for examples see Table 1 or Appendix Table F5.

Skipping primes. Conjecture A.1, proved wrong, anticipated that 
primes appear in order in A369609 as n increases. This observed con-
tradiction raises a couple key questions.

1.) How does a skipped prime enter the sequence?
2.) How do 59, 71, 89, and 103 enter ahead of schedule?

Turning to question 1 above, in essence, we see that primes enter 
through primes q ≤ Q such that q ∤ a(n–1). The following corollaries 
address the issue of skipped primes.

Corollary K2.3. Suppose a(n–1) = R/p, where R = P(k), a pri-
morial, and p = prime(i), i ≤ k. Then if p ∤ m, and if a(h) ≠ p, h < n, 
a(n) = p. Consequence of Case Ⓐ, Theorems J4, and Lemma K2.1. 
For 2 examples, see Appendix Tables F27 for a(621674) = 67, and 
F28 for a(810244) = 61.

810242  122  o................o..  agCggggggggggggggagg
810243    *  xoooooooooooooooo.oo  Haaaaaaaaaaaaaaaagaa
810244   61  .................o..  Cggggggggggggggggagg
          * = P(20)/61

Corollary K2.4. Special case of Corollary K2.3: With R = P(k) 
and a(n–1) = P(k–1), if both m ≠ prime(k) and a(h) ≠ prime(k), 
a(n) = prime(k). This is the most common mode of entry for prime 
p through Case Ⓐ. Appendix Tables F21 for an example.

87721   531  .*..............o  gBgggggggggggggga
87722 P(16)  oxoooooooooooooo.  aHaaaaaaaaaaaaaag
87723    59  ................o  gCgggggggggggggga

Corollary K2.5. Suppose a(n–1) = R = P(k), and p = prime(i), 
i ≤ k. Then if p | m, and if a(h) ≠ p, h < n, a(n) = p. Consequence of 
Case Ⓗ, Theorems J4 and Lemma K2.2. The only observed example 
is a(91307) = 53, see Appendix Table F22.

91305   108   **...............  BBggggggggggggggg
91306  P(17)  xxooooooooooooooo  HHaaaaaaaaaaaaaaa  
91307    53   ...............x.  CCgggggggggggggHg

Hence A369609 is able to “cure” the issue of skipped primes 
through a single prime gap in a(n–1) via Mode ①, Case Ⓐ de-
scribed in Corollaries K2.3 and K2.4, or for a(n–1) = R and p | m via 
Mode ②, Case Ⓗ and Corollary K2.5.

Corollary K2.6. Corollaries K2.4 and K2.5 have primes succeed 
primorials in the sequence, while Corollary K2.3 furnishes primes 
that do not succeed primorials.

We address question 2 above. How do primes “jump the queue” 
and enter “early”?

Dilation. Theorem C4 and the original definition of A369609 de-
fine R to be a primorial with greatest factor Q = prime(k+j), j > 0. 
Examination of the primorials P(k) in A369609(1…2²⁷) shows that 
primorials do not enter the sequence in order. Hence we turn atten-
tion to the difference j which we call “dilation”.

Appendix Table C shows the advancement of R = P(k)  as n ≤ 2²⁷ 
increases. Table J tracks change in dilation as n increases to 2²⁷.

We note the following regarding Table J:

1.) “Hitting the ceiling”: j = 0.
 Increase in R conflated with emergence of a prime.
 a(n) = P(k) = R → a(n+1) = prime(k+1) → R = P(k+1).
 Prime Mode ③ (Case Ⓕ) through Theorem J6.
 Pertains to cases k ∈ {(1), 2, 3, 4, 5, 9, …}.
2.) “Topping off ”: j = 1.
 Increase in R ahead of emergence of corresponding prime.
 a(n) = P(k–1) → a(n+1) = prime(k).
 Prime Mode ① (Case Ⓐ) through Corollary K2.4.
 Pertains to most observed cases.
3.) “Catching up”: j > 1.
 R = P(k+j), a(n) = P(k+j–1).
 Followed by a(n+1) = prime(k+j) in observed cases.
 Prime Mode ① (Case Ⓐ) through Corollary K2.4.
 Pertains to P(k) with k ∈ {16, 19, 23, 26, …}.
4.) “Coming up short”: j > 1. (Not observed).
 R = P(k+j), a(n) = P(k+i), i < j–1.
 Not followed by a prime, but instead a number that is not 

a prime power, via Cases Ⓐ and Ⓑ.

We see a(28709) = P(14). For n = 82279, R = P(17), then 
a(87722) = P(16). P(15) is not seen after 67 million terms. Hence 
n = 82279 is a landmark in the sequence that represents dilation j = 3.

Skipped primorials. A hypothetical way that the skipped primori-
al P(15) could enter the sequence for n > 2²⁷ and Q = prime(27) 
appears below. 

x..............oooooooooooo  2 × P(28)/P(15)
xoooooooooooooo............  2 × P(15)/2 = P(15)
.x.............oooooooooooo  3 × P(28)/P(15)

Note that we do not have a prime follow this skipped primorial, 
but some composite number that is not a prime power, since it is the 
product of a run of largest primes p ≤ Q.

The trouble with this arrangement is that a number composed of 
complementary runs of divisibility and nondivisibilty, i.e., contigu-
ous repeated Case Ⓖ and repeated Case Ⓐ except for limited small 
primes is not observed for n > 80000. Much more common are num-
bers like the arrangement that are products of largest primes p < Q, 
with Q stubbornly out of phase.

What is more likely, very much later in the sequence, is that P(15)
appears for an immense primorial R, when m has sufficient incre-
mentation to be in the vicinity of P(15). We have not proved that 
the pattern shown is impossible but should be quite rare.

It appears that item 3 “Catching up” is more common because of 
the observed prevalence of prime Q out of phase with smaller primes.

Primes do not always follow primorials: this we see regarding 61 
and 67. Remark 4 above shows that primorials do not always precede 
primes.
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L. On the Potential of a Reverse Permutation.
Conjecture C asserts that A369609 is a permutation of natural 

numbers. We aren’t able to prove such through the methods used in 
this sequence. 

Theorem L1. The sequence is infinite.
Proof. Since a(n) = k = m(r) × r, minimal m(r) such that a(h) ≠ k, 
and given squarefree r resulting from Theorem A2. Theorem J6 cov-
ers the occasion R = a(n–1), hence r = 1, and a(n) = u, the smallest 
missing number. ∎

The following questions are not answered. If the answer to at least 
1 of these questions is negatory, then we show the sequence is not a 
permutation of natural numbers.

1.) Section F: are all squarefree numbers r in the sequence?
2.) Section G: r-coregular numbers enter the sequence in or-

der per Theorem G2. We demonstrated some penetration. 
Are all r-coregular numbers in the sequence?

3.) Section H: do all powerful numbers appear in the se-
quence? This question is a special case of Question 2.

4.) Section J: do all smallest missing numbers eventually en-
ter the sequence? Critically, do all primes appear in the 
sequence? This is a special case of Question 1.

5.) Section K: do skipped primorials eventually appear in the 
sequence? This question is a special case of Question 1. 

It is our hunch that the sequence is a permutation of natural num-
bers. The range of frequent values of m increases but remains small 
for large values of M and Q. Furthermore, it seems plausible that all 
r appear and do so infinitely. Countervailing this assertion is the fact 
that r is a product of a rather uniform jumble of primes p ≤ Q, and 
that a small r requires protracted coherence that seems to arise only 
in rare, relatively short runs. 

An analogy is inviting kindergartners to flip light switches and 
expecting the room to go dark. Suppose we ask a single 5 year old 
to toggle k = 1 switches. It is easy for the room to go dark. As we 
increase the number k of kids, one per switch (i.e., k such that R = 
P(k)) it is easy to see that as k increases, it becomes less likely to 
observe any coordination, much less the room to go totally dark.

Laying these questions aside, we contemplate the reverse permu-
tation. Essentially, we create a new sequence b(k) = n, where a(n) = k. 
The reverse permutation begins with the following terms. Asterisks 
denote terms n > 2²⁷ if they exist.

1, 2, 3, 4, 6, 5, 14, 12, 9, 8, 33, 7, 59, 16, 11, 31, 
161, 24, 363, 10, 26, 35, 701, 51, 21, 57, 53, 18, 1509, 
13, 2222, 699, 41, 159, 23, 55, 4581, 365, 61, 27, 7827, 
20, 20543, 37, 17, 703, 28710, 695, 91283, 29, 163, 69, 
91307, 697, 100, 91279, 359, 1511, 87723, 15, 810244, 
2220, 28, *, 73, 39, 621674, 177, 709, 25, 384195, 
91299, 1080885, 4579, 19, 367, 80, 63, 2814146, 685, 
91301, 7829, *, 22, 151, 20541, 1505, 108, 16009512, 
681, 93, 705, 2214, 28708, 375, 91303, 29524905, 91281, 
43, 687, *, 165, *, 71, 30, 91309, *, 91305, *, 102, 
4583, 91285, *, 357, 725, 1513, 224, 87725, 131, ...

M. Conclusion.
This investigation concerns a lexically earliest sequence A369609 

based on prime decomposition that behaves like a cellular automa-
ton, alternating states unless perturbed by multiplier m. We are able 
to create a truth table (Table 2) and study extended patterns of the 
states in the truth table so as to arrive at dependencies that appear 
in Figure 3.

Certain naive questions arose before study regarding the relation-
ship of primorials with primes, conjecturing that these numbers 
appeared in order. These questions furnished impetus to study the 
sequence further.

With data in Appendix Tables A and B we found counterexamples 
and know that these numbers do not appear together all the time, 
and do not appear in order. Conjecture A.3 asserted that powers of 
2 appear in order; Theorem G2 confirms that those powers in the 
sequence indeed do appear in order, but it is unknown whether r = 
2 occurs infinitely. 

Conjecture C asserts that A369609 is a permutation of natural 
numbers. Section L lays down unanswered questions associated 
with the matter, and gives the first 119 terms of the reverse permuta-
tion if indeed A369609 is such.

The following list is a summary of findings in this paper.

1.) Conjecture A. There is a chain 2i → P(i) → prime(i+1), 
where P(i) is the product of the smallest i primes, i.e., primorial 
A2110(i), shown to be false; a(59) = 13 but a(57) = 26.

2.) Conjecture A.1. Primes appear in order as n increases. Shown 
to be false; a(87723) = 59 but a(91307) = 53.

3.) Conjecture A.2. Primorials appear in order as n increases. 
Shown to be false; a(28709) = P(14) and a(87722) = P(16).

4.) Conjecture A.3. Powers of 2 appear in order as n increases. 
True via Theorem G2, however, it is uncertain whether A79 is a 
subset of A369609.

5.) Conjecture B. Powerful numbers appear in clusters, e.g., for 
n roughly between 91200 and 91320. Explored in Section H, 
Tables 1 and 7, and in Appendix Tables F and H.

6.) Conjecture C. A369609 is a permutation of natural numbers.
7.) Theorem C1 summarizes logic associated with divisibility rela-

tions ( p | a(n–2) ∧ p ∤ a(n–1) ) ∨ p | m. See truth Table 2.
8.) Figure 2 summarizes extended divisibility patterns and depen-

dencies of cases presented in Table 2.
a.) Repeated Nondivisibility Case Ⓔ
b.) Introduction of Divisibility Case Ⓕ
c.) Alternating Divisibility Cases ⒶⒷⒼ
d.) Repeated Divisibility Cases ⒹⒽ
e.) Transition from repeated to alternating cases, Case Ⓒ

9.) Disruption of alternating Cases ⒶⒼ and introduction of divis-
ibility of a(n) by p through Case Ⓕ arises from m(r) = p = M.

10.) Record m(r) = M implies no powerful number a(j) = k, j ≤ n, 
such that rad(k) > M. (Corollary C8.1.)

11.) Given a(n) = p, p | a(n + 2j), j ≥ 0 for a significantly large j.
12.) All squarefree numbers may appear in the sequence (Theorem 

C9). Do all squarefree r occur in A369609? See Section F, which 
examines coverage of r across A5117, specifically Table 6.

13.) Do all numbers k such that rad(k) = r appear in A369609? See 
Section G.

14.) Numbers k such that rad(k) = r appear in order, Theorem G2.
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15.) Conjecture J1. The smallest missing number u is either prime 
or a powerful number.

16.) Suppression of p | a(n) via Cases Ⓖ and Ⓒ. Theorem J2.
17.) Deliverance of p | a(n) via Cases ⒶⒷⒹⒻⒽ. Theorem J3.
18.) Among the above, Case Ⓐ alone cannot generate nonsquare-

free a(n).
19.) Case Ⓕ implies prime m(r) = p, r = R = P(k). Theorem J5.
20.) Kernel r = 1 implies a(n) = u, smallest missing number. Theo-

rem J6. For n ≤ 2²⁷, smallest missing number u = 64.
21.) Any combination of Cases ⒶⒷⒹⒻⒽ may usher a number k 

such that ω(k) > 1 into the sequence. Theorem J7.
22.) Any combination of Cases ⒷⒹⒽ may usher a nonsquarefree 

number into A369609 (including powerful k). Corollary J7.1.
23.) Case Ⓑ is the most likely source of a(n) = pδ, δ > 1.
24.) Cases Ⓑ and Ⓓ imply composite a(n). Theorem K1.
25.) Lone Case Ⓐ has prime a(n) = p derive from p | a(n–2) while 

Lone Case Ⓗ has prime m(r) = a(n) = p.
26.) Primes p ≤ Q such that p ∤ a(n–1) enter the sequence as con-

sequence of Theorem C7 and sequence definition. Primes arise 
through 1 of the following 4 modes:
⓪. By definition. Applies to p = 2.
①. r = p, m(r) = 1 through Case Ⓐ, p only divides a(n–2).
②. r = 1, m(r) = p through Case Ⓗ, p only divides m(r).
③. r = 1, m(r) = p through Case Ⓕ, p = Q.

22.) Section K addresses skipped primes and primorials using the 
concept of dilation j, where P(k) is the largest primorial in the 
sequence and Q = prime(k+j), j > 0. See Appendix Tables C 
and J. Nicknames for 4 consequences of dilation:
a.) “Hitting the ceiling”, j = 0 for k ∈ {(1), 2, 3, 4, 5, 9, …}.
b.) “Topping off ”: j = 1, for most k.
c.) “Catching up”: j > 1 for k ∈ {16, 19, 23, 26, …}.
d.) “Coming up short”: j > 1. (Not observed).

 Cases a-c involve a primorial followed by prime, but case d 
would have a primorial not followed by a prime.

23.) Some loss of confidence in Conjecture C:
a.) Case 22d involves a special case of coherence with 2 or 3 

runs of the same divisibility cases, which seems hard to get.
b.) Skipped primorials P(k) could also show when average m 

ranges in the scale of P(k), therefore, for very large n.
24.) We can project a reverse permutation b(k) = n, where a(n) = k, 

shown in Section L.
Sycamore’s sequence A369609 presents interesting questions re-

lated to prime decomposition and a behavior akin to a cellular au-
tomaton through alternating divisibility Cases ⒶⒼ. Some of these 
questions are not answered, including whether the sequence is a 
permutation of natural numbers, whether all powerful numbers and 
primorials appear. Can the smallest missing number be anything but 
either prime or powerful? ••••

Concerns Sequences:
A1694, A2110, A3586, A5117, A6530, A7947, A8578, A019565, 
A033845, A052485, A067255, A087207, A126706, A246547, 
A332785, A369609.

References:

[1] N. J. A. Sloane, The Online Encyclopedia of Integer Sequences,  
retrieved April 2024.

Code:
[c1] Generate a million terms of the sequence:

nn = 2^20;
c[_] := False; m[_] := 1; 
f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]];
Array[Set[{a[#], c[#], m[#]}, {#, True, 2}] &, 2];
i = 1; j = r = 2;
Monitor[Do[(While[c[Set[k, # m[#]]], m[#]++]) &[r/f[j]];
  Set[{a[n], c[k], i, j, r}, 
    {k, True, j, k, f[j*k]}], {n, 3, nn}], n];
a369609 = Array[a, n];

[c2] Generate the sequence of multipliers m and a sequence of bina-
ry-compactified squarefree kernels r:

nn = 2^20;
c[_] := False; m[_] := 1; 
f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]];
Array[Set[{a[#], c[#], m[#]}, {#, True, 2}] &, 2];
i = 1; j = r = 2;
A067255[n_] := 
 If[n == 1, {0}, 
  Function[f, 
    ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@
     Map[PrimePi@ First@ # -> Last@ # &, f]]@ 
    FactorInteger@ n]
Set[{a369609pb, a369609m}, 
 Transpose@
  Reap[Monitor[
    Do[(While[c[Set[k, # m[#]]], m[#]++]; 
      Sow[{FromDigits[Reverse@ A067255[#], 2], m[#]}]) &  
       [r/f[j]];
     Set[{a[n], c[k], i, j, r}, 
       {k, True, j, k, f[j*k]}], 
    {n, 3, nn}], n]][[-1, 1]] ]

[c3] Generate data associated with Appendix Tables A, B, and C:
nn = 2^20;
Q = FoldList[Times, Prime@ Range[64]];
c[_] := False; m[_] := 1; 
f[x_] := Times @@ FactorInteger[x][[All, 1]];
Array[Set[{a[#], c[#], m[#]}, {#, True, 2}] &, 2];
i = ii = 1; j = jj = r = 2; u = 3; mm = 1; sa = sb = 2;
ra[1] = rb[1] = {2, 0, 1, 2}; rc[1] = {2, 2};
Reap[Monitor[
  Do[(While[c[Set[k, # m[#]]], m[#]++]) &[r/f[j]];
      If[PrimeQ[k], Set[ra[sa], {n, ii, jj, k}]; sa++];
      If[MemberQ[Q, k], 
       Set[rb[sb], {n, ii, jj, 
         StringJoin["P(", 
           ToString[FirstPosition[Q, k][[1]]], ")"]}]; 
        sb++];
      Set[{c[k], h, i, j, hh, ii, jj, q}, 
        {True, i, f[j], k, ii, jj, 
        k, f[j*k]}];
      If[q != r, mm++; Set[rc[mm], {n, k}]]; r = q, 
  {n, 3, nn}], n] ][[-1, 1]];
Set[{a369609pp, a369609qq, a369609mm}, 
  {Array[ra, sa - 1], 
   Array[rb, sb - 1], 
   Array[rc, mm]}];
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[c4] Generate data associated with Appendix Table D:
nn = 2^20;
c[_] := False; m[_] := 1; 
f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]];
Array[Set[{a[#], c[#], m[#]}, {#, True, 2}] &, 2];
i = 1; j = r = 2;
Reap[Monitor[
  Do[(While[c[Set[k, # m[#]]], m[#]++]) &[r/f[j]];
    If[Divisible[k, f[k]^2], Sow[{n, i, j, k}]];
    Set[{c[k], i, j, r}, 
      {True, f[j], k, f[j*k]}], {n, 3, nn}], 
  n]][[-1, 1]]

[c5] Generate a textual plot of divisibility patterns between a(n–k) 
and a(n+k) as seen in Tables F. Set j to show patterns associated 
with prime(1…j). Key to the plot appears below code:

n = 1509; j = 24;
w = ConstantArray[0, j]; k = 12;
rule1 = {0 -> ".", 1 -> "x", 2 -> "o", 3 -> "*"};
t = StringJoin @@ # & /@
  Array[#2 + #1 /. Dispatch[rule1] & @@
    {If[a369609m[[#]] == 1, w, 
       ReplacePart[w, Map[# -> 1 &, PrimePi /@ 
         FactorInteger[a369609m[[#]]][[All, 1]] ] ] ],
       ReplacePart[w, Map[# -> 2 &, 
         Position[Reverse@ 
           IntegerDigits[a369609pb[[#]], 2], 1]
             [[All, 1]] ] ]} &, 
         2 k, n - k - 2];
Array[{n - k + # - 1, a369609[[n - k + # - 1]], t[[#]], 
  Times @@ Prime@ Position[Reverse@
    IntegerDigits[a369609pb[[n - k + # - 3]], 2], 1]
      [[All, 1]], a369609m[[n - k + # - 3]]} &, 
    Length[t]] ] // TableForm
(*

     Key:
        . indicates p divides neither r nor m(r), 
          hence p does not divide a(n).
        o indicates p | r
        x indicates p | m(r).
        * indicates p divides both r and m(r).  *)

Figure 4. Aggregate divisibility pattern exhibited in A369609. Plot prime(i) | A369609(n) at (x, y) = (n, i) for n = 2…8194 in strips of 512 terms. 
If prime(i) | r but not m, we show such in blue. We show prime(i) | m in red, but if prime(i) also divides r, we use gold. If m = 1, we show dark 
blue. The strip under the plot shows primes in red, perfect powers of primes in gold, squarefree composites in green, primorials in bright green, and 
numbers neither prime powers nor squarefree in blue or magenta, the latter color representing numbers that are also powerful.
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Some data based on a dataset of 2^27 = 134217728 terms:

Table A. Primes in the sequence:
                                     Case  Diagram
       n a(n-2)   a(n-1) a(n)  SMN   Mode  Table *
--------------------------------------------------
       2    -         1   (2)  (u)  (F)   1
       3    1         2   [3]   u    F    1
       6    4         6   [5]   u    F    1
      14    8        30   [7]   u    F    1
      33   16       210  [11]   u    F    1
      59   26      2310   13    u    A    1
     161   34      P(6)   17    u    A    F2
     363  171      P(7)   19    u    A    F4
     701   32      P(8)  [23]   u    F    F5
    1509  261      P(9)   29    u    A    F7
    2222   62     P(10)   31    u    A    F10
    4581   74     P(11)   37    u    A    F12
    7827  369     P(12)   41    u    A    F14
   20543   86     P(13)   43    u    A    F16
   28710   94     P(14)   47    u    A    F18
   87723  531     P(16)   59         A    F21  <-A
   91307  108     P(17)  [53]   u    H    F22
  384195  639     P(19)   71         A    F26
  621674  134  P(20)/67   67         A    F27
  810244  122  P(20)/61   61    u    A    F28
 1080885  657     P(20)   73         A    F30
 2814146  711     P(21)   79         A    F32
16009512  178     P(23)   89         A    F35
29524905  873     P(24)   97         A
94188167  927     P(26)  103         A

Parentheses indicate given terms. 
Brackets indicate primes that come in via Theorem J6.
SMN = smallest missing number. 
Note A: For n >= 87723, primes are not in order.

Table B: Primorials in the sequence:
                                            Diagram

       n      a(n-2) a(n-1)   a(n)    Table *
---------------------------------------------
       2          -      1    P(1)    1
       5     P(2)/2      4    P(2)    1
      13     P(3)/2      8    P(3)    1
      32     P(4)/2     16    P(4)    1
      58     P(5)/2     26    P(5)    1
     160     P(6)/2     34    P(6)    F2
     362   2×P(7)/3    171    P(7)    F4
     700     P(8)/2     32    P(8)    F5
    1508   2×P(9)/3    261    P(9)    F7
    2221     P(10)/2    62    P(10)   F10
    4580     P(11)/2    74    P(11)   F12
    7826   2×P(12)/3   369    P(12)   F14
   20542     P(13)/2    86    P(13)   F16
   28709     P(14)/2    94    P(14)   F18
   87722   2×P(16)/3   531    P(16)   F21  <-B
   91306   5×P(17)/6   108    P(17)   F22
  384194   2×P(19)/3   639    P(19)   F26
 1080884   2×P(20)/3   657    P(20)   F30
 2814145   2×P(21)/3   711    P(21)   F32
16009511     P(23)/2   178    P(23)   F35
29524904   2×P(24)/3   873    P(24)
94188166   2×P(26)/3   927    P(26)

Note B: P(15) is missing. For n > 87722, primorials are not 
in order.

* For a diagram of terms around the landmark (primes, primo-
rials, etc.) see the noted Table, either Table 1 or one of 
the Appendix Tables F. For instance, to see how the sequence 
behaves around primorial P(8) = 9699690, prime(9) = 23, and 
R(9) = P(9) = 223092870, see Appendix Table F9.

Table C: First occasions of R(k) = rad(a(n-2)*a(n-1)) = P(k):
                                             Diagram

 k        n                   a(n)    Table *
---------------------------------------------
 1        2                      2    1
 2        3                      3    1
 3        6                      5    1
 4       14                      7    1
 5       33                     11    1
 6       57                     26    1
 7      125                    595    F1
 8      287                    209    F3
 9      701                     23    F5   <-C
10     1029                  21489    F6
11     1898                  84227    F9
12     4557                   4255    F11
13     7125                   4879    F13
14    15595                 582521    F15
15    26138                 595631    F17
16    52449                4036109    F19
17    82279                  42067    F20  <-D
18   135396                   2257    F23
19   328641                  91321    F24
20   373179                   2627    F25
21  1037245                4199179    F29
22  2067803       8943961661600459    F31
23  5238559  818560837103471656403    F33
24  6177592            18769372247    F34
25 22983553              231478957
26 41827189    3999317898971997931
27 56618797        656499995352641

Note C: n = 701 represents R(9) and a(701) = prime(9) = 23.
Note D: rad(a(n-2)*a(n-1)) increases to P(17) before P(16) 
enters the sequence.

Table D: Powerful numbers in the sequence:

 k       n a(n-2)                 a(n-1)  a(n)
---------------------------------------------------------
 1       4    2                       3     4   2^2     
 2       9    6                      10     9   3^2     
 3      12   10                      15     8   2^3     
 4      21   15                      42    25   5^2     
 5      31   10                     105    16   2^4     
 6      53    6                     770    27   3^3     
 7      55    3                    1540    36   2^2×3^2 
 8     110   22                    2730   121   11^2    
 9     228   39                   39270   169   13^2    
10     558   34                 1141140   289   17^2  
11     687   10                 1939938   100   2^2×5^2 
12     699    6                 4849845    32   2^5     
13    3145   58             13831757940   841   29^2    
14    4505   46             17440042620   529   23^2    
15   91217  154    87398197734282392685   484   2^2×11^2 <-E
16   91247   33   291327325780941308950  1089   3^2×11^2
17   91267   30   128184023343614175938   225   3^2×5^2 
18   91273   10   384552070030842527814   125   5^3     
19   91275    5   769104140061685055628   200   2^3×5^2 
20   91283   14   274680050022030377010    49   7^2     
21   91299   42   320460058359035439845    72   2^3×3^2 
22   91301    6   640920116718070879690    81   3^4     
23   91305    6  1602300291795177199225   108   2^2×3^3 
24  135394   74   103932991900227710220  1369   37^2    

Note E: A cluster of powerful numbers appear in the sequence 
in the interval n = [91217..91305].

Table E: Number of instances of cases for n <= 2^20:

 Case Count
 Ⓕ 21
 Ⓖ 9450758
 Ⓗ 323929
 Ⓐ 9200604
 Ⓑ 613456
 Ⓒ 323907
 Ⓓ 1322
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Table F6: R(10) for n = 1029.
               prime p   Cases
                   111122      111122
   n      a(n) 2357137939  2357137939
-------------------------------------
1024  1204280  x.ooo.o.o.  Hgaaagaga
1025    14079  .o...o.*..  CagggagBg
1026  1505350  o.*oo.o.o.  agBaagaga
1027    20007  .*...o.o..  gBgggagag
1028  2107490  o.o*o.o.o.  agaBagaga
1029    21489  .o...o.o.x  gagggagagF  <- R(10)
1030  2408560  *.ooo.o.o.  Bgaaagagag
1031    42978  xo...o.o.o  Hagggagaga
1032  1655885  ..oo*.o.o.  CgaaBgagag
1033    85956  *o...o.o.o  Bagggagaga

Table F7: P(9) and prime(10) = 29.
                 prime p    Cases
                     111122      111122
   n        a(n) 2357137939  2357137939
---------------------------------------
1503        174  oo.......o  aagCggggga
1504   74364290  x.ooooooo.  Hgaaaaaaag
1505         87  .o.......o  Caggggggga
1506  148728580  *.ooooooo.  Bgaaaaaaag
1507        261  .*.......o  gBggggggga
1508  223092870  oxooooooo.  aHaaaaaaag  P(9)
1509         29  .........o  gCggggggga  prime(10)
1510  446185740  *oooooooo.  Baaaaaaaag
1511         58  x........o  Hgggggggga
1512  111546435  .oooooooo.  Caaaaaaaag

Table F8: First case of duplex case D.
               prime p   Cases
                   111122      111122
   n      a(n) 2357137939  2357137939
-------------------------------------
1657   135575  ..*.o.o..o  CgBgagagga
1658   954408  *o.o.o.oo.  Bagagagaag
1659   189805  ..oxo.o..o  ggaHagagga
1660   102258  o*...o.oo.  aBgCgagaag
1661   379610  x.ooo.o..o  Hgaaagagga
1662   136344  xo...o.oo.  Dagggagaag  <- Case D for p = 2
1663   759220  x.ooo.o..o  Dgaaagagga  <- Case D for p = 2
1664   153387  .*...o.oo.  CBgggagaag
1665  1518440  *.ooo.o..o  Bgaaagagga
1666   204516  x*...o.oo.  HBgggagaag

Table F9: R(11) for n = 1898.
               prime p      Cases
                   1111223      1111223
   n      a(n) 23571379391  23571379391
---------------------------------------
1893  1428714  o*.o..o.oo.  aBgaggagaa
1894   176605  ..o.o*.o...  ggagaBgagg
1895  1904952  *o.o..o.oo.  Bagaggagaa
1896   258115  ..o.oo.*...  ggagaagBgg
1897  2381190  ooxo..o.oo.  aaHaggagaa
1898    84227  ....oo.o..x  ggCgaagaggF  <- R(11)
1899  4762380  *ooo..o.oo.  Baaaggagaag
1900   168454  x...oo.o..o  Hgggaagagga
1901  1190595  .ooo..o.oo.  Caaaggagaag
1902   336908  *...oo.o..o  Bgggaagagga

Table F10: P(10) and prime(11) = 31.
                   prime p      Cases
                       1111223      1111223
   n          a(n) 23571379391  23571379391
-------------------------------------------
2216          186  xo........o  Hagggggggga
2217   1078282205  ..oooooooo.  Cgaaaaaaaag
2218          372  *o........o  Bagggggggga
2219   3234846615  .xoooooooo.  gHaaaaaaaag
2220           62  o.........o  aCgggggggga
2221   6469693230  xooooooooo.  Haaaaaaaaag  P(10)
2222           31  ..........o  Cggggggggga  prime(11)
2223  12939386460  *ooooooooo.  Baaaaaaaaag
2224          124  x.........o  Hggggggggga
2225   9704539845  .*oooooooo.  CBaaaaaaaag

Table F1: R(7) for n = 125.
           prime p  Cases
               111      111
  n   a(n) 2357137  2357137
---------------------------
120   858  xo..oo.  Haggaa
121   560  x.oo...  Dgaagg
122  1287  .*..oo.  CBggaa
123   700  *.*o...  BgBagg
124  1716  xo..oo.  Haggaa
125   595  ..oo..x  CgaaggF  <- R(7)
126  2574  o*..oo.  aBggaag
127  1190  x.oo..o  Hgaagga
128  2145  .ox.oo.  CaHgaag
129   238  o..o..o  agCagga

Table F2: P(6) and prime(7).
            prime p  Cases
                111      111
  n    a(n) 2357137  2357137
----------------------------
155    340  *.o...o  Bgaggga
156   9009  .*.ooo.  gBgaaag
157    680  *.o...o  Bgaggga
158  15015  .oxooo.  gaHaaag
159     34  o.....o  agCggga
160  30030  xooooo.  Haaaaag  P(6)
161     17  ......o  Cggggga  prime(7)
162  60060  *ooooo.  Baaaaag
163     51  .x....o  gHgggga
164  10010  o.oooo.  aCaaaag

Table F3: R(8) for n = 287.
             prime p   Cases
                 1111      1111
  n     a(n) 23571379  23571379
-------------------------------
282   23205  .ooo.oo.  Caaagaa
283     242  o...*...  agggBgg
284   69615  .*oo.oo.  gBaagaa
285     352  *...o...  Bgggagg
286   92820  xooo.oo.  Haaagaa
287     209  ....o..x  CgggaggF  <- R(8)
288  139230  o*oo.oo.  aBaagaag
289     418  x...o..o  Hgggagga
290  116025  .o*o.oo.  CaBagaag
291     836  *...o..o  Bgggagga

Table F4: P(7) and prime(8) = 19.
              prime p   Cases
                  1111      1111
  n      a(n) 23571379  23571379
--------------------------------
357      114  oo.....o  aagCggga
358   170170  x.ooooo.  Hgaaaaag
359       57  .o.....o  Caggggga
360   340340  *.ooooo.  Bgaaaaag
361      171  .*.....o  gBggggga
362   510510  oxooooo.  aHaaaaag  P(7)
363       19  .......o  gCggggga  prime(8)
364  1021020  *oooooo.  Baaaaaag
365       38  x......o  Hgggggga
366   255255  .oooooo.  Caaaaaag

Table F5: P(8), prime(9) = 23, R(9).
               prime p    Cases
                   11112      11112
  n       a(n) 235713793  235713793
-----------------------------------
695        48  *o......   BaCggggg
696   3233230  x.oooooo   Hgaaaaaa
697        54  x*......   DBgggggg
698   4849845  .xoooooo   CHaaaaaa
699        32  *.......   BCgggggg   2^5
700   9699690  xooooooo   Haaaaaaa   P(8)
701        23  ........x  CgggggggF  < E
702  19399380  *ooooooo.  Baaaaaaag
703        46  x.......o  Hggggggga
704  14549535  .*oooooo.  CBaaaaaag
Note E: prime(9) = u, R(9) at n = 701

Appendix Table F, a group of tables showing composition and 
cases for sequence landmarks shown in Appendix Tables A 
through D.
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Key: . indicates p divides neither r nor m(r), 
       hence p does not divide a(n).
     o indicates p | r       x indicates p | m(r).
     * indicates p divides both r and m(r).

Table F11: R(12) for n = 4557.
                   prime p   Cases
                       11112233      11112233
   n          a(n) 235713793917  235713793917
---------------------------------------------
4552   9592023441  .o.o*ooo.oo.  gagaBaaagaa
4553         5290  o.o.....*...  agagggggBgg
4554  10464025572  x*.ooooo.oo.  HBgaaaaagaa
4555         2875  ..*.....o...  CgBgggggagg
4556  12208029834  oo.*oooo.oo.  aagBaaaagaa
4557         4255  ..o.....o..x  ggagggggaggF  <- R(12)
4558  13952034096  *o.ooooo.oo.  Bagaaaaagaag
4559         8510  x.o.....o..o  Hgagggggagga
4560  11336027703  .o.oo*oo.oo.  CagaaBaagaag
4561        17020  *.o.....o..o  Bgagggggagga

Table F12: P(11) and prime(12) = 37.
                    prime p      Cases
                        11112233      11112233
   n           a(n) 235713793917  235713793917
----------------------------------------------
4575           740  *.o........o  Bgagggggggga
4576   60168147039  .*.oooooooo.  gBgaaaaaaaag
4577          1480  *.o........o  Bgagggggggga
4578  100280245065  .oxoooooooo.  gaHaaaaaaaag
4579            74  o..........o  agCgggggggga
4580  200560490130  xoooooooooo.  Haaaaaaaaaag  P(11)
4581            37  ...........o  Cgggggggggga  prime(12)
4582  401120980260  *oooooooooo.  Baaaaaaaaaag
4583           111  .x.........o  gHggggggggga
4584   66853496710  o.ooooooooo.  aCaaaaaaaaag

Table F13: R(13) for n = 7125.
                    prime p        Cases
                        111122334      111122334
   n          a(n)  2357137939171  2357137939171
------------------------------------------------
7120   62359143990  xoo.oo.ooooo.  Haagaagaaaaa
7121          3808  x..o..o......  Dggaggaggggg
7122   93538715985  .*o.oo.ooooo.  CBagaagaaaaa
7123          4046  o..o..*......  aggaggBggggg
7124  124718287980  xoo.oo.ooooo.  Haagaagaaaaa
7125          4879  ...o..o.....x  CggaggagggggF  <- R(13)
7126  187077431970  o*o.oo.ooooo.  aBagaagaaaaag
7127          9758  x..o..o.....o  Hggaggaggggga
7128  155897859975  .o*.oo.ooooo.  CaBgaagaaaaag
7129         19516  *..o..o.....o  Bggaggaggggga

Table F14: P(12) and prime(13) = 41.
                      prime p        Cases
                          111122334      111122334
   n             a(n) 2357137939171  2357137939171
--------------------------------------------------
7821             246  oo..........o  aagCgggggggga
7822   2473579378270  x.oooooooooo.  Hgaaaaaaaaaag
7823             123  .o..........o  Cagggggggggga
7824   4947158756540  *.oooooooooo.  Bgaaaaaaaaaag
7825             369  .*..........o  gBgggggggggga
7826   7420738134810  oxoooooooooo.  aHaaaaaaaaaag  P(12)
7827              41  ............o  gCgggggggggga  prime(13)
7828  14841476269620  *ooooooooooo.  Baaaaaaaaaaag
7829              82  x...........o  Hggggggggggga
7830   3710369067405  .ooooooooooo.  Caaaaaaaaaaag

Table F15: R(14) for n = 15595.
                     prime p         Cases
                         1111223344      1111223344
    n          a(n)  23571379391713  23571379391713
---------------------------------------------------
15590  101064898935  .*ooooo..o.oo.  gBaaaaaggagaa
15591        839914  o......oo.*...  aggggggaagBgg
15592  123523765365  .ooo*oo..o.oo.  gaaaBaaggagaa
15593        867008  *......oo.o...  Bggggggaagagg
15594  134753198580  x*ooooo..o.oo.  HBaaaaaggagaa
15595        582521  .......oo.o..x  CggggggaagaggF  <- R(14)
15596  157212065010  ooo*ooo..o.oo.  aaaBaaaggagaag
15597       1165042  x......oo.o..o  Hggggggaagagga
15598  145982631795  .oooo*o..o.oo.  CaaaaBaggagaag
15599       2330084  *......oo.o..o  Bggggggaagagga

Table 2 (Key to Case Letters)

x y m a(n) a(n+1) sym.
Ⓔ · · · · Ⓔ .. → .

Ⓕ · · ⊤ ⊤ ⒼⒽ .. → x

Ⓖ · ⊤ · · ⒶⒷ .@ → .

Ⓗ · ⊤ ⊤ ⊤ ⒸⒹ .@ → x

Ⓐ ⊤ · · ⊤ ⒼⒽ @. → o

Ⓑ ⊤ · ⊤ ⊤ ⒼⒽ @. → *

Ⓒ ⊤ ⊤ · · ⒶⒷ @@ → .

Ⓓ ⊤ ⊤ ⊤ ⊤ ⒸⒹ @@ → x

Table 2 shows “.” if prime p does not divide or “⊤” if p divides the entity 
shown in the column heading. The a(n+1) column shows possible cases 
that follow the case listed in the first column. The “sym.” column refers to 
the A087207 protocol function g defined as follows: “@” represents general 
divisibility, “.” represents general indivisibility, “o” represents p ∤ r ∧ p ∤ 
m, “x” represents p ∤ r ∧ p | m, and “*” represents p | r ∧ p | m. The arrow 
indicates output. For example, Case Ⓑ represents @. → x, which means 
that p | x and p | m, but p ∤ y. Since both p | r and p | m, we have x.

Table F15A: Record setting multiplier M(i).
                              111122334445566777
 i         n      r  M(i) 2357137939171373917139 Table
------------------------------------------------------
 3         3      1    3  .                      1
 4         6      1    5  .   .   .   .   .   .  1
 5        14      1    7  .                      1
 6        31      2    8  x   .   .   .   .   .  1
 7        33      1   11  .                      1
 8        55      3   12  .x  .   .   .   .   .  1
 9        57      2   13  x                      1
10       121     35   16  ..xx    .   .   .   .  F1
11       125     35   17  ..xx                   F1
12       287     11   19  ....x   .   .   .   .  F3
13       577   5005   20  ..xxxx                 -
14       701      1   23  .       .   .   .   .  F5
15       869    429   24  .x..xx                 -
16      1027    741   27  .x...x.x    .   .   .  F6
17      1029    741   29  .x...x.x               F6
18      1898   2717   31  ....xx.x    .   .   .  F9
19      4435   2185   35  ..x....xx              -
20      4557    115   37  ..x.....x   .   .   .  F11
21      7125    119   41  ...x..x                F13
22     15595  13547   43  .......xx.x .   .   .  F15
23     26138  12673   47  .......xxx             F17
24     52447  76153   49  ...xx...x....x  .   .  F19
25     52449  76153   53  ...xx...x....x         F19
26     82279    713   59  ........x.x .   .   .  F20
27    135396     37   61  ...........x           F23
28    328597   6815   64  ..x......x....x .   .  -
29    328641   1363   67  .........x....x        F24
30    373179     37   71  ...........x    .   .  F25
31   1037245  57523   73  ........x...x....x     F29
32   2029833      .   74  .....xx.x..x.xxxx   .  -
33   2067803      .   79  .....x.x.x..xxxxxx     F31
34   2949082      .   81  .....xx.x.x.xxxxxxx.x  -
35   5238559      .   83  ....x..x.xxxxxx.xxxx   F33
36   6177592      .   89  ...........xxx.x.x     F34
37  22336678      .   94  .....x....xxx.x.xxxx.x -
38  22983495      .   95  .......x.x.......x.x   -
39  22983553      .   97  .......x.x.......x.x   -
40  41827189      .  101  ...x....x.....xxxxxxxx -
41  56618797      .  103  ....x....x..xxx.xxx    -
...                       ----------------------
                              111122334445566777
                          2357137939171373917139
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Table F16: P(13) and prime(14) = 43.
                        prime p         Cases
                            1111223344      1111223344
    n              a(n) 23571379391713  23571379391713
------------------------------------------------------
20537              258  xo...........o  Haggggggggggga
20538   50708377254535  ..ooooooooooo.  Cgaaaaaaaaaaag
20539              516  *o...........o  Baggggggggggga
20540  152125131763605  .xooooooooooo.  gHaaaaaaaaaaag
20541               86  o............o  aCggggggggggga
20542  304250263527210  xoooooooooooo.  Haaaaaaaaaaaag  P(13)
20543               43  .............o  Cgggggggggggga  prime(14)
20544  608500527054420  *oooooooooooo.  Baaaaaaaaaaaag
20545              172  x............o  Hgggggggggggga
20546  456375395290815  .*ooooooooooo.  CBaaaaaaaaaaag

Table F17: R(15) for n = 26138.
                      prime p         Cases
                          11112233444      11112233444
    n            a(n) 235713793917137  235713793917137
------------------------------------------------------
26133  3613166942385  .oo*ooo...oooo.  gaaBaaagggaaaa
26134         582958  o......o*o.....  aggggggaBagggg
26135  4129333648440  xoooooo...oooo.  Haaaaaagggaaaa
26136         367517  .......oo*.....  CggggggaaBgggg
26137  5161667060550  oo*oooo...oooo.  aaBaaaagggaaaa
26138         595631  .......ooo....x  gggggggaaaggggF  <- R(15)
26139  6194000472660  **ooooo...oooo.  BBaaaaagggaaaag
26140        1191262  x......ooo....o  Hggggggaaagggga
26141  4645500354495  .*ooooo...oooo.  CBaaaaagggaaaag
26142        2382524  *......ooo....o  Bggggggaaagggga

Table F18: P(14) and prime(15) = 47.
                          prime p          Cases
                              11112233444      11112233444
    n                a(n) 235713793917137  235713793917137
----------------------------------------------------------
28704                282  xo............o  Hagggggggggggga
28705   2180460221945005  ..oooooooooooo.  Cgaaaaaaaaaaaag
28706                564  *o............o  Bagggggggggggga
28707   6541380665835015  .xoooooooooooo.  gHaaaaaaaaaaaag
28708                 94  o.............o  aCgggggggggggga
28709  13082761331670030  xooooooooooooo.  Haaaaaaaaaaaaag  P(14)
28710                 47  ..............o  Cggggggggggggga  prime(15)
28711  26165522663340060  *ooooooooooooo.  Baaaaaaaaaaaaag
28712                188  x.............o  Hggggggggggggga
28713  19624141997505045  .*oooooooooooo.  CBaaaaaaaaaaaag

Table F19: R(16) for n = 52449.
                       prime p           Cases
                           111122334445      111122334445
    n             a(n) 2357137939171373  2357137939171373
---------------------------------------------------------
52444  64595199935760  xoo..ooo.oooo.o.  Haaggaaagaaaaga
52445         3274579  ...oo...o....*..  CggaagggaggggBg
52446  72669599927730  o*o..ooo.oooo.o.  aBaggaaagaaaaga
52447         3731497  ...*o...o....o..  gggBagggaggggag
52448  80743999919700  *o*..ooo.oooo.o.  BaBggaaagaaaaga
52449         4036109  ...oo...o....o.x  gggaagggaggggagF <- R(16)
52450  96892799903640  **o..ooo.oooo.o.  BBaggaaagaaaagag
52451         8072218  x..oo...o....o.o  Hggaagggaggggaga
52452  68632399931745  .oo..o*o.oooo.o.  CaaggaBagaaaagag
52453        16144436  *..oo...o....o.o  Bggaagggaggggaga

Table F20: R(17) for n = 82279.
                           prime p            Cases
                               1111223344455      1111223344455
    n                 a(n) 23571379391713739  23571379391713739
---------------------------------------------------------------
82274  159974831234453235  .oo*oooo.o.ooooo.  gaaBaaaagagaaaaa
82275               44206  o.......o.*......  agggggggagBggggg
82276  182828378553660840  xooooooo.o.ooooo.  Haaaaaaagagaaaaa
82277               22103  ........o.*......  CgggggggagBggggg
82278  228535473192076050  oo*ooooo.o.ooooo.  aaBaaaaagagaaaaa
82279               42067  ........o.o.....x  ggggggggagagggggF <- R(17)
82280  274242567830491260  **oooooo.o.ooooo.  BBaaaaaagagaaaaag
82281               84134  x.......o.o.....o  Hgggggggagaggggga
82282  205681925872868445  .*oooooo.o.ooooo.  CBaaaaaagagaaaaag
82283              168268  *.......o.o.....o  Bgggggggagaggggga

Table 2 (Key to Case Letters)

x y m a(n) a(n+1) sym.
Ⓔ · · · · Ⓔ .. → .

Ⓕ · · ⊤ ⊤ ⒼⒽ .. → x

Ⓖ · ⊤ · · ⒶⒷ .@ → .

Ⓗ · ⊤ ⊤ ⊤ ⒸⒹ .@ → x

Ⓐ ⊤ · · ⊤ ⒼⒽ @. → o

Ⓑ ⊤ · ⊤ ⊤ ⒼⒽ @. → *

Ⓒ ⊤ ⊤ · · ⒶⒷ @@ → .

Ⓓ ⊤ ⊤ ⊤ ⊤ ⒸⒹ @@ → x

Table F19A: m such that a(n) = m × r for small r.
Asterisks denote powerful m × r.
 
    r = 2       r = 3       r = 5       r = 6
    n   m       n   m       n   m       n   m
---------   ---------   ---------   ---------
    4   2*      5   2       8   2       7   2
   12   4*      9   3*     21   5*     24   3
   31   8*     11   5      23   7      51   4
   57  13      26   7     687  20     695   8
  699  16*     53   9*  91273  25*  91299  12*
91279  28      55  12*  91275  40   91305  18*
              697  18
            91301  27*
            91303  32

    r = 7      r = 10      r = 11      r = 13
    n   m       n   m       n   m       n   m
---------   ---------   ---------   ---------
   16   2      10   2      35   2      59   1
91283   7*     27   4     110  11*     61   3
91285  16      29   5     112  13      73   5
              685   8     281  16     228  13*
              689  15     287  19     230  16
            91271  16   91219  25
            91277  25   91249  55

   r = 14      r = 15      r = 17      r = 22
    n   m       n   m       n   m       n   m
---------   ---------   ---------   ---------
   18   2      13   2     161   1      37   2
   20   3      17   3     163   3      39   3
91281   7      19   5     181  11     108   4
91287   9     683   8     552  16     283  11
              691   9     558  17*    285  16
              693  12     560  19   91217  22*
            91267  15*
            91269  18

   r = 23      r = 29      r = 30      r = 33
    n   m       n   m       n   m       n   m
---------   ---------   ---------   ---------
  703   2    1509   1      15   2      41   1
 4501  16    1511   2     681   3      43   3
 4505  23*   3133  24   91265   8      45   4
 4507  25    3145  29*                277   9
             3147  31                 279  11
                                    91237  18
    r = 37                          91239  22
     n   m                          91245  27
----------                          91247  33*
  4581   1
  4583   3
  4601   7     Next expected powerful numbers,
135338  25     in no particular order:
135394  37*    64, 144, 196, 216, 400
135396  61
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Table F21: P(16) and prime(17) = 59.
                             prime p            Cases
                                 1111223344455      1111223344455
    n                   a(n) 23571379391713739  23571379391713739
-----------------------------------------------------------------
87717                   354  oo..............o  aagCgggggggggggga
87718  10863052825730014910  x.oooooooooooooo.  Hgaaaaaaaaaaaaaag
87719                   177  .o..............o  Cagggggggggggggga
87720  21726105651460029820  *.oooooooooooooo.  Bgaaaaaaaaaaaaaag
87721                   531  .*..............o  gBgggggggggggggga
87722  32589158477190044730  oxoooooooooooooo.  aHaaaaaaaaaaaaaag  P(16)
87723                    59  ................o  gCgggggggggggggga  prime(17)
87724  65178316954380089460  *ooooooooooooooo.  Baaaaaaaaaaaaaaag
87725                   118  x...............o  Hggggggggggggggga
87726  16294579238595022365  .ooooooooooooooo.  Caaaaaaaaaaaaaaag

Table F22: P(17) and prime(16) = 53, entering via r = 1.
                               prime p            Cases
                                   1111223344455      1111223344455
    n                     a(n) 23571379391713739  23571379391713739
-------------------------------------------------------------------
91301                      81  .*...............  CBggggggggggggggg
91302  1281840233436141759380  *.ooooooooooooooo  Bgaaaaaaaaaaaaaaa
91303                      96  xo...............  Haggggggggggggggg
91304  1602300291795177199225  ..*oooooooooooooo  CgBaaaaaaaaaaaaaa
91305                     108  **...............  BBggggggggggggggg
91306  1922760350154212639070  xxooooooooooooooo  HHaaaaaaaaaaaaaaa  P(17)
91307                      53  ...............x.  CCgggggggggggggHg  prime(16) = u
91308    36278497172720993190  ooooooooooooooo.o  aaaaaaaaaaaaaaaCa
91309                     106  x..............o.  Hggggggggggggggag
91310    18139248586360496595  .oooooooooooooo.o  Caaaaaaaaaaaaaaga

Table F23: R(18) for n = 52449.
                               prime p             Cases
                                   11112233444556      11112233444556
     n                    a(n) 235713793917137391  235713793917137391
---------------------------------------------------------------------
135391   77949743925170782665  .xooooooooo.ooooo.  CHaaaaaaaaagaaaaa
135392                   1184  *..........o......  BCgggggggggaggggg
135393  103932991900227710220  xoooooooooo.ooooo.  Haaaaaaaaaagaaaaa
135394                   1369  ...........*......  CggggggggggBggggg
135395  155899487850341565330  o*ooooooooo.ooooo.  aBaaaaaaaaagaaaaa
135396                   2257  ...........o.....x  gggggggggggagggggF  <- R(18)
135397  207865983800455420440  *oooooooooo.ooooo.  Baaaaaaaaaagaaaaag
135398                   4514  x..........o.....o  Hggggggggggaggggga
135399  129916239875284637775  .o*oooooooo.ooooo.  CaBaaaaaaaagaaaaag
135400                   9028  *..........o.....o  Bggggggggggaggggga

Table F24: R(19) for n = 328641.
                               prime p              Cases
                                   111122334445566      111122334445566
     n                    a(n) 2357137939171373917  2357137939171373917
-----------------------------------------------------------------------
328636  129077455641313614435  .*ooooooo.oooo.ooo.  CBaaaaaaagaaaagaaa
328637                 128122  o........o....*....  aggggggggaggggBggg
328638  215129092735522690725  .o*oooooo.oooo.ooo.  gaBaaaaaagaaaagaaa
328639                 158108  *........*....o....  BggggggggBggggaggg
328640  258154911282627228870  x*ooooooo.oooo.ooo.  HBaaaaaaagaaaagaaa
328641                  91321  .........o....o...x  CggggggggaggggagggF  <- R(19)
328642  344206548376836305160  *oooooooo.oooo.ooo.  Baaaaaaaagaaaagaaag
328643                 182642  x........o....o...o  Hggggggggaggggaggga
328644  301180729829731767015  .oo*ooooo.oooo.ooo.  CaaBaaaaagaaaagaaag
328645                 365284  *........o....o...o  Bggggggggaggggaggga

Table F25: R(20) for n = 373179.  prime p               Cases
                                      1111223344455667      1111223344455667
     n                       a(n) 23571379391713739171  23571379391713739171
----------------------------------------------------------------------------
373174   63716120684434597750371  .*.oooooooo.ooooooo.  CBgaaaaaaaagaaaaaaa
373175                     11840  *.o........o........  Bgaggggggggaggggggg
373176  106193534474057662917285  .oxoooooooo.ooooooo.  gaHaaaaaaaagaaaaaaa
373177                      2368  *..........o........  BgCggggggggaggggggg
373178  212387068948115325834570  xoooooooooo.ooooooo.  Haaaaaaaaaagaaaaaaa
373179                      2627  ...........o.......x  CggggggggggagggggggF  <- R(20)
373180  424774137896230651669140  *oooooooooo.ooooooo.  Baaaaaaaaaagaaaaaaag
373181                      5254  x..........o.......o  Hggggggggggaggggggga
373182  318580603422172988751855  .*ooooooooo.ooooooo.  CBaaaaaaaaagaaaaaaag
373183                     10508  *..........o.......o  Bggggggggggaggggggga

Key: . indicates p divides neither r nor m(r), 
       hence p does not divide a(n).
     o indicates p | r
     x indicates p | m(r).
     * indicates p divides both r and m(r).

Table 2 (Key to Case Letters)

x y m a(n) a(n+1) sym.
Ⓔ · · · · Ⓔ .. → .

Ⓕ · · ⊤ ⊤ ⒼⒽ .. → x

Ⓖ · ⊤ · · ⒶⒷ .@ → .

Ⓗ · ⊤ ⊤ ⊤ ⒸⒹ .@ → x

Ⓐ ⊤ · · ⊤ ⒼⒽ @. → o

Ⓑ ⊤ · ⊤ ⊤ ⒼⒽ @. → *

Ⓒ ⊤ ⊤ · · ⒶⒷ @@ → .

Ⓓ ⊤ ⊤ ⊤ ⊤ ⒸⒹ @@ → x
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Table F26: P(19) and prime(20) = 71.
                                    prime p               Cases
                                        1111223344455667      1111223344455667
     n                         a(n) 23571379391713739171  23571379391713739171
------------------------------------------------------------------------------
384189                         426  oo.................o  aagCggggggggggggggga
384190   2619440517026755685293030  x.ooooooooooooooooo.  Hgaaaaaaaaaaaaaaaaag
384191                         213  .o.................o  Caggggggggggggggggga
384192   5238881034053511370586060  *.ooooooooooooooooo.  Bgaaaaaaaaaaaaaaaaag
384193                         639  .*.................o  gBggggggggggggggggga
384194   7858321551080267055879090  oxooooooooooooooooo.  aHaaaaaaaaaaaaaaaaag  P(19)
384195                          71  ...................o  gCggggggggggggggggga  prime(20)
384196  15716643102160534111758180  *oooooooooooooooooo.  Baaaaaaaaaaaaaaaaaag
384197                         142  x..................o  Hgggggggggggggggggga
384198   3929160775540133527939545  .oooooooooooooooooo.  Caaaaaaaaaaaaaaaaaag

 : Prime(19) = 67.          prime p               Cases
                                        1111223344455667      1111223344455667
     n                         a(n) 23571379391713739171  23571379391713739171
------------------------------------------------------------------------------
621669   2498242522955368481943651  .*.ooooooooooooooo.o  CBgaaaaaaaaaaaaaaaga
621670                        2680  *.o...............o.  Bgagggggggggggggggag
621671   4163737538258947469906085  .oxooooooooooooooo.o  gaHaaaaaaaaaaaaaaaga
621672                         134  o.................o.  agCgggggggggggggggag
621673   8327475076517894939812170  xooooooooooooooooo.o  Haaaaaaaaaaaaaaaaaga
621674                          67  ..................o.  Cgggggggggggggggggag  prime(19)
621675  16654950153035789879624340  *ooooooooooooooooo.o  Baaaaaaaaaaaaaaaaaga
621676                         201  .x................o.  gHggggggggggggggggag
621677   2775825025505964979937390  o.oooooooooooooooo.o  aCaaaaaaaaaaaaaaaaga
621678                         402  xo................o.  Haggggggggggggggggag

Table F28: Prime(18) = 61.          prime p               Cases
                                        1111223344455667      1111223344455667
     n                         a(n) 23571379391713739171  23571379391713739171
------------------------------------------------------------------------------
810239   2743971295705076857216797  .*.oooooooooooooo.oo  gBgaaaaaaaaaaaaaagaa
810240                        2440  *.o..............o..  Bgaggggggggggggggagg
810241   4573285492841794762027995  .oxoooooooooooooo.oo  gaHaaaaaaaaaaaaaagaa
810242                         122  o................o..  agCggggggggggggggagg
810243   9146570985683589524055990  xoooooooooooooooo.oo  Haaaaaaaaaaaaaaaagaa
810244                          61  .................o..  Cggggggggggggggggagg  prime(18)
810245  18293141971367179048111980  *oooooooooooooooo.oo  Baaaaaaaaaaaaaaaagaa
810246                         183  .x...............o..  gHgggggggggggggggagg
810247   3048856995227863174685330  o.ooooooooooooooo.oo  aCaaaaaaaaaaaaaaagaa
810248                         366  xo...............o..  Hagggggggggggggggagg

Table F29: R(21) for n = 1037245.
                                  prime p               Cases
                                      11112233444556677      11112233444556677
      n                      a(n) 235713793917137391713  235713793917137391713
------------------------------------------------------------------------------
1037240  38797756036833889815720  xooooooo.ooo.oooo.oo.  Haaaaaaagaaagaaaagaa
1037241                  2358443  ........o...*....o...  CgggggggagggBggggagg
1037242  48497195046042362269650  oo*ooooo.ooo.oooo.oo.  aaBaaaaagaaagaaaagaa
1037243                  3508903  ........o...o....*...  ggggggggagggaggggBgg
1037244  58196634055250834723580  **oooooo.ooo.oooo.oo.  BBaaaaaagaaagaaaagaa
1037245                  4199179  ........o...o....o..x  ggggggggagggaggggaggF  <- R(21)
1037246  67896073064459307177510  ooo*oooo.ooo.oooo.oo.  aaaBaaaagaaagaaaagaag
1037247                  8398358  x.......o...o....o..o  Hgggggggagggaggggagga
1037248  43647475541438126042685  .*oooooo.ooo.oooo.oo.  CBaaaaaagaaagaaaagaag
1037249                 16796716  *.......o...o....o..o  Bgggggggagggaggggagga

Table F30: P(20) and prime(21) = 73.   prime p                Cases
                                           11112233444556677      11112233444556677
      n                           a(n) 235713793917137391713  235713793917137391713
-----------------------------------------------------------------------------------
1080879                           438  oo..................o  aagCgggggggggggggggga
1080880   185980276708899653655805130  x.oooooooooooooooooo.  Hgaaaaaaaaaaaaaaaaaag
1080881                           219  .o..................o  Cagggggggggggggggggga
1080882   371960553417799307311610260  *.oooooooooooooooooo.  Bgaaaaaaaaaaaaaaaaaag
1080883                           657  .*..................o  gBgggggggggggggggggga
1080884   557940830126698960967415390  oxoooooooooooooooooo.  aHaaaaaaaaaaaaaaaaaag  P(20)
1080885                            73  ....................o  gCgggggggggggggggggga  prime(21)
1080886  1115881660253397921934830780  *ooooooooooooooooooo.  Baaaaaaaaaaaaaaaaaaag
1080887                           146  x...................o  Hggggggggggggggggggga
1080888   278970415063349480483707695  .ooooooooooooooooooo.  Caaaaaaaaaaaaaaaaaaag

Key: . indicates p divides neither r nor m(r), 
       hence p does not divide a(n).
     o indicates p | r
     x indicates p | m(r).
     * indicates p divides both r and m(r).
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Table F31: R(22) for n = 1037245.
                            prime p                 Cases
                                111122334445566777      111122334445566777
      n                a(n) 2357137939171373917139  2357137939171373917139
--------------------------------------------------------------------------
2067798   5036585402212980  xoo*o.o.o.oo......ooo.  HaaBagagagaaggggggaaa
2067799   6679667570056039  .....o.o.o..oooo*o....  CggggagagaggaaaaBaggg
2067800   5396341502371050  o**oo.o.o.oo......ooo.  aBBaagagagaaggggggaaa
2067801   6906096979210481  .....o.o.o..ooooo*....  gggggagagaggaaaaaBggg
2067802   5756097602529120  *oooo.o.o.oo......ooo.  Baaaagagagaaggggggaaa
2067803   8943961661600459  .....o.o.o..oooooo...x  gggggagagaggaaaaaagggF <- R(22)
2067804   6115853702687190  ooooo.*.o.oo......ooo.  aaaaagBgagaaggggggaaag
2067805  17887923323200918  x....o.o.o..oooooo...o  Hggggagagaggaaaaaaggga
2067806   5216463452292015  .oooo.o.oxoo......ooo.  CaaaagagaHaaggggggaaag
2067807    616824942179342  o....o.o....oooooo...o  aggggagagCggaaaaaaggga

Table F32: P(21) and prime(22) = 79.    prime p                 Cases
                                            111122334445566777      111122334445566777
      n                            a(n) 2357137939171373917139  2357137939171373917139
--------------------------------------------------------------------------------------
2814140                            474  oo...................o  aagCggggggggggggggggga
2814141  13576560199749674716873774490  x.ooooooooooooooooooo.  Hgaaaaaaaaaaaaaaaaaaag
2814142                            237  .o...................o  Caggggggggggggggggggga
2814143  27153120399499349433747548980  *.ooooooooooooooooooo.  Bgaaaaaaaaaaaaaaaaaaag
2814144                            711  .*...................o  gBggggggggggggggggggga
2814145  40729680599249024150621323470  oxooooooooooooooooooo.  aHaaaaaaaaaaaaaaaaaaag  P(21)
2814146                             79  .....................o  gCggggggggggggggggggga  prime(22)
2814147  81459361198498048301242646940  *oooooooooooooooooooo.  Baaaaaaaaaaaaaaaaaaaag
2814148                            158  x....................o  Hgggggggggggggggggggga
2814149  20364840299624512075310661735  .oooooooooooooooooooo.  Caaaaaaaaaaaaaaaaaaaag

Table F33: R(23) for n = 1037245.
                                 prime p                  Cases
                                     1111223344455667778      1111223344455667778
      n                     a(n) 23571379391713739171393  23571379391713739171393
---------------------------------------------------------------------------------
5238554           4893915703950  o**o.oo.o......o....oo.  aBBagaagaggggggaggggaa
5238555   660765976938946999747  ....o..o.oooooo.oo*o...  ggggaggagaaaaaagaaBagg
5238556           5220176750880  *ooo.oo.o......o....oo.  Baaagaagaggggggaggggaa
5238557   700214691980078163911  ....o..o.oooooo.ooo*...  ggggaggagaaaaaagaaaBgg
5238558           5546437797810  oooo.o*.o......o....oo.  aaaagaBgaggggggaggggaa
5238559   818560837103471656403  ....o..o.oooooo.oooo..x  ggggaggagaaaaaagaaaaggF <- R(23)
5238560           5872698844740  **oo.oo.o......o....oo.  BBaagaagaggggggaggggaag
5238561  1637121674206943312806  x...o..o.oooooo.oooo..o  Hgggaggagaaaaaagaaaagga
5238562           4404524133555  .*oo.oo.o......o....oo.  CBaagaagaggggggaggggaag
5238563  3274243348413886625612  *...o..o.oooooo.oooo..o  Bgggaggagaaaaaagaaaagga

Table F34: R(24) for n = 6177592.    prime p                 Cases
                                         11112233444556677788      11112233444556677788
      n                         a(n) 235713793917137391713939  235713793917137391713939
---------------------------------------------------------------------------------------
6177587  10764041730337001907005205  .ooooo*oooo...o.o.ooooo.  gaaaaaBaaaagggagagaaaaa
6177588                 25728802406  o..........ooo.o.*......  aggggggggggaaagagBggggg
6177589  12030399580964884484299935  .oooooo*ooo...o.o.ooooo.  gaaaaaaBaaagggagagaaaaa
6177590                 26994153344  *..........ooo.o.o......  Bggggggggggaaagagaggggg
6177591  12663578506278825772947300  xo*oooooooo...o.o.ooooo.  HaBaaaaaaaagggagagaaaaa
6177592                 18769372247  ...........ooo.o.o.....x  CggggggggggaaagagagggggF  <- R(24)
6177593  13929936356906708350242030  oooo*oooooo...o.o.ooooo.  aaaaBaaaaaagggagagaaaaag
6177594                 37538744494  x..........ooo.o.o.....o  Hggggggggggaaagagaggggga
6177595  13296757431592767061594665  .*o*ooooooo...o.o.ooooo.  CBaBaaaaaaagggagagaaaaag
6177596                 75077488988  *..........ooo.o.o.....o  Bggggggggggaaagagaggggga

Table F35: P(23) and prime(24) = 89.         prime p                   Cases
                                                 11112233444556677788      11112233444556677788
       n                                a(n) 235713793917137391713939  235713793917137391713939
-----------------------------------------------------------------------------------------------
16009506                                534  xo.....................o  Haggggggggggggggggggggga
16009507   44510752614879308559270669665465  ..ooooooooooooooooooooo.  Cgaaaaaaaaaaaaaaaaaaaaag
16009508                               1068  *o.....................o  Baggggggggggggggggggggga
16009509  133532257844637925677812008996395  .xooooooooooooooooooooo.  gHaaaaaaaaaaaaaaaaaaaaag
16009510                                178  o......................o  aCggggggggggggggggggggga
16009511  267064515689275851355624017992790  xoooooooooooooooooooooo.  Haaaaaaaaaaaaaaaaaaaaaag  P(23)
16009512                                 89  .......................o  Cgggggggggggggggggggggga  prime(24)
16009513  534129031378551702711248035985580  *oooooooooooooooooooooo.  Baaaaaaaaaaaaaaaaaaaaaag
16009514                                356  x......................o  Hgggggggggggggggggggggga
16009515  400596773533913777033436026989185  .*ooooooooooooooooooooo.  CBaaaaaaaaaaaaaaaaaaaaag

Table 2 (Key to Case Letters)

x y m a(n) a(n+1) sym.
Ⓔ · · · · Ⓔ .. → .

Ⓕ · · ⊤ ⊤ ⒼⒽ .. → x

Ⓖ · ⊤ · · ⒶⒷ .@ → .

Ⓗ · ⊤ ⊤ ⊤ ⒸⒹ .@ → x

Ⓐ ⊤ · · ⊤ ⒼⒽ @. → o

Ⓑ ⊤ · ⊤ ⊤ ⒼⒽ @. → *

Ⓒ ⊤ ⊤ · · ⒶⒷ @@ → .

Ⓓ ⊤ ⊤ ⊤ ⊤ ⒸⒹ @@ → x



22 Simple Sequence Analysis . Article 20240314.

Table H: Coherent interval n = 91217..91305
                                     primes
                                   1111223344455
    n                    a(n)  23571379391713739                      s m(s) notes
-------------------------------------------------------------------------------------
91200     8323637879455465970  x.o..oooooooooooo    4161818939727732985   2
91201                    4851  .*.*o............                    231  21
91202    16647275758910931940  *.o..oooooooooooo    8323637879455465970   2
91203                    5082  xo.o*............                    231  22
91204    12485456819183198955  .xo..oooooooooooo    4161818939727732985   3
91205                    2156  *..*o............                    154  14
91206    24970913638366397910  xoo..oooooooooooo   12485456819183198955   2
91207                    2464  x..oo............                     77  32
91208    37456370457549596865  .*o..oooooooooooo   12485456819183198955   3
91209                    3388  *..o*............                    154  22
91210    49941827276732795820  xoo..oooooooooooo   12485456819183198955   4
91211                    3773  ...*o............                     77  49
91212    74912740915099193730  o*o..oooooooooooo   24970913638366397910   3
91213                    4312  x..*o............                     77  56
91214    62427284095915994775  .o*..oooooooooooo   12485456819183198955   5
91215                    4928  *..oo............                    154  32
91216    87398197734282392685  .oox.oooooooooooo   12485456819183198955   7
91217                     484  *...*............                     22  22  2^2*11^2  
91218   174796395468564785370  xooo.oooooooooooo   87398197734282392685   2
91219                     275  ..x.o............                     11  25
91220    34959279093712957074  oo.o.oooooooooooo   34959279093712957074   1
91221                     550  x.*.o............                     55  10
91222    17479639546856478537  .o.o.oooooooooooo   17479639546856478537   1
91223                     880  *.o.o............                    110   8
91224    52438918640569435611  .*.o.oooooooooooo   17479639546856478537   3
91225                     990  oxo.o............                    110   9
91226     5826546515618826179  ...o.oooooooooooo    5826546515618826179   1
91227                    1320  *oo.o............                    330   4
91228    11653093031237652358  x..o.oooooooooooo    5826546515618826179   2
91229                     825  .o*.o............                    165   5
91230    23306186062475304716  *..o.oooooooooooo   11653093031237652358   2
91231                    1485  .*o.o............                    165   9
91232    46612372124950609432  *..o.oooooooooooo   11653093031237652358   4
91233                    1650  xo*.o............                    165  10
91234    29132732578094130895  ..xo.oooooooooooo    5826546515618826179   5
91235                     528  *o..o............                     66   8
91236    58265465156188261790  x.oo.oooooooooooo   29132732578094130895   2
91237                     594  x*..o............                     33  18
91238   116530930312376523580  x.oo.oooooooooooo   29132732578094130895   4
91239                     726  xo..*............                     33  22
91240   145663662890470654475  ..*o.oooooooooooo   29132732578094130895   5
91241                     792  **..o............                     66  12
91242   203929128046658916265  ..o*.oooooooooooo   29132732578094130895   7
91243                    1056  *o..o............                     66  16
91244   233061860624753047160  x.oo.oooooooooooo   29132732578094130895   8
91245                     891  .*..o............                     33  27
91246   291327325780941308950  o.*o.oooooooooooo   58265465156188261790   5
91247                    1089  .*..*............                     33  33  3^2*11^2
91248   349592790937129570740  *xoo.oooooooooooo   58265465156188261790   6
91249                     605  ..x.*............                     11  55
91250    69918558187425914148  *o.o.oooooooooooo   34959279093712957074   2
91251                    1100  x.*.o............                     55  20
91252   104877837281138871222  x*.o.oooooooooooo   17479639546856478537   6
91253                    1210  x.o.*............                     55  22
91254   122357476827995349759  .o.*.oooooooooooo   17479639546856478537   7
91255                    1760  *.o.o............                    110  16
91256   139837116374851828296  xo.o.oooooooooooo   17479639546856478537   8
91257                    1375  ..*.o............                     55  25
91258   209755674562277742444  **.o.oooooooooooo   34959279093712957074   6
91259                    1815  .xo.*............                     55  33
91260    81571651218663566506  o..*.oooooooooooo   11653093031237652358   7
91261                    1980  x*o.o............                    165  12
91262    40785825609331783253  ...*.oooooooooooo    5826546515618826179   7
91263                    2640  *oo.o............                    330   8
91264    64092011671807087969  ...oxoooooooooooo    5826546515618826179  11
91265                     240  *oo..............                     30   8
91266   128184023343614175938  x..oooooooooooooo   64092011671807087969   2
91267                     225  .**..............                     15  15  3^2*5^2
91268   256368046687228351876  *..oooooooooooooo  128184023343614175938   2
91269                     270  x*o..............                     15  18
91270   192276035015421263907  .x.oooooooooooooo   64092011671807087969   3
91271                     160  *.o..............                     10  16
91272   384552070030842527814  xo.oooooooooooooo  192276035015421263907   2
91273                     125  ..*..............                      5  25  5^3
91274   769104140061685055628  *o.oooooooooooooo  384552070030842527814   2
91275                     200  x.*..............                      5  40  2^3*5^2
91276   576828105046263791721  .*.oooooooooooooo  192276035015421263907   3
91277                     250  o.*..............                     10  25
91278   961380175077106319535  .oxoooooooooooooo  192276035015421263907   5
91279                      56  *..x.............                      2  28
91280   137340025011015188505  .oo.ooooooooooooo  137340025011015188505   1
91281                      98  o..*.............                     14   7
91282   274680050022030377010  xoo.ooooooooooooo  137340025011015188505   2
91283                      49  ...*.............                      7   7  7^2
91284   549360100044060754020  *oo.ooooooooooooo  274680050022030377010   2
91285                     112  x..o.............                      7  16
91286   412020075033045565515  .*o.ooooooooooooo  137340025011015188505   3
91287                     126  ox.o.............                     14   9
91288    45780008337005062835  ..o.ooooooooooooo   45780008337005062835   1
91289                     168  *o.o.............                     42   4
91290    91560016674010125670  x.o.ooooooooooooo   45780008337005062835   2
91291                     147  .o.*.............                     21   7
91292   183120033348020251340  *.o.ooooooooooooo   91560016674010125670   2
91293                     189  .*.o.............                     21   9
91294   366240066696040502680  *.o.ooooooooooooo   91560016674010125670   4
91295                     252  x*.o.............                     21  12
91296   228900041685025314175  ..*.ooooooooooooo   45780008337005062835   5
91297                     294  oo.*.............                     42   7
91298   320460058359035439845  ..oxooooooooooooo   45780008337005062835   7
91299                      72  **...............                      6  12  2^3*3^2
91300   640920116718070879690  x.ooooooooooooooo  320460058359035439845   2
91301                      81  .*...............                      3  27  3^4
91302  1281840233436141759380  *.ooooooooooooooo  640920116718070879690   2
91303                      96  xo...............                      3  32
91304  1602300291795177199225  ..*oooooooooooooo  320460058359035439845   5
91305                     108  **...............                      6  18  2^2*3^3
91306  1922760350154212639070  xxooooooooooooooo  320460058359035439845   6  P(17)
91307                      53  ...............x.                      1  53  prime(16)
91308    36278497172720993190  ooooooooooooooo.o   36278497172720993190   1
91309                     106  x..............o.                     53   2
91310    18139248586360496595  .oooooooooooooo.o   18139248586360496595   1
91311                     212  *..............o.                    106   2
91312    54417745759081489785  .*ooooooooooooo.o   18139248586360496595   3
91313                     318  ox.............o.                    106   3
91314     6046416195453498865  ..ooooooooooooo.o    6046416195453498865   1
91315                     636  *o.............o.                    318   2
91316    12092832390906997730  x.ooooooooooooo.o    6046416195453498865   2
91317                     159  .o.............o.                    159   1
91318    24185664781813995460  *.ooooooooooooo.o   12092832390906997730   2
91319                     477  .*.............o.                    159   3

Table G: Example of a transition from low
to high alternating divisibility coherence.
                      1111223344
 n           a(n) 23571379391713          r m(r)
------------------------------------------------
3940     6533219  ...*o.o.o.o...     933317   7
3941     1289340  **o..o.o.o....     214890   6
3942     7466536  x..oo.o.o.o...     933317   8
3943      967005  .*o..o.o.o....     107445   9
3944    13066438  o..*o.o.o.o...    1866634   7
3945     1396785  .oo..*.o.o....     107445  13
3946    14933072  *..oo.o.o.o...    1866634   8
3947     1611675  .**..o.o.o....     107445  15
3948    20532974  o..o*.o.o.o...    1866634  11
3949     1719120  xoo..o.o.o....     107445  16
3950    10266487  ...o*.o.o.o...     933317  11
3951     1934010  o*o..o.o.o....     214890   9
3952    15866389  ...oo.*.o.o...     933317  17
3953     2148900  *o*..o.o.o....     214890  10
3954    17733023  ...oo.oxo.o...     933317  19
3955       33930  o*o..o...o....      11310   3
3956    35466046  x..oo.ooo.o...   17733023   2
3957       16965  .*o..o...o....       5655   3
3958    70932092  *..oo.ooo.o...   35466046   2
3959       28275  .o*..o...o....       5655   5
3960   106398138  ox.oo.ooo.o...   35466046   3
3961        9425  ..*..o...o....       1885   5
3962   212796276  *o.oo.ooo.o...  106398138   2
3963       18850  x.*..o...o....       1885  10
3964    53199069  .o.oo.ooo.o...   53199069   1
3965       30160  *.o..o...o....       3770   8
3966   159597207  .*.oo.ooo.o...   53199069   3
3967       37700  *.*..o...o....       3770  10
3968   265995345  .oxoo.ooo.o...   53199069   5
3969        6032  *....o...o....        754   8
3970   531990690  xoooo.ooo.o...  265995345   2
3971        4901  .....*...o....        377  13
3972  1063981380  *oooo.ooo.o...  531990690   2
3973        9802  x....*...o....        377  26
3974   797986035  .*ooo.ooo.o...  265995345   3
3975       12064  *....o...o....        754  16

Table J: Dilation j.
           Q   P   
       n  k+j  k   j   p
--------------------------
       2   1   1   0  >2F
       3   2   .   1  (2F)
       5   .   2   0  >3F
       6   3   .   1  (3F)
      13   .   3   0  >4F
      14   4   .   1  (4F)
      32   .   4   0  >5F
      33   5   .   1  (5F)
      57   6   .   2  
      58   .   5   1  >6A
     125   7   .   2
     160   .   6   1  >7A
     287   8   .   2
     362   .   7   1  >8A
     700   .   8   0  >9F
     701   9   .   1  (9F)
    1029  10   .   2
    1508   .   9   1  >10A
    1898  11   .   2
    2221   .  10   1  >11A
    4557  12   .   2
    4580   .  11   1  >12A
    7125  13   .   2
    7826   .  12   1  >13A
   15595  14   .   2
   20542   .  13   1  >14A
   26138  15   .   2
   28709   .  14   1  >15A
   52449  16   .   2
   82279  17   .   3
   87722   .  16   1  >17A
   91306   .  17   0  >16H
  135396  18   .   1
  328641  19   .   2
  373179  20   .   3
  384194   .  19   1  >20A
  621674   .   .   .  (19A)
  810244   .   .   .  (18A)
 1037245  21   .   2
 1080884   .  20   1  >21A
 2067803  22   .   2
 2814145   .  21   1  >22A
 5238559  23   .   2
 6177592  24   .   3
16009511   .  23   1  >24A
22983553  25   .   2
29524904  25  24   1  >25A
41827189  26   .   2
56618797  27   .   3
94188166   .  26   1  >27A

Table J Key:

Q(k+j) is the largest prime 
factor seen in a(1…n).

P(k) is the largest primorial 
seen in a(1…n).

j represents dilation.

"." represents no change 
from the figure above.

p: ">" represents the prime 
that follows P(k).

Parentheses represent a(n) 
= prime(i), where i is the 
number in parentheses. The 
letter is the mode of entry of 
prime(i).

For example, for n = 362, 
a(32) = P(4) and a(33) 
= prime(5), coming in via 
Case Ⓕ. a(33) is the point 
where Q = prime(5).

a(810244) = prime(18), 
coming in through Case Ⓐ, 
while P(19) is the largest 
primorial in the sequence 
and Q = prime(20).


