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Preface  
This booklet describes the Reciprocal Divisor Method for Abbreviated Multiplication 
Tables, which was developed in March and April 2007. The objective of this booklet is to 
describe a set of methods enabling the leverage of the divisors of highly composite 
numbers so that memorization of their multiplication tables is minimized. A secondary 
objective is to describe how the methods work. The Reciprocal Divisor Method is a 
toolset with which exploration of a range of bases between around 16 through 120 is 
rendered less burdensome. 

I do not know whether this method is or is not my invention. It is shameful to me that I 
am no academic and lack the time or patience to properly research the issue. Instead of 
academics, my focus has been the development of a technique to facilitate the use of pure 
sexagesimal in daily business. Perhaps this development, at best, is akin to Baron 
Haussmann’s in 19th century Paris; for this I apologize. I do hope you enjoy the 
“boulevards” these techniques might open up for your thought. 

The ancient Sumerians and Babylonians, our forefathers, are known to have used 
sexagesimal notation and mathematics millennia before Christ. These people knew about 
the reciprocal divisor pairs across several sexagesimal ranks, using cuneiform digits and 
place notation to record their affairs. Perceivably, our fathers had some knowledge of 
multiplication using a method involving reciprocal divisors. They produced and used 
sexagesimal multiplication tables which can be viewed today on the internet. 

In 1992 I expanded a set of transdecimal digits which I had developed to represent the 
larger bases 12, 16, and 20 to include 50 new symbols. This set was called arqam 
arimaxa, Arabic for “Reema’s numbers”, named after an erstwhile girlfriend. This 
symbol set, now simply Argam, has presently grown into the thousands, with special 
glyphs for special numbers Û (2520 = 23 · 32 · 5 · 7) and ë (2187 = 38), as examples. This 
set of symbols was instrumental to the “discovery” of the Reciprocal Divisor Method. 

The dozenal system has been and remains an important tool in my work as an architect 
and businessman. I believe that dozenal is the optimum base for human general 
computation. The next greater integer in the set of superabundant numbers after 12 is 60. 
Sixty is even more powerful than twelve, but it cannot be wielded without the ability to 
multiply. The ability to effectively multiply in pure sexagesimal is limited by the human 
ability to memorize its multiplication table of 1830 products of unique factor 
combinations. So the development of a set of methods to render pure sexagesimal 
multiplication became a personal holy grail. 

It is with a humble layman’s honor that I present to you exclusively this morning the first 
draft of this “Reciprocal Divisor Method”. May you climb mountains ever higher with 
the tools presented in this simple booklet. I have surveyed the heights myself during the 
past few months and am entirely awestruck by the patterns the Lord has laid out within 
His numbers, made more evident with the twin toolsets of the Argam and the RDM. 

Sincerely, Michael Thomas De Vlieger, 3 October 2007, Saint Louis, Missouri 



8 

Part 1 • Properties of Integers 
The Reciprocal Divisor Method for Abbreviated Multiplication tables relies on the 
properties of highly composite integers. The set of divisors Dr of a given integer r, when 
paired {d, d’} so that d · d’ = r, establishes a reciprocal relationship between divisors d 
and d’. This relationship can be leveraged so that a fraction of the full multiplication table 
of a large base needs to be memorized. The prime composition of the integer r is the 
source of that integer’s divisors. The prime factors dictate how the base r will relate to 
quantities which will be expressed in terms of r. The totatives of r reveal “gaps in 
coverage” that the prime factors of the base cannot reach. These totatives are weaknesses 
that must be overcome by the method. Thus, the first section of this booklet deals with 
the elementary nature of integers. 

Integral Bases 

We will consider a handful of integers r as radices in this presentation. Integral bases are 
exclusively considered because the presentation focuses on practical solutions to the 
human perception of numbers. The numbers that will be considered are 8 (octal), 10 
(decimal), 12 (dozenal), 16 (hexadecimal), and 60 (sexagesimal). Sexagesimal 
proficiency is the target for the Reciprocal Divisor Method. 

Prime Composition 

Each integer is a product of a set of prime numbers. These numbers are the prime factors 
of the integer in question. Each integer possesses a unique set of prime numbers, so that it 
is possible to construct a means of identifying each integer by its prime factors.  

Eight consists of three instances of the same prime factor 2; it is the cube of 2. Octal 
expresses a quantity, probing deeply for content of the prime 2. Because there is no 
diversity among the prime factors of eight beyond repetition of the same simplest prime, 
eight cannot test for any other content. All the odd digits of an octal number are relatively 
prime to eight, and may harbor a prime number besides 2. 

Ten is the product of the first and third primes, namely 2 and 5. Because it is the product 
of two primes, some mathematicians call ten a “diprime”. Ten does not represent the 
second prime number, 3, which occurs more often than 5. Users of decimal, the system 
based on ten, do benefit from the fact that ten is one more than nine, the square of three. 
This fact means that decimal users have an easy way to “detect” the divisibility by three 
of an integer represented in decimal. 
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60 22 · 3 · 5 

Sexagesimal (Base 60) 

Figure 1A. Prime factors of certain integers. 

Twelve is the product of the second prime and the square of the simplest prime, namely 
22·3. It is thus the simplest expression of the prime factor “shape” Π0

2 · Π1. Because the 
prime factors involved are the simplest and occur so frequently, these interact often. The 
dozenal multiplication table is highly rhythmic and intuitive compared to that of other 
small integers. The dozen is naturally pervasive in life, simply because its factors are the 
simplest and commonest factors; thus multiples of the dozen are very common multiples. 
Dozenal does not support five the way decimal does three; five is relatively prime to 
twelve; it is a totative, so detecting divisibility by five in base twelve is complicated. 

Sixteen is the fourth power of two; it is sheerly a product of the first prime. Hexadecimal 
bundles quantities terms of two, four times over; thus it is a deep study of a given number 
for that number’s content of two. Where ten includes two as a factor, offering the basic 
ability to test for evenness, and twelve includes the second power of two for additional 
power to detect content of two, sixteen focuses its power on two to the exclusion of any 
other prime. Each additional hexadecimal digit yields only four additional divisors 
because the prime factors of 16 are indeed the same prime number. This slower 
compounding occurs despite the fact that this base has four prime factors, 

Sixty is the product of the simplest three primes, representing the first prime twice. Thus 
sixty’s prime factors are 22·3·5. Sixty offers the user a diverse set of primes through 
which to see the world while putting a little power behind its ability to test for content of 
two. Where dozenal yields a “compact” set of prime factors, sixty continues the trend 
established by dozenal. In fact, 12 and 60 are the third and fourth integers in the series of 
superabundant numbers, integers that represent the peak divisibility among integers up to 
twice their size. Sixty is also the reconciliation between those doubled composites of 
three, and those doubled composites of five. Ten and twelve meet and intertwine at 60. 
Sixty possesses four prime factors, just as sixteen. However, with each additional digit, 
sixty compounds divisors at an enormous velocity. 
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Divisors 

The multiplicative permutations of the prime factors of each integer r yields a set of 
integer divisors of base r. A number is a divisor of the radix if the number divides the 
radix, yielding an integer. The number of divisors (σ0) is a measure of the versatility of 
the base. The consideration of the sums of the divisors (σ1) perhaps is a better indicator of 
versatility. We can also consider greater powers of the integers we are examining as 
bases to see how their “hundreds” and “thousands” might function as decimal percents do 
in today’s society. Figure 1B shows all the divisors for each of the integers considered. 
The list of divisors runs from left to right until it reaches r½, then proceeds right to left so 
that the divisors which align yield r as a product. In the case of 16, there is a divisor 
which is precisely r½; this divisor appears once in the list, and is understood to be 
multiplied by another instance of itself to yield r. This method of listing divisors 
illustrates symmetry among the divisors of a base. This symmetry, and the paired nature 
of divisors, is a crucial concept in the method described in this booklet. 
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1 2 3 4 5 6 60 60 30 20 15 12 10 
Sexagesimal (Base 60) 

Figure 1B. Divisors of certain bases. The “reciprocal divisors” of each integer are paired. 

Eight has four divisors: {1, 2, 4, 8}; of the integers possessing four divisors, only six is 
simpler. Half of the octal digits are divisors, if we regard the divisor r as zero. The sum of 
these divisors is 15; when divided by eight, this yields a ratio of 1.875. 

Ten has four divisors: {1, 2, 5, 10}. Thus 40% of decimal digits are divisors. The sum of 
these divisors is 18; when divided by ten, this leaves us with a ratio of 1.8 or 9/5. 

Twelve has six divisors: {1, 2, 3, 4, 6, 12}. Thus, 50% of dozenal digits are divisors. The 
sum of these divisors is 28; when divided by twelve this yields a ratio of 2.33… or 7/3. In 
both cases, twelve offers a greater divisibility, thus versatility, than decimal. 

Sixteen has five divisors: {1, 2, 4, 8, 16}. Only 31.25% of hexadecimal digits are 
divisors. Summing these, we arrive at 31; when divided by sixteen, we get 1.9375. 
When society wants to improve the “resolution” of their base, they turn to “percents” or 
“per-mils”; when we consider the divisors of the second and third powers of 16, we see 
that its ability to yield integral divisors winces even in the face of decimal powers. 
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Decimal thousandths are superior to hexadecimal’s; this is because the interaction of 
dissimilar primes is not confined to the powers of one prime. 

Sixty has ten divisors: {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60}. One fifth of sexagesimal 
digits are divisors. Summing these, we obtain the number 168; dividing this figure by 60 
yields 2.8 or 14/5. 

It’s easy to see that sixty yields far more divisors than any of the smaller bases. We can 
see that the sum of the divisors, (σ1), indicate that dozenal is pretty attractive at a ratio of 
2.33, but sexagesimal offers 2.8. This wonderful versatility is not necessarily the result of 
a magnitude represented by sixty; base 61 features fewer divisors than any we are 
considering. The product of sixty’s prime factors is indeed large, and this is the 
paramount barrier to the application of pure sexagesimal in human society. 

Compounding Divisibility and Rank  

A recent poll determined that the average person perceives fractions written as percents 
as being “more accurate” than “vulgar” fractions. This is, of course, incorrect: 1/3 is 
precise, whereas 33% is deficient. But this poll underscores the effectiveness of the 
technique of using the powers of a base to obtain greater resolution. If we examine the 
powers of integers to be considered as bases, we will see that the number of divisors 
compound at different rates for different classes of integers. Prime integers will add one 
divisor per power. Table 1A shows that integers r which are powers of one prime number 
add divisibility at a slower rate than integers with a diverse set of prime factors. Decimal 
thousandths, or per mils, offer a greater set of resolved fractions than hexadecimal 
fractions carried out to three places. Examination of the trends established in the table for 
each r reveals a sequence which is easy to extrapolate to additional ranks. 

Table 1A • Extension of Divisibility via Additional Places 

r Prime 
Factors 

1 Place
σ0(r 1) 

2 Places
σ0(r 2) 

3 Places
σ0(r 3) 

5 5 2 3 4 
6 2 · 3 4 9 16 
8 23 4 7 10 
10 2 · 5 4 9 16 
12 22 · 3 6 15 28 
16 24 5 9 13 
18 2 · 32 6 15 28 
20 22 · 5 6 15 28 
24 23 · 3 8 21 40 
27 33 4 7 10 
30 2 · 3 · 5 8 27 64 
36 22 · 32 9 25 49 
60 22 · 3 · 5 12 45 112 

360 23 · 32 · 5 24 105 280 
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 8    10    12    16  

               

1  10  1  10  1  10  1  10 

2  4  2  5  2  6  2  8 

        3  4   4  

               

               

1  100  1  100  1  100  1  100 

2  40  2  50  2  60  2  80 

4  20  4  25  3  40  4  40 

 10   5  20  4  30  8  20 

     10   6  20   10  

        8  16     

        9  14     

         10      

               

               

1  1000  1  1000  1  1000  1  1000 

2  400  2  500  2  600  2  800 

4  200  4  250  3  400  4  400 

10  100  5  200  4  300  8  200 

20  40  8  125  6  200  10  100 

    10  100  8  160  20  80 

    20  50  9  140   40  

    25  40  10  100     

        14  90     

        16  80     

        20  60     

        23  54     

        28  46     

        30  40      
Figure 1C. The number of divisors of rx increases as x increases at a faster rate for integers which have a 
diverse set of prime factors. Even though 12 has fewer prime factors than 16, the dozenal prime factors are 
more diverse. Even decimal wins out over hexadecimal by the time three digits are in play. The divisors are 
arranged in reciprocal pairs such that d · d’= r, and are expressed in base r. 

Table 1A shows that divisibility compounds at rates which are the same for integers 
which have the same prime factorization “template”. Thus, integers 12, 18, and 20, each 
being an instance of the “template” ( Π0

2 · Π1 ), exhibit an addition of 9 divisors when the 
number of digits in a given figure rises to 2 from 1, and an addition of 13 divisors when 
the number of digits in a given figure rises to 3 from 2.  

Primes add 1 new divisor for each additional place, starting with the 2 divisors for r1. The 
“diprimes”, composite integers of the “template” ( Π0 · Π1 ), have (r + 1)2 divisors for 
their x-th power. 

The powers of primes which follow the “template” of “templates” ( Π0
x ) add x divisors 

for each new digit to the 1 divisor for r0 = 1. 
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 60          

           

1  10  1  100  1  1000 

2  U  2  U0  2  U00 

3  K  3  K0  3  K00 

4  F  4  F0  4  F00 

5  C  5  C0  5  C00 

6  A  6  A0  6  A00 

    8  7U  8  7U0 

    9  6e  9  6e0 

    A  60  A  600 

    C  50  C  500 

    F  40  F  400 

    G  3j  G  3j0 

    I  3K  I  3K0 

    K  30  K  300 

    O  2U  O  2U0 

    P  2O  P  2O0 

    U  20  R  2DK 

    a  1e  U  200 

    e  1U  W  1qU 

    j  1K  a  1e0 

    m  1F  e  1U0 

    o  1C  j  1K0 

     10   m  1F0 

        o  1C0 

        s  16e 

        10  100 

        14  uF 

        1C  o0 

        1F  m0 

        1K  j0 

        1U  e0 

        1e  a0 

        1m  XK 

        20  U0 

        25  Sm 

        2F  Qe 

        2O  P0  
Figure 1D. The sexagesimal first, second, and third rank divisors, expressed in a sexagesimal single digit 
notation. This simply illustrates the further compounding of a more diverse set of prime factors. 

Table 1A shows the divisors for each integer per the number of places or “rank” used in a 
figure. The rank is another name for the power of an integer, thus r2 represents the second 
rank. The square of 12 or 144 is the second rank of twelve. Divisors pertaining to the 
square of an integer are called “second rank divisors”. Dozenal clearly possesses more 
divisors when two dozenal digits are used than any base of comparable size. Thus, the 
dozenal “percent” or per gross resolves 15 fractional denominations in two digits. 
Sexagesimal “percents” resolve 45 fractional denominations in two digits. 
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Magnitude and Human Scale 

One thing that becomes obvious is that the magnificent versatility of sixty comes at the 
price of its large size. Studies have illustrated that the human mind can deal effectively 
with group sizes of around 7 to 12 objects, and that a group size of 60 is simply beyond 
the ability of the great majority of people to manipulate. The usage of a base as large as 
sixty suggests the application of a mixed radix, usually 6 on 10, to yield a less pure form 
of sexagesimal. We’ll return to this consideration shortly. 

Reciprocal Divisors 

We can arrange the list of divisors Dr for each integer in such a way that pairs of divisors 
can be created that, when the members of the pairs are multiplied together, yield the 
integer r. We will refer to such pairs of divisors as reciprocal divisors in this 
presentation. The formulae relevant to reciprocal divisor pairs are: 

d · d’ = r;      d = r / d’ 

By these definitions, a reciprocal divisor d’ can be determined by using the ratio of the 
base r to the divisor d. The notion of reciprocal divisors and RDPs is key to the process 
described in this presentation. 

The reciprocal divisor pair {1, r} is an element of the set of divisors Dr for every integer 
r. This pair is called the “unity-identity” pair of divisors.  

Octal features two reciprocal divisor pairs, {{1, 8}, {2, 4}} 

Decimal has two reciprocal divisor pairs, {{1, 10}, {2, 5}}. 

Dozenal has three RDPs, {{1, 12}, {2, 6}, {3, 4}}. 

Hexadecimal has 2½ RDPs {{1, 16}, {2, 8}, {4}}. Four multiplied by itself yields 
sixteen. The divisor set {4} actually represents four multiplied by itself. 

Sexagesimal features six RDPs, {1-60, 2-30, 3-20, 4-15, 5-12, 6-10}. 

Totatives 

Each integer r greater than one possesses a set of integers Tr which are lesser than r that 
are relatively prime to r. Two integers are said to be relatively prime when the lesser 
integer t does not divide the greater integer r to yield an integer quotient. Relatively 
prime digits are referred to as totatives. The least common multiple of an  integer r and its 
totative t is (r · t). Because of this, totative digits in base r do not reach a multiple of r 
until they are multiplied by r. The totatives are the “weird numbers” that are not covered 
by the multiplicative permutations of the prime factors Πr of r. The number of totatives of 
a given integer is given by the Euler totient function Φr. A smaller totient function value 
indicates a base r that features more factors which are divisors and factors which are 
products of one or more divisors. Prime numbers Π have a totient function value Π - 1.  

Every integer possesses a pair of totatives T0 = {1, (r – 1)}. These totatives exhibit 
patterns in the multiplication table Mr of r which are relatively simple to understand. 
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The integer 1 as a factor is very special. Note that the totative 1 of every integer r is also 
a divisor of every integer r. Thus, 1 is the only divisor of any integer base r which is also 
a totative. Like all divisors d of base r, 1 exhibits a cycle of products which repeat within 
one multiple of r. Like all totatives t of base r, 1 yields a multiple of r as a product only 
when 1 is multiplied by r. 

Figure 1E lists the totatives of the integers considered in this section. Note that the 
totatives also exhibit symmetry. The lists place the totatives lesser than r / 2 above those 
greater than r / 2. The smaller totatives run left to right, while the greater run right to left. 
This method of listing totatives places the totatives in pairs whose sums are r. The first 
pair, read vertically, is the totative pair T0 = {1, (r - 1)}, which is a subset of the totatives 
Tr of every integer base r. This symmetry is evident in the multiplication tables for their 
respective bases, and is an important tool. 

Eight possesses four totatives {1, 3, 5, 7}, which are all the odd octal digits, because 8 is 
a power of the prime factor 2. The totient function Φ for 8 is 4. The totative ratio is Φr / r 
= 4/8 or one half. 

Ten has four totatives {1, 3, 7, 9}. The totient function of ten is 4; the totative ratio is 0.4 
or 2/5. 

Twelve also has four totatives {1, 5, 7, 11}. The totient function of twelve is 4; the 
totative ratio is 0.333… or 1/3. 

Sixteen has eight totatives, which are the odd digits, because it is a pure power of a prime 
number. Its totient function is 8, its totative ratio is 0.5 or ½. 

Sixty has 16 totatives {1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59}; its 
totient function is 16. Sixty’s totative ratio is 0.266… or 4/15. 

This study shows that dozenal resolves two thirds of its digits, while decimal resolves 
60% of its digits. Sexagesimal resolves 46 of its digits, or more than 73%. 

0
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5

7

26

3
4  

1 3 8 7 5 
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(Base 8) 
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1 3 10 9 7 
Decimal 
(Base 10) 
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Duodecimal  
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Hexadecimal (Base 16) 
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1 7 11 13 17 19 23 29 60 59 53 49 47 43 41 37 31 
Sexagesimal (Base 60) 

Figure 1E. Totatives of certain bases. 
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Table 1B • Summary of the Properties of Selected Integers • 6, 8, 10, 12 

Senal 2 · 3
0

15

2

3

4

 

1 2  6 6 3  
DIVISORS 

1 
5 

TOTATIVES 

r2 = 36 PM = 21 σ0 = 4 σ1 = 12  Φ = 2 

36 / 100 
36% 
r2/ 102 

21 / 55 
38.2% 

PM(r)/ PM(10) 

4 / 8 
50% 
σ0/r 

5 / 6 
83.3% 

[σ1 - (r+1)]/r

 2 / 6 
33.3% 
Φ/r 

Octal 230
1

5

7

26

3
4  

1 2  8 8 4  
DIVISORS 

1 3 
9 7 

TOTATIVES 

r2 = 64 PM = 36 σ0 = 4 σ1 = 15  Φ = 4 

64 / 100 
64% 
r2/ 102 

36 / 55 
65.5% 

PM(r)/ PM(10) 

4 / 8 
50% 
σ0/r 

6 / 8 
75% 

[σ1 - (r+1)]/r

 4 / 8 
50% 
Φ/r 

Decimal 2 · 5
0

1

2

3

4
5

6

7

8

9

 

1 2  10 10 5  
DIVISORS 

1 3 
9 7 

TOTATIVES 

r2 = 100 PM = 55 σ0 = 4 σ1 = 18  Φ = 4 

100 / 100 
100% 
r2/ 102 

55 / 55 
100% 

PM(r)/ PM(10) 

4 / 10 
40% 
σ0/r 

7 / 10 
70% 

[σ1 - (r+1)]/r

 4 / 10 
40% 
Φ/r 

Dozenal 22 · 3
0

1

2ç

3

4

5
6

7

Ç

8

9

 

1 2 3 12 12 6 4 
DIVISORS 

1 5 
11 7 

TOTATIVES 

r2 = 144 PM = 78 σ0 = 6 σ1 = 28  Φ = 4 

144 / 100 
144% 
r2/ 102 

78 / 55 
141.8% 

PM(r)/ PM(10) 

6 / 12 
50% 
σ0/r 

17 / 12 
141.7% 

[σ1 - (r+1)]/r

 4 / 12 
33.3% 
Φ/r 
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Table 1C • Summary of the Properties of Selected Integers • 14, 16, 20, 60 

Tetradecimal 2 · 7
0

2

A

B

D 1

3

59

7

4

C

68  

1 2 14 14 7 
DIVISORS 

1 3 5 
13 11 9 

TOTATIVES 

r2 = 196 PM = 105 σ0 = 4 σ1 = 24  Φ = 6 

196 / 100 
196% 
r2/ 102 

105 / 55 
190.9% 

PM(r)/ PM(10) 

4 / 14 
28.6% 
σ0/r 

10 / 14 
71.4% 

[σ1 - (r+1)]/r

 6 / 14 
42.9% 
Φ/r 

Hexadecimal 240 1
2

A

3

E

4C

5

6

D

7

B

89

F

 

1 2 16 16 8 4 

DIVISORS 

1 3 5 7 
15 13 11 9 

TOTATIVES 

r2 = 256 PM = 136 σ0 = 5 σ1 = 31  Φ = 8 

256 / 100 
256% 
r2/ 102 

136 / 55 
247.3% 

PM(r)/ PM(10) 

5 / 16 
31.25% 
σ0/r 

14 / 16 
87.5% 

[σ1 - (r+1)]/r

 8 / 16 
50% 
Φ/r 

Vigesimal 22 · 5
0

2

4

6

8
A

C

E

G

I
J 1

3

5

7

9B

D

F

H

 

1 2 4 20 20 10 5 
DIVISORS 

1 3 7 9 
19 17 13 11 

TOTATIVES 

r2 = 400 PM = 210 σ0 = 6 σ1 = 42  Φ = 8 

400 / 100 
400% 
r2/ 102 

210 / 55 
381.8% 

PM(r)/ PM(10) 

6 / 20 
30% 
σ0/r 

21 / 20 
105% 

[σ1 - (r+1)]/r

 8 / 20 
40% 
Φ/r 

Sexagesimal 22 · 3 · 5
0 1 2 3 4

5
6
7
8
9
A
B
C

D

E

F

G

H

I
J
K

L
M

N
O

P
QRSTUVWXY

Z
a

b
c

d
e
f
g

h

i

j

k

l

m
n
o
p
q
r
s
t
u v w x

 

1 2 3 4 5 6 60 60 30 20 15 12 10 
DIVISORS 

1 7 11 13 17 19 23 29 
59 53 49 47 43 41 37 31 

TOTATIVES 
r2 = 3600 PM=1830 σ0 = 12 σ1 = 168  Φ = 16 

3600 / 100 
3600% 
r2/ 102 

1830 / 55 
3327% 

PM(r)/ PM(10) 

12 / 60 
20% 
σ0/r 

107 / 60 
178% 

[σ1 - (r+1)]/r

 16 / 60 
26.7% 
Φ/r 
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Figure 2. The dozenal multiplication table. 
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Part 2 • The Multiplication Fact Table 

Introduction 

For each integer r, we can assemble a matrix of values that can be memorized or referred 
to in order to multiply in that base. The matrix consists of rows and columns that are 
headed by the factors. The head cells run the full scale of the set of digits Fr of base r. 
The products p(f1, f2) of any two factors f1and f2 appear at the cell in the matrix where the 
line of products for factor f1 intersects the line of products for factor f2. The elements of 
the matrix represent every product p for each digit Fr if base r. This is the familiar 
multiplication table we learn in primary school. 

Most people are familiar with the decimal multiplication table. Many observe how 
products in the 9 column (or row) have unit digits that decrease while the group digits 
(the tens, in the case of decimal) increase, and that the sum of these two digits is always a 
multiple of nine (for products lesser than or equal to 9 · 10). Another observation that 
may be somewhat apparent is how the fives “make ten” for every even factor. This is an 
exhibition of the cyclical nature of a factor which is also a divisor of the base.  

One of the most striking qualities of the dozenal multiplication table is its wonderful 
rhythmic simplicity. Much of the table appears to “come out”. There is a certain rhythm 
in the table that decimal largely lacks. It is this cyclical quality that we can capitalize on 
to abbreviate the multiplication table. 

For the purposes of analyzing the multiplication table, definitions are given below which 
might facilitate the discussion of “rhythm” and the interrelatedness of the reciprocal 
divisors of a base. 

Reciprocal Divisor Pair. The set of divisors Dr of base r can be arranged so that any 
divisor d can be multiplied by another divisor d’ to yield the product r. 

r = d · d’;      d = r / d’;      d’ = r / d; 

{d, d’} is a subset of Dr 

It is important to note that, for bases r whose square root is integral (that is, for r that is 
the square of another integer) there exist divisors d which serve as their own reciprocal 
divisor. Thus, if r½ is an integer, then there is a d = r½ for which {d, d’} exists, and in this 
case, d = d’. 

Multiplication Table. The multiplication table Mr of base r, for the purposes of this study, 
is the matrix of all the products p of all the positive integer factors f which are lesser than 
or equal to the base r, written in base r. 

Period. A period Pr for base r is equal to the integer r. The period is useful in analyzing 
the rhythms present in a multiplication table; of particular interest is any p for which p/r 
is an integer.  

Cycle. A cycle refers to the set of unit digits of products that proceed from one multiple 
of r to another multiple of r, inclusive of the digit zero, which is the start of the cycle. For 
5 in base 10, the cycle C(5, 10) = {0, 5}.  
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Cycle Length. The cycle length λ is the number of products in a cycle. The cycle length 
for five in base ten is two. 

Phase. A phase refers to the range determined by set of unit digits of products which 
ascend or descend between points of inflexion as the co-factor f’ increases. A phase is a 
cycle when the points of inflexion falls on a period. 

Mate. This term refers to the other divisor in a pair of reciprocal divisors. An example of 
a “mate” for the dozenal divisor 3 is 4; this is the reciprocal divisor pair {3, 4}, a subset 
of the divisors of the integer 12, {{1, 12}, {2, 6}, {3, 4}}. 

234 /6 5/4 3 16 /3 2

2

3

4

/6 5

/4 3

1

6

/3 2

1 2 3 4 5 6 7 8 9 ç Ç 10

2 4 6 8 ç 10 12 14 16 18 1ç 20

3 6 9 10 13 16 19 20 23 26 29 30

4 8 10 14 18 20 24 28 30 34 38 40

5 ç 13 18 21 26 2Ç 34 39 42 47 50

6 10 16 20 26 30 36 40 46 50 56 60

7 12 19 24 2Ç 36 41 48 53 5ç 65 70

8 14 20 28 34 40 48 54 60 68 74 80

9 16 23 30 39 46 53 60 69 76 83 90

ç 18 26 34 42 50 5ç 68 76 84 92 ç0

Ç 1ç 29 38 47 56 65 74 83 92 ç1 Ç0

10 20 30 40 50 60 70 80 90 ç0 Ç0 100

Figure 2A. The dozenal multiplication table, one which features a number of cyclical patterns among 
products of a given factor, attributable to the high divisibility of twelve. The patterns of both axes are 
shown in this diagram. Totative phases are ignored. 
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Rhythms in the Multiplication Table 

The multiplication tables of any integer base r feature patterns which are both 
symmetrical and linked to the divisors Dr and factors Fr of the base r. The patterns 
present in a multiplication table can be used to help determine the ease of working 
computationally within a base. Highly patterned multiplication tables can mitigate the 
difficulty memorization may present. More importantly, these patterns are clues to how 
the multiplication table might be abbreviated. 

2/ / /5 5 5
2 3 4 15

2

/5 4

/5 3

/5 2

1

5

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

234 /6 5/4 3 16 /3 2

2

3

4

/6 5

/4 3

1

6

/3 2

1 2 3 4 5 6 7 8 9 ç Ç 10

2 4 6 8 ç 10 12 14 16 18 1ç 20

3 6 9 10 13 16 19 20 23 26 29 30

4 8 10 14 18 20 24 28 30 34 38 40

5 ç 13 18 21 26 2Ç 34 39 42 47 50

6 10 16 20 26 30 36 40 46 50 56 60

7 12 19 24 2Ç 36 41 48 53 5ç 65 70

8 14 20 28 34 40 48 54 60 68 74 80

9 16 23 30 39 46 53 60 69 76 83 90

ç 18 26 34 42 50 5ç 68 76 84 92 ç0

Ç 1ç 29 38 47 56 65 74 83 92 ç1 Ç0

10 20 30 40 50 60 70 80 90 ç0 Ç0 100

Figure 2B. Patterns in the decimal (left) and dozenal (right) multiplication table. The color green 
represents factors governed by the divisors {2, 5}, blue by {2, 6}, and red by {3, 4}. Periods are circled. 
The totative factors are shown in gray. The totative divisor {1} is shown in solid gray, while the totative {r - 
1} has a reciprocal cycle that is shown outlined in gray. Other totatives are simply indicated by a gray 
stroke. Note the presence of “phases” within the cycles of the decimal factors 4 and 6, which are 
completely absent from dozenal. 

Multiples or First-Rank Digits 

All integers r reach a multiple of r for every co-factor f’ of the factor fr = r. This is 
evident in Figure 2B. The products of “10”, regardless of which base is in play, yield 
multiples of ten for each co-factor in the “10”-line. These multiples of r are called periods 
P in the multiplication table. Periods indicate resonances between the factors Fr and r 
itself. Totative factors ft do not possess products pP which are periods until f’ = (ft · r). 

Any instance of a period among the products of a factor f is an indication that factor f is 
either a divisor d or a non totative non divisor. These factors are special, because periods 
in their product lines hint at modularity which can be leveraged in the possible 
abbreviation of the multiplication table. 

It is interesting to observe that the arrangement of periods in the multiplication tables of 
composite integer bases r is symmetrical. The symmetry seems to be organized about the 
axes r / 2, or even about lines which join the squares. Some of this symmetry has to do 
with the fact that the nonsquare products are stated twice in the traditional square table. 
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Units or Zero-Rank Digits 

Examination of Figure 2B reveals that the unit digits of those factors f lesser than r/2 
increase, while those greater than r/2 decrease as the co-factor f’ increases. This is true 
for any integer r.  

Phases.  
All factors will generate a range of end digits of products which ascend or descend until 
they reach a point of inflexion pI. A point of inflexion lies between the “jump” from the 
local lowest and highest unit digits for a given factor. See the products 8 and 12 of the 
factor 4 and the co-factors 2 and 3, respectively. This point lies at a fractional point 
between the two adjacent products. Phases are not coincident with a period at one or both 
inflexion points.  

The total number of phases per r co-factors f’ is equal to the factor f itself.  

When the factor f is greater than r / 2, the phases will appear to descend rather than 
ascend. This is because the difference between f and r is now lesser than r / 2, and the 
unit digits seem to “count down” rather than climb toward inflexion.  

All factors f exhibit a total number of phases in the table equal to the factor f itself. Thus 
all totative factors ft possess a number of phases equal to the totative factor ft itself. 

The phases appear symmetrical about the factor r / 2 for even r, or a point at r / 2, 
between two factors for odd r. The phases of the factors lesser than r / 2 will be seen to 
progress as the co-factor f’ increases. The phases of the factors greater than r / 2 will 
seem to regress as the co-factor f’ increases. In this way, the factors (r / 2) – f have equal 
but opposite phases to the factors (r / 2) + f. 

Cycles. 
Some factors have phases which terminate at a period or multiple of r at products less 
than (f · r). Such factors are not totatives of r. Those factors which are divisors of the base 
feature cycles that are exactly one period in length. Factors which are a multiple m of a 
divisor have cycles which require m periods to complete. The totative factors return to a 
multiple of a base r only when they are multiplied by r. These three facts are paramount 
in the abbreviation of a multiplication table. 

The cycles of some non totative non divisor factors fn include multiple phases. This 
pattern happens in many bases but is curiously absent from the dozenal table. The 
number of products in a cycle, the number of periods per cycle, and other patterns in the 
multiplication table are clues to how the table might be abbreviated so that multiplication 
and division can function within the larger bases. 

The decimal table, like those of most other bases, feature non totatives non divisor factors 
which exhibit phases within their cycles.  

The dozenal multiplication table is rare in that every factor that is not totative is free of 
phases within cycles. Only the dozenal totatives possess phases which terminate on a 
period only when the co-factor is a multiple of the base r. This fact perhaps renders the 
dozenal table that much easier to memorize. 
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The presence or absence of phases within cycles does not affect the usefulness of non 
totative non divisor factors, nor the possible abbreviation of the multiplication table. 

Let’s examine the products of the factor 3 to examine a cycle in depth. After a cycle of 4 
products, 3 returns to a multiple of twelve. There are three such cycles within the three 
line; i.e. nC(3, 12) = 3. This is because 3 cycles of 4 products each equal twelve products. 
Figure 2C illustrates the cycle as a band of red between two products which terminate 
periods, which are circled. This shows that the cycle is coterminous with a period. 

Figure 2C. An example of a cycle in the “three line” 
of the dozenal multiplication table which runs one 
period in length. Note that this analysis could 
alternatively be conducted horizontally. 

Figure 2D. Four factors feature cycles that run one 
period in length. These factors are the divisors of 
twelve. The divisor pair {2, 6} is indicated in blue, 
while the pair {3, 4} is shown in red. 

Classification of the Factors f of Any Integer Base r 

There are three classes of factors f for all integer bases r: 

1. Factors fd which are divisors d of the integer r. There is a pair of divisors {1, r}, 
called the “unity-identity” pair, which is a subset of the set of divisors Dr of every 
integer r. The “unity-identity” subset of divisors feature simple multiplication 
rules which do not require a multiplication table. The divisor 1 is also totative. 
Composite bases have at least one more divisor than the “unity-identity” pair of 
divisors. 

2. Factors ft which are totatives t of the integer r. There is a pair of totatives {1, r-1} 
which is a subset of the set of totatives Tr of every positive integer r. 

3. Factors fn which are neither divisors nor totatives of the integer r. These factors fn 
can be divided into two subgroups. These factors relate to base r in a ratio fn / r 
which when simplified yields a numerator mn and a denominator d’. The 
denominator d’ is the reciprocal divisor of the related divisor ds. The factor fn is an 
integer multiple of the related divisor ds, and may also be a multiple of other 
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divisors. The relationship of the integer mn to the base r divides the factors fn 
which are neither divisors or totatives of base r. 

a. If mn is also a divisor d of base r, or a multiple composed entirely of 
divisors d of base r, the factor fn is termed an “effective factor fe”. The 
effective factors fe are powerful tools for multiplication given an 
abbreviated multiplication table. 

b. If mn is also a totative t of base r, or a multiple that involves any totative t 
(except the totative 1), the factor fD is a “deficient factor fn”. These factors 
fD are treated in the same manner as the totative factors ft. 

These kinds of factors will be examined in detail in the following subsections. The 
factors are then placed in classes as shown in Table 2A, which relate to the Operation 
Classes described in the next section. The point of classifying the factors found in the 
multiplication table of base r is to help determine which “tool” or method will help solve 
a given problem. 
Table 2A • Classification of Factors 

Fr
FULL SET OF

FACTORS

Ft = Tr
FULL SET OF

TOTATIVE FACTORS

Fd = Dr
FULL SET OF

DIVISOR FACTORS

Fn
FULL SET OF FACTORS

NEITHER DIVISOR
NOR TOTATIVE

{1, r}
“UNITY-IDENTITY” DIVISOR FACTORS

Dr - {1, r}
EFFECTIVE DIVISOR FACTORS

fe = fn
EFFECTIVE NON TOTATIVE

NON DIVISOR FACTORS

Dr
IS WHOLLY

COMPOSED OF
WHERE mn

fD = fn
DEFICIENT NON TOTATIVE

NON DIVISOR FACTORS

CONTAINS ANY
TOTATIVE FACTOR

WHERE mn

A

B

C

D

FACTOR
CLASS
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Factors which are Divisors of the Base (fd) 

The factor 3 happens to be a divisor of 12. Further examination of the other factors fd that 
are divisors of twelve leads to some useful observations.  

Cyclical Unit Digits in Products of fd 

These factors feature products with cyclical unit digits; the number of elements of a set 
that consists of the range of unit digits observed for any product of the factor defines the 
cycle length. The cycle length for the factor 3 is 4 elements. Drawing a line from the 
product 10; for the factor 3 to the next multiple of one dozen is possible. Thus the cycle 
of these factors which are divisors will span from one multiple of the base to the next. 
This is true for the factor 3, as well as any other factor that is a divisor of 12. This means 
the number of cycles per period for any factor that is also a divisor is always 1. If we 
count the cycles in the 3 line, we see there are precisely 3 cycles. Checking the 4 line, we 
see four cycles of three elements each. Thus the number of cycles present in the 
multiplication table for the factor which is also a divisor equals that divisor itself.  

Divisors exhibit cycles which span precisely one period in the multiplication table. This 
is because the divisor d as factor fd eventually encounters the reciprocal divisor mate d’; 
when that occurs, the product of d and d’ is r. 

Complementary Relationships within Reciprocal Divisor Pairs 

The divisors d of a base r, as shown previously, can be paired {d, d’} so that the pair, 
when multiplied together, yields the base r. These mated divisors that inhabit the same 
reciprocal divisor pair exhibit complimentary cycles. Dozenal possesses two sets of 
reciprocal divisors which are not unity-identity:  

{{2, 6}, {3, 4}} 

Figure 2D illustrates cycles and their lengths for the factors in the dozenal multiplication 
table which are also divisors. The factors of twelve feature cycles that run one period in 
length. Each divisor d features a cycle which repeats after d’ products. The factor d is 
indicated by the first number in each column. The reciprocal divisor d’ of those factors 
which are divisors appears in color above d in the table. Base twelve has two effective 
divisor pairs; divisor pair {2, 6} is indicated in blue, while the pair {3, 4} is shown in red. 
The divisor pair {1, 12} is the “unity-identity” pair, which is special, and will be 
discussed later.  

The cycle length for the factor 3 shown in Figure 2C is 4; 4 happens to be the reciprocal 
divisor “mate” for 3. Figure 2E shows that the cycle length of a factor which is also a 
divisor of base equals that divisor’s reciprocal divisor mate. 

Another quality associated with factors fd which are also divisors of the base is illustrated 
in Figure 2F. Each factor which is also a divisor of the base exhibits unit digits in their 
products which ascend as the co-factor increases, until the unit digit is reset when the 
products reach a multiple of the base. Thus, the unit digits of all the products of factors 
which are also divisors of the base within a given cycle vary directly with the co-factor. 
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Table 2B summarizes values associated with factors fd for the dozenal multiplication 
table. The inextricable relationship between reciprocal divisor mates should be evident. 

Table 2B • Summary of the Properties of Dozenal Divisor Factors 

Factor, fd = d 2 3 4 6 

Cycle Length, λ 6 4 3 2 

Number of Cycles, nC 2 3 4 6 

Reciprocal Divisor, d’ 6 4 3 2 

The “Unity-Identity” Divisors as Factors 

Recall that the divisors of twelve include a pair of divisors {1, 12} which we did not 
include in the set of “effective divisor pairs” because these were special. This is the 
“unity-identity” pair of divisors. All integers possess the unity-identity pair of divisors. 
This pair simply illustrates that, among the set of divisors of an integer r, a relationship 
between one and the integer r itself exists. 

Factors which are Unity (f1) 

The factor 1 is a special case; 1 is both a divisor and relatively prime, thus a totative of all 
integers. Because 1 is a divisor, it exhibits the five hallmarks of a divisor described in the 
previous section. Its cycle repeats in exactly one period. The number of cycles present in 
the table is equal to the factor 1. The cycle length of the factor 1 is equal to the reciprocal 
divisor of 1, which is 12. The unit digits of the products of 1 increase in a cycle that is 
precisely one period in length. The factor 1 is also totative, which means that the factor 
reaches a multiple of the base only when the factor is multiplied by the base. Thus the 
factor 1, though it is a divisor, is more importantly a totative, and is classified with the 
factors which are totative. Totative factors will be covered later. In practical applications, 
the “one” line is used as an index. Otherwise, the “one” line can be completely ignored, 
because multiplication of any factor by one yields that factor. 

Factors which are “Identity” (fr ) 

The factor fr which is equivalent to the base r is also a divisor. In the case of dozenal, the 
factor fr equals 12. Like every divisor except 1, fr is not relatively prime. The factor fr 
exhibits four of the five hallmarks of all factors fd which are divisors. The cycle of fr  is 
exactly one period in length, because one period P equals fr. The number of cycles 
present in the table is equal to fr. The cycle length of the factor fr, which is also the 
divisor d, is equal to the reciprocal divisor d’, which in the case of fr  is 1.  

The factor fr does not obey the fifth observation for factors fr which are divisors. The 
products p of the factor fr do not have unit digits which ascend through the one-period-
long cycle. This is because the cycle length is 1; the cycles contain only multiples of r, 
and thus all unit digits are zero. This is what makes fr a special case of fd. 

In practical applications, the products of factor fr are easily generated by shifting the 
digits of any factor leftward, and writing a zero in the units place. This makes the 
inclusion of the products of fr unnecessary.  
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Factor Classes for all fd 

The factors fd which are divisors d of base r can be divided into two types or classes. The 
first class, Factor Class A, consists of the set of fd {f1, fr}, the “unity-identity” pair of 
divisors, for which all products p can be intuitively computed. The second class, Factor 
Class B, consists of the “effective divisors” of base r, which include the entire set of 
divisors except {f1, fr}. These divisors can be leveraged to compute products beyond the 
first period in the multiplication table, enabling the abbreviation of the table which will 
be described in the next section. Factor classes will be discussed later as well. 

Summary – Divisor Factors 
Factors fd which are divisors d of the base r, having reciprocal divisors d’, exhibit the 
following in a multiplication table Mr of base r: 

1. The unit digits υp of the products p of the factors fd that are also divisors d of base 
r are cyclical. The cycle C of any factor is the set of unit digits of the all the 
products p of that factor.  

2. The number of periods per cycle or md for any factor fd that is also a divisor is 
always 1. The cycle C will span from one multiple of the base Pn to the next  
P(n + 1). 

md = (P/C)d = 1 

3. The number of cycles present in the multiplication table, nC, for the factor fd 
which is also a divisor d of base r equals fd itself. 

nC(fd) = fd = d 

4. The cycle length λ of a factor f which is also a divisor of base r equals that divisor 
d’s reciprocal divisor mate, d’. The cycle length λ is less than r, and r varies in 
direct integral proportion to the cycle length λ. 

λd = d’ 

5. The unit digits υp of all the products p in a given cycle C(fd) increase within a 
cycle that is precisely one period in length. These unit digits υp increase as the 
product p increases, until the product p is a multiple of the base r. If the factor f is 
equal to r/2, the unit digits will be precisely r/2 or 0 mod r, which can be read as 
neither increasing nor decreasing. 

All υp (except for fd = r/2) ∂ p within each C 

6. The “unity-identity” reciprocal divisor pair {1, r} is special. The divisors 1 and r 
are considered separately from all other divisors; the remaining divisors De in the 
set of divisors Dr of base r comprise the “effective divisors” of base r. 

Dr = De + {1, r} 

7. The divisor 1, a divisor of every base r, is also always a totative of every positive 
integer r. 
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8. The products p of the factor fr do not have unit digits which ascend through the 
one-period-long cycle. This is because the cycle length is 1; the cycles contain 
only multiples of r, and thus all unit digits are zero. 

9. Factor Class A contains the factors f1 and fr, the “unity-identity” divisors {1, r}. 
Products involving Factor Class A are computed easily and do not require a 
multiplication table at all. 

10. Factor Class B contains the set of factors fe which are “effective divisors” De. 
Problems involving Factor Class B can employ the reciprocal divisor “mates” to 
compute products beyond the range of an abbreviated multiplication table. This 
process, along with the abbreviation of a multiplication table, will be described in 
a later section. 

Higher Rank Divisors 

The reciprocal divisors used in this booklet are merely the first rank divisors of a given 
base r. That is, they are the divisors of r1. As seen in Table 1C, the number of divisors in 
higher ranks compounds. The Reciprocal Divisor Method can be applied using two or 
more digits at once using higher rank divisor pairs. For example, the factors eight and 
nine can use Operation Class B directly, recognizing their reciprocal divisors are 07;30: 
and 06;40: respectively. Figures 2E and 2F show some of the higher rank sexagesimal 
divisors, and their cycles. These higher rank divisors may aid the division process, 
especially when the problem’s divisor is recognized as one of the resonances of a higher 
rank divisor. These higher rank divisor pairs are beyond the scope of this booklet. 
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Figure 2E. The sexagesimal third-rank divisor 27: 
and its resonances. Ninths and thirds are 
prominent. 

Figure 2F. The sexagesimal second rank divisor 40: 
and its resonances. Halves, quarters, fifths, eights, 
tenths, and  twentieths are subcycles. 
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Factors which are both Nondivisors and Nontotative (fn) 

The factors which are divisors of the base account for only part of the rhythm seen in the 
multiplication table. Using the factor 9 in the dozenal multiplication table as shown by 
Figure 2H, we can see that its products exhibit a cyclical pattern. This is despite the fact 9 
is not among the divisors of 12. Nine is a member of a set of factors which are neither 
divisors nor totatives of the base, the elements of which we will call fn. Subtraction of the 
union of the sets of the divisors and the totatives of twelve from the set of all factors in 
the dozenal multiplication table yields, by definition, the set of the factors in this class: 

FM – (Dr » Tr) = Fn 

F12 – {1, 2, 3, 4, 6, 12}»{1, 5, 7, 11} = {8, 9, 10} 

Thus, there are three such factors fn for the dozenal multiplication table: {8, 9, 10} (the 
elements given in decimal notation.) 

Figure 2G. All cycles for factors fd which are also 
divisors are shown. Each cycle for the divisor fd 
repeats fd times before reaching (fd · r) at the end of 
the line. In this figure, the unit digits of the products 
in a cycle increase, cycling once per period: this is 
a hallmark of factors fd which are also divisors. 

Figure 2H. Factors fn which are both nondivisors 
and not totatives feature cycles which repeat given 
multiple periods. These factors fn are themselves 
multiples of factors that are divisors fd. The factors 
fn have cycles which include the number of products 
equal to the reciprocal divisor mate of d, d’. The 
cycles repeat every m periods. The number d’ / m is 
written above the factor fn. 

There is an important difference between the cycles of factors which are divisors of the 
base and factors which are neither divisors nor totatives of the base. The latter factors 
have cycles that span multiple periods, rather than spanning precisely 1 period. So the 
cycle for the 9 line spans 3 periods. If we look at the other factors fn in the multiplication 
table to confirm from where the 3 originates. The factor 10 (ç; in dozenal notation) has a 
cycle that spans 5 periods. The factor 8 has a 2 period cycle. Nine has an integral 
relationship to the dozenal divisor 3; it is 3 times the factor 3. This integral relationship 
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can be represented by the multiplier mn. Thus, the number of periods in a cycle for all 
factors fn equal mn. 

Examining the factor 8 in the table, we see that a factor fn can be related to multiple 
divisors; 8 is 4(2), and 2(4). The divisor to regard as the “significant divisor” ds can be 
found using the following routine. Express the division of the factor fn by the base r as a 
vulgar fraction: in the case of the factor 8 in base 12, this is 8/12. Simplify the fraction to 
2/3. The denominator of the simplified fraction is the related divisor ds. The numerator of 
the same simplified fraction 2/3 is the multiplier mn. 

SIMPLIFY[ fn / r ] = mn / ds 

The factors fn fall into two camps.  

Factor Class D. The factors fn for which only ds is a divisor of r, with an mn that is 
totative, require the use of the totative mn to compute products. This limits the efficacy of 
any method of multiplication table abbreviation that relies on the leverage of the divisors 
of the base to compute digits beyond the abbreviated table. An example of such a factor fn 
in dozenal is the factor 10, for which mn / ds = 5/6. Here the totative 5 would be required 
to reduce fn to ds. The multiplication or division by 5 would not be supported by an 
abbreviated multiplication table, so the factor 10, despite the fact that it is neither a 
divisor nor a totative of 12, must be regarded as part of the same class of factors as the 
totatives. These factors fn belong to Factor Class D, which will be discussed later.  

Factor Class C. Those factors fn for which both mn and ds are divisors of r offer the ability 
to leverage two divisors in the computation of products. A dozenal example is the factor 
8, for which mn / ds = 2/3, both factors of 12. Both 2 and 3 can be manipulated so that 
products beyond the abbreviated table can be computed efficiently. Base twelve is too 
concise to include a related set of factors fn for which mn is not a divisor, but a composite 
factor that is the product of two or more divisors. An example of such a factor in base 60 
is 32, for which mn / ds = 8/15. The mn in this case is the product of 4 and 2, both of 
which are divisors of 60. These comprise a class of factors known as Class C, which will 
be discussed later. 

The cycle length for the factor 9 is 4. The factor nine has a special relationship with the 
divisor 3, and the reciprocal divisor mate of 3 in base twelve is 4. Note that the unit digits 
of the products in each cycle decrease as the product increases; this is counter to what the 
factors which are also divisors exhibit. 

Table 2C summarizes values for the factors fn in the dozenal multiplication table. The 
inextricable relationship between reciprocal divisor mates should be evident. 

Table 2C • Summary of the Properties of Dozenal Non Totative Non Divisor Factors 

Factor, fn 8 9 ç 

Cycle Length, λ 3 4 6 

Number of Cycles, nC 4 3 2 

Periods per Cycle, mn 2 3 5 

Related Divisor, d 4 3 2 

Reciprocal Divisor, d’ 3 4 6 
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Summary – Nontotative Nondivisor Factors 
Factors fn that is neither a divisor nor a totative of base r exhibit the following in a 
multiplication table Mr of base r: 

1. The unit digits υp of the products p of the factors fn that are neither divisors nor 
totatives of base r are cyclical. The cycle C of any factor is the set of unit digits of 
the all the products p of that factor. 

2. Determine which divisor ds’ of base r is related to the factor fn that is neither a 
divisor nor a totative of base r. (There can be multiple relationships.) Simplify the 
ratio of the factor fn divided by the base r, and use the resultant denominator. 

SIMPLIFY[ fn / r ] = mn / ds’;      ds = mn · r / SIMPLIFY[ fn / r ]:    ds’=r / ds 

3. The factor fn that is neither a divisor nor a totative of base r possesses an integral 
relationship mn with a factor that is the reciprocal divisor ds’ of ds. 

fn = mn · ds’;      mn = fn / ds’;      ds’ = fn / mn 

4. The number of cycles present in the multiplication table, nC, for the factor fn that 
is neither a divisor nor a totative of base r is equal to the integral relationship mn 
between factor fn and the divisor d of base r. 

nC(fn) = mn;     nC(fn) = fn / ds 

5. The cycle length λn of any factor fn that is neither a divisor nor a totative of base r 
is equal to the reciprocal divisor ds’ of the divisor ds with which the factor fn 
possesses an integral relationship m. 

λn = ds’;      λn = r / ds;      λn = mn r / fn 

6. The number of periods per cycle or P/C for any factor fn that is neither a divisor 
nor a totative of base r is equal to the integral relationship m between factor fn and 
the divisor d of base r. 

mn = (P/C)n;      (P/C)n = fn / ds;      (C/P)n = ds / fn 

7. The unit digits υp of all the products p in a given cycle C(fn) may increase or 
decrease within a cycle that spans multiple periods. These unit digits υp may 
additionally have distinct phases where the trend is reset without reaching the end 
of the cycle (i.e. the cycle exhibits phases.) 

8. The period digits, which indicate the multiples μp of base r which will still yield a 
positive number lesser than r if μp is subtracted from the product p, increase for 
each element of the cycle C after the first element. 

9. Factor Class C includes those factors fn which are neither divisors dr nor totatives 
tr of base r, for which both mn and ds are divisors of r. Problems involving Factor 
Class C can use two factors to compute products beyond the range of the 
abbreviated multiplication table. 

10. Factor Class D includes those factors fn which are neither divisors dr nor totatives 
tr of base r, for which only ds is a divisor of r, with an mn that is totative. 
Problems involving Factor Class D will require commutation to be solvable. 
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Totative Factors (ft) 

The factors ft which are also totatives t of base r comprise the last set of factors to 
consider. These factors exhibit cycles that require r products between each period. The 
number of periods per cycle for the factors ft that are totatives is equal to the totative t. 
The totative 1 is, as stated previously, easy to calculate because the number 1 multiplied 
by any factor f equals f itself. Likewise, the number r – 1, a totative in any integral base r, 
can be computed via (f · r) – f. The other totatives in the table feature complicated 
patterns that will not be analyzed here. 

Factor Classes for the Totative Factors ft 
All the totative factors ft of base r fall into Factor Class D. The only means of computing 
products for totative factors is the commutation of the problem via addition or 
subtraction, so that a divisor may be employed. This class includes the factors fn which 
are not totative nor divisors of base r, for which only ds is a divisor of r, with an mn that is 
totative. These factors fn are considered “totative” for the purposes of the abbreviation of 
the multiplication table. The factor classes will be discussed later. 

Summary – Totative Factors 

1. The number of phases φt of the totative factor ft within the period is equal to the 
totative factor ft itself. 

φt = ft 

2. The factors ft which are also totatives t of base r exhibit cycle lengths λt 
equivalent to r. 

λt = r 

3. The number of periods per cycle mt for the factors ft that are totatives is equal to 
the totative t. 

mt = (P/C)t = t 

4. All integral bases r possess totatives T0 at negative and positive 1 modulus r. 

T0 = ±1 mod r 

5. The products of the totative 1 equal the co-factor f. 

f · 1 = f 

6. The products of the totative (r – 1) equal the base r minus the co-factor f. 

f · (r – 1) = (f · r) – f 
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Factor Classes 

Four factor classes have been created out of the three types of factors described 
previously. These factor classes sort the factors according to which methods can be used 
to compute their products. These methods will be explained in a later section. Table 2D 
summarizes these. 

Table 2D • Summary of the Factor Classes for Any Integer Base r 

 
Divisor 
Factors 

Non Divisor 
Non Totative Factors 

Totative  
Factors 

 fd fn ft 

Factor Class A Unity-Identity Divisors 
{1, r} « « 

Factor Class B Effective Divisors  
De = Dr – {1, r} « « 

Factor Class C « 
Effective Non Divisor 
Non Totative Factors 

where mn œ Dr 
« 

Factor Class D « 
Non Divisor 

Non Totative Factors 
where mn œ Tr 

All Totative 
Factors 

Except {1} 

Factor Class A: The Unity-Identity Divisors 
This class consists of the factors 1 and r. The multiplicative identity property states that 
multiplication of any factor f by 1 yields the product f. Multiplication by r is 
accomplished by shifting the digits of the factor f leftward one place, and writing a zero 
in the vacated unit place. Thus these computations involving these factors do not require 
a table to compute their products. For base twelve, this includes the factors {1, 12} 

Factor Class B: The Effective Divisors 
The set of divisors Dr of base r which are neither 1 nor r comprise the set of effective 
divisors De. For base twelve, this includes the factors {2, 3, 4, 6}. The cycles of these 
factors allows the abbreviation of the multiplication table to include only the first period. 
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Factor Class C: The Effective Non Divisor Non Totatives 

This class contains all those factors fn which are neither totative nor a divisor of the base r 
which are products of a “significant” divisor ds and a multiplier mn that is also a divisor 
or composed itself entirely of divisors of base r. In the case of dozenal, these are {8, 9}. 
The sexagesimal factor 32: is also an effective non divisor non totative of base 60:  

SIMPLIFY[ fn / r ] = mn / ds;     SIMPLIFY[32/60] = mn / ds;      8/15 = mn / ds 

mn = 8;     8 = 2 · 4;     {2, 4} œ {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60} 

Class C factors can use the associative property of multiplication to render the 
multiplication problem one that involves a divisor. {10} is not included, because one 
would need to use 5 to render 10 a divisor, and 5 is not a divisor of twelve. 

Factor Class D: Totatives and Ineffective Nontotative Nondivisors 

This set includes all totatives tr of the base r except 1, and those factors fn for which only 
ds is a divisor of r, with an mn that is totative. The factors of this class require the use of 
totatives to compute products. Totatives do not have cycles shorter than r itself, by 
definition. This means that abbreviation of the multiplication table is not possible for 
totatives unless we use the distributive property of multiplication to involve a divisor of 
base r. In base twelve, this set includes {5, 7, 10, 11}. 

The following tables summarize factor classes for dozenal and sexagesimal. 

Table 2E • Classification of Dozenal Factors 

f Class Totative? Divisor? Relation to Base 
0 A - Yes (12) = 1 
1 A Yes Yes = 1/12, Relatively Prime 
2 B - Yes = 1/6 
3 B - Yes = 1/4 
4 B - Yes = 1/3 
5 D Yes - Relatively Prime 
6 B - Yes = 1/2 
7 D Yes - Relatively Prime 
8 C - - = 2/3, both numerator and denominator are divisors 
9 C - - = 3/4, both numerator and denominator are divisors 
ç D - - = 5/6, the numerator is not a divisor 
Ç D Yes - Relatively Prime 
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Table 2F • Classification of Sexagesimal Factors 

f Class Divisor? Totative? mn f Class Divisor? Totative? mn 

0 00 A Yes 60 - - U 30 B Yes - - 
1 01 A Yes Yes - V 31 D - Yes - 
2 02 B Yes - - W 32 C - - D 
3 03 B Yes - - X 33 D - - T 
4 04 B Yes - - Y 34 D - - T 
5 05 B Yes - - Z 35 D - - T 
6 06 B Yes - - a 36 C - - D 
7 07 D - Yes - b 37 D - Yes - 
8 08 C - - D c 38 D - - T 
9 09 C - - D d 39 D - - T 
A 10 B Yes - - e 40 C - - D 
B 11 D - Yes - f 41 D - Yes - 
C 12 B Yes - - g 42 D - - T 
D 13 D - Yes - h 43 D - Yes - 
E 14 D - - T i 44 D - - T 
F 15 B Yes - - j 45 C - - D 
G 16 C - - D k 46 D - - T 
H 17 D - Yes - l 47 D - Yes - 
I 18 C - - D m 48 C - - D 
J 19 D - Yes - n 49 D - Yes - 
K 20 B Yes - - o 50 C - - D 
L 21 D - - T p 51 D - - T 
M 22 D - - T q 52 D - - T 
N 23 D - Yes - r 53 D - Yes - 
O 24 C - - D s 54 C - - D 
P 25 C - - D t 55 D - - T 
Q 26 D - - T u 56 D - - T 
R 27 C - - D v 57 D - - T 
S 28 D - - T w 58 D - - T 
T 29 D - Yes - x 59 D - Yes - 
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Summary 

The patterns present in the dozenal multiplication table are summarized by Figure 2J. The 
products which are multiples of 12, representing exact periods in the table, are circled. 
Because twelve is highly composite, many combinations of factors will result in a 
product that is divisible by twelve. Because twelve is so highly composite, we can 
capitalize on the profound cyclical quality exhibited by the periods of twelve, and thereby 
abbreviate the multiplication table. 

There are three principal classes of factor for any base.  

Divisors. These are the factors fd which are divisors dr, the factors ft which are totatives tr, 
and the factors fn which are neither divisors nor totatives of the base r. Among the factors 
fd, which are the divisors dr, there is a special pair of divisors {1, r} called the “unity-
identity” pair. The number 1 is a divisor of all bases. The divisor 1, along with the 
totative r – 1, are totatives for every positive integer r. Thus the divisor 1 is always 
totative, and is the only totative divisor of any integral base r. The behavior of the divisor 
1 in the multiplication table is totative and unlike the other divisors. The remaining fd 
shall be considered the “effective divisors” of base r. This means that prime bases r 
possess no effective divisors. 

Non Divisor Non Totatives. The factors fn which are at the same time not divisors dr nor 
totatives tr of the base r possess an integral relationship mn to one or more divisors d. The 
significant relationship is that divisor which is the denominator of the simplified fraction 
which is the ratio fn / r. The numerator of this same simplified fraction, m, represents the 
number of periods P per cycle C which the products p of the factor fn exhibit in the 
multiplication table. The factors fn can be divided into two kinds. The first kind include 
factors fn which feature an mn which is totative; these fn are classified with the factors ft 
which are totative. The second kind are “effective factors fn” which include those factors 
fn for which both the numerator mn and the denominator d are divisors of base r. 

Totatives. The factors ft which are totatives tr of base r are by definition relatively prime 
to r. They feature cycles which repeat only after the entire span of r has passed. Because 
of this, the problems involving totative factors must be commutated so that the divisors of 
the base can be employed to solve the problem. 

Factor Classes. There are four factor classes. Factor Class A consists of the “unity-
identity” divisors, that is, the pair of divisors {1, r}. Factor Class B includes all divisors 
of r except {1, r}; this is the class which includes the “effective divisors” of base r. 
Factor Class C includes the factors fn which are neither divisors dr nor totatives tr of base 
r, for which both mn and ds are divisors of r. Factor Class D includes the totative factors ft 
and the factors fn for which only ds is a divisor of r, with an mn that is totative. These 
factor classes will govern which techniques to use, given an abbreviated multiplication 
table for base r. Factor classes and the abbreviation of the multiplication table will be 
covered in ensuing sections. 
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Figure 2J. This table illustrates all the patterns present in the dozenal multiplication fact table.  

In Figure 2J above, effective divisor pairs {2, 6} and {3, 4} are indicated by blue and red, 
respectively. The cycle lengths λ are indicated by triangles which increase in width as the 
terminal digits of the products of factors fd that are divisors increase, or decrease with the 
terminal digits of products of factors fn which are nontotative nondivisors. The terminal 
digit of any factor r/2 (6, in the case of dozenal) is either 0 or r/2. Periods are circled. The 
reciprocal divisors d’ appear above their corresponding divisor-factors fd. The ratio of the 
reciprocal divisor mate d’ of the related divisor d  to the number of periods per cycle mn 
is written above those factors fn which are nontotative nondivisors. The four factor 
columns which do not feature a pattern are the totatives t of twelve; a T in a black circle 
marks these. It is interesting to note that, of the divisors of 12, only the divisor 1 is 
totative. This is in fact true for all integer bases. Also interesting is the fact that all integer 
bases r possess totatives at ±1 mod r. 
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Part 3 • Abbreviation of Multiplication Fact Tables 

Introduction 
We have demonstrated that the divisors of a base have products that repeat in cycles 
within one period. We have also seen that the remaining factors which are not totatives 
are cyclical in multiple periods. These demonstrations suggest that the entire 
multiplication table does not need to be memorized, provided there is some way to use 
the relationships between reciprocal divisors to generate the product. In the case of 
decimal, dozenal, and perhaps hexadecimal, the abbreviation of the multiplication table is 
unnecessary. These tables are concise enough to be entirely memorized. In the case of 
sexagesimal, these observations, coupled with the greater number of reciprocal divisor 
pairs, significantly abbreviates the multiplication table. 

The Full Multiplication Table 
The number of products that populate the traditional square layout of the multiplication 
table of base r is given by r2. The sexagesimal multiplication table includes 3600 values 
when it is presented in the “square” manner which the decimal and dozenal tables were 
presented. This traditional table represents factor combinations twice, where the factor 
combinations involve unequal factors. The number of products of unique factor 
combinations of the multiplication table Mr of base r is given by adding r to the square of 
r, then dividing that quantity by 2. When we limit the table to include products of unique 
factor pairs, we arrive at 1830 figures (the “triangle” of 60). Both values lie beyond the 
ability of most people to memorize and recall for general computations. Using reciprocal 
divisor pairs, we are able to abbreviate the table to a manageable size. Let’s return to the 
dozenal multiplication table to study how the method will work. 

Figure 3A. The full, traditional form of the dozenal 
multiplication table. 

Figure 3B. The dozenal multiplication table 
abbreviated to the first period. 



39 

Truncation of the Table to the First Period 
It is possible to cut the multiplication table to the first period for each of the factors in the 
table. This is because we can use the reciprocal divisor pairs present within the set of 
divisors of base r to compute products greater than r. The divisors as factors fd exhibit 
cycles that repeat every period. Thus, we can find each instance of “10” in the table, and 
ignore figures greater than this. We can leave the “1” line so that it serves as an index of 
factors. This truncation is shown by Figure 3B, with the traditional dozenal multiplication 
table appearing in Figure 3A. Since the “1” line serves as an index, we do not need to 
write anything in the “1” line greater than or “south” of the point where the “2” line hits 
its first period for even bases. (This is optional for odd bases.) This further truncation 
appears in Figure 3C. 

Figure 3C. Truncation of the “ones” column beyond 
the first period in the “twos” column. 

Figure 3D. Further truncation beyond the products 
which are square. This fully abbreviated table 
includes only unique facts. There are thirteen facts 
in the abbreviated table. The full table included 78 
unique facts. 

Reduction to Eliminate Restatements 

The Minimal Abbreviated Table 
In order to pare down a large multiplication table to something more manageable, we can 
ignore everything “northeast” of the diagonal line of squares. For dozenal, this step leads 
to a table of thirteen values, which is the minimum required using the reciprocal divisor 
method. This reduced table is ¼ of the minimum triangular table of 78 values, and is 
illustrated by Figure 3D.  
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The Crossing Abbreviated Table 
Perhaps for ease of use, we might restate some products “northeast” of the square line, at 
that square that is the largest square that is smaller than the integer that is the radix. This 
second suggestion restates three products so that one can use the table as a matrix. In this 
second case, the 144-value square table was pared down to 1/9 its size. The resultant 
abbreviated table shown in Figure 3E is all we need in order to employ the reciprocal 
divisor method. 
The “crossing” table situates the smaller half of the set of effective reciprocal divisors to 
the left, and the larger half at the top. The products that lie at the crossing of the rows 
bearing the smaller reciprocal divisors and the columns bearing the larger reciprocal 
divisors equal r. This placement of reciprocal divisors accentuates the location of the 
factors fd in the abbreviated table which are also divisors of base r, while reminding the 
user of the abbreviated table of the reciprocal divisors d’ of these factors fd. 
The abbreviated table thus facilitates the multiplication in base r using the reciprocal 
divisor method that will be described in the next section. 

Figure 3E. An abbreviated table which includes full columns from one through the period or whichever 
number is lesser than a full period is perhaps more handy. The divisors of the base then can be split evenly, 
with the greater half on the short axis, and the lesser half on the long axis. This arrangement then allows 
the reciprocal divisor pairs to meet at the full periods. Note above that the 2 and 6 written outside of the 
table cross at “10”; the 3 and 4 written outside the table does the same thing in a different location.
All Class A operations take place within the limits of the abbreviated table. 
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Abbreviated Tables 

The objective of the abbreviation of the multiplication table is to minimize memorization 
required to multiply and divide using a given base. The reduction of the number of 
products in the table is helpful, but does not eliminate the need to memorize. Some 
memorization is still required if fluency in computation in the base is desired. This 
booklet features a sexagesimal table where the digits have been expressed in one of two 
fashions. One method is traditional, while the other attempts to completely eliminate 
decimal thinking from computation in higher bases, at least as far as multiplication and 
the identity of integers are concerned. 

Traditional Sexagesimal Notation 
The traditional method of expressing a sexagesimal place with a decimal number is found 
in the expression of time. The version of this notation used in this booklet writes a pair of 
digits for each sexagesimal place. Technically speaking, the first of these two digits is 
base-6, the second base-10. This expression of sexagesimal by two digits renders 
sexagesimal a mixed radix, where every other digit is written in the same sub-base. Most 
people consider this technicality unimportant. 

Pairs of digits which express the value of a sexagesimal place are separated by another 
character to demarcate the sexagesimal place. In this booklet, a semicolon (;) separates 
places above or below the radix point. The radix point, akin to the decimal point in 
decimal notation, is represented by the colon (:). Thus, the quantity 96 is represented by 
this system as 01;36:. Examples of this notation appear in table 3A. 

Table 3A • Sexagesimal Mixed Radix versus Pure Radix Notation 

Decimal 
Traditional 
Sexagesimal 

Argam 
Sexagesimal Decimal 

Traditional 
Sexagesimal 

Argam 
Sexagesimal 

15 15: F 2.71818 02:43;05;49 2.h5n 

40 40: e 3.14159 03:08;29;44 3.8Ti 

75 01;15: 1F 1/2 00:30; 0.U 

81 01;21: 1L 1/3 00:20; 0.C 

96 01;36: 1a 3/4 00:45; 0.j 

100 01;40: 1e 2/5 00:24; 0.O 

144 02;24: 2O 5/6 00:50; 0.o 

225 03;45: 3j 0.3 00:20; 0.K 

360 06;00: 60 5/12 00:25; 0.P 

441 07;21: 7L 13/16 00:48;45; 0.mj 

576 09;36: 9a 1/27 00:02;13;20; 0.2DK 

729 12;09: C9 2% 00:01;12; 0.1C 

1728 28;48: Sm 1/144 00:00;25; 0.0P 

2007 33;27: XR 1/1728 00:00;02;05; 0.025 

2520 42;00: g0 99.44% 00:59;39;50;24 0.xdoO 

100,000 27;46;40: Rke 7¾% 00:04;39 0.4d 

1,000,000 04;37;46;40: 4bke 1 ppm :00;00;00;12;57;36 0.000Cva 
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Argam Notation 
A second method of notation designed for bases greater than ten is the Argam notation. 
The Argam system of numerals is an extension of the Hindu Arabic numerals. The 
Argam numerals, individually called “ragam” or “argam” plural, build on the identities of 
the ten established integer symbols to produce a vast array of new numeral characters. 
Composite argam take on the graphic and nominal qualities of their progenitor argam. 
The identity of an integer in the Argam system is derived from the integer’s divisors or 
prime factorization, and not by addition or any decimal reference. The goal of Argam is 
to furnish an explorer of the higher bases a tool through which a purer expression of 
quantities in a higher base can be attained. References to decimal or any other system of 
numeration are minimized.  

  30: 20: 15: 12: 10:  
 01: 02: 03: 04: 05: 06: 07: 

 02: 04: 06: 08: 10: 12: 14: 

 03: 06: 09: 12: 15: 18: 21: 

 04: 08: 12: 16: 20: 24: 28: 

 05: 10: 15: 20: 25: 30: 35: 

 06: 12: 18: 24: 30: 36: 42: 

 07: 14: 21: 28: 35: 42: 49: 

 08: 16: 24: 32: 40: 48: 56: 

 09: 18: 27: 36: 45: 54:  

06: 10: 20: 30: 40: 50: 01;00:  

 11: 22: 33: 44: 55:   

05: 12: 24: 36: 48: 01;00:   

 13: 26: 39: 52:    

 14: 28: 42: 56:    

04: 15: 30: 45: 01;00:    

 16: 32: 48:     

 17: 34: 51:     

 18: 36: 54:     

 19: 38: 57:     

03: 20: 40: 01;00:     

 21: 42:      

 22: 44:      

 23: 46:      

 24: 48:      

 25: 50:      

 26: 52:     2 ↔ 30 

 27: 54:     3 ↔ 20 

 28: 56:     4 ↔ 15 

 29: 58:     5 ↔ 12 

02: 30: 01;00:     6 ↔ 10  
Figure 3F. The abbreviated table for sexagesimal, written with 6-on-10 notation, or decimal as a sub-base. 



43 

  

 

+0
 

+1
0 

+2
0 

+3
0 

+4
0 

+5
0 

0 0 A K U e o 

1 1 B L V f p 

2 2 C M W g q 

3 3 D N X h r 

4 4 E O Y i s 

5 5 F P Z j t 

6 6 G Q a k u 

7 7 H R b l v 

8 8 I S c m w 

9 9 J T d n x 

  U K F C A  
 1 2 3 4 5 6 7 

 2 4 6 8 A C E 

 3 6 9 C F I L 

 4 8 C G K O S 

 5 A F K P U Z 

 6 C I O U a g 

 7 E L S Z g n 

 8 G O W e m u 

 9 I R a j s  

6 A K U e o 10  

 B M X i t   

5 C O a m 10   

 D Q d q    

 E S g u    

4 F U j 10    

 G W m     

 H Y p     

 I a s     

 J c p     

3 K e 10     

 L g      

 M i      

 N k      

 O m      

 P o      

 Q q   2 ↔ U 

 R s   3 ↔ K 

 S u   4 ↔ F 

 T w   5 ↔ C 

2 U 10   6 ↔ A  
Figure 3G. The abbreviated table for sexagesimal, using a purely sexagesimal notation. This notation 
represents each digit within one place, and features a unique symbol for each of the sixty digits. 

The Argam tables and notation is used in this booklet for two reasons. The first reason is 
Argam furnishes a purer representation of digits in a base higher than decimal, especially 
those higher than the Latin alphabet mounted on the Hindu Arabic numerals. Secondly, 
the expression of numbers written in sexagesimal and higher bases is needlessly 
complicated by the use of decimal sub-bases. These higher-base numbers appear more 
complex than they really are because two or more decimal digits are spent on each place 
in the higher-base number. At the expense of appearing alien, the Argam digits are a 
toolset to simply express numbers written in bases significantly higher than ten. 

The names of the first 120 argam are included in the appendix. The Argam system is 
employed by all of the author’s explorations into transdecimal bases. The argam which 
appear in this booklet are provided in the spirit of facilitating your own forays “into the 
mountains” of the higher bases. 
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Summary 

The abbreviated multiplication table is intended to reduce the number of products which 
need memorizing. For maximum fluency, the user of a large base should be well 
acquainted with the products in the abbreviated multiplication table. Any integer below 
the base r should be keenly known. All the reciprocal divisor pairs should be familiar. 
Recognition of effective factors and totatives is useful. With usage and time, perhaps a 
larger portion of the full table can be used directly in class A operations. 

1. The traditional full multiplication table Mr of base r is square; the number of 
products Pfull in the full tables is equal to the square of r. 

Pfull = r2 

2. The multiplication table Mr which displays only the products p of unique 
combinations of the set of factors F of base r is triangular; the number of products 
PM in these tables is equal to the quantity of r plus the square of r, the quantity 
divided by two. 

PM = r (r + 1) / 2 
3. The first truncation involves the elimination of all products p greater than the 

radix r. 
4. The second truncation, more applicable to even bases, involves ignoring all unity 

products greater than the first period of the products of the factor 2. This is 
optional in the case of odd radixes. 

5. The final truncation involves ignoring products which are repeated on one side of 
the diagonal line of square products. The elimination of either side is acceptable. 

6. The “Crossing” Abbreviated Table. The abbreviated table may be more legible if 
products in the lines of products whose square p is less than the radix r are 
allowed to appear on the side of the line of squares where the products were 
eliminated in 5 above. 

7. Notation. Reciprocal divisors d’ can be written next to factors fd which are 
divisors. The reciprocal divisors which are greater than r½ can be written above 
the corresponding factors fd of the shorter axis of the table, while the balance can 
be written next to the factors fd of the long axis of the table. 
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Part 4 • Operation Classes 
When we multiply or divide in decimal or dozenal, we mentally refer to the memorized 
multiplication table; this is second nature to everyone out of primary school. These 
operations have analogs in bases for which abbreviated tables provide a means to 
multiply and divide. Obviously, for larger multiplication tables which lie beyond the 
human ability or desire for memorization, the number of products we need to memorize 
should be reduced. This section describes the four operation classes which apply to an 
abbreviated multiplication table. The section also studies the range of these operation 
classes. The dozenal system (base 12) will be used as an example. The operation classes 
will then be applied to sexagesimal numbers (those in base 60). 

Know Thy Base’s Divisor Pairs 

Abbreviation of the multiplication tables of large bases depends crucially upon the use of 
effective reciprocal divisor pairs of a given base. The abbreviated multiplication table and 
a short table of effective reciprocal divisor pairs go hand in hand. 

Since the abbreviated multiplication table is a resource for study, noting the reciprocal 
divisors d’ next to the factors fd which are divisors d helps to remind the user of the 
reciprocal divisors of the base. Absent of this notation, the reciprocal divisors of any base 
can be determined by finding every occurrence of products which equal r, then noting the 
factors that occur in the index (1 line) above and to the left of each product. Every 
occurrence of “10” will mark a pair of reciprocal divisors. However, before conducting 
any operations, one should know keenly the effective divisor pairs for the base in use. 

The dozenal effective divisors are: {{2, 6}, {3, 4}}. 

Operation Class A: Products within the Abbreviated Table 

This class includes Factor Class A, along with any product in the abbreviated table. The 
unity-identity divisors {1, r}, as stated previously, have simple rules by which a product 
can be computed, eliminating the need for these to populate a multiplication table. The 
abbreviated multiplication table contains all products p which are lesser than or equal to 
the radix r. This is a vastly reduced table of factors, when compared to the full 
multiplication table. A limit imposed by the human capacity to memorize the table is 
reached perhaps when the table reaches a size comparable to the full multiplication tables 
of the “human scale bases”, somewhere between 55 to maybe 220 figures. This 
interesting limit is not very distinctly defined, and has not been tested for this study. 
These figures correspond to minimal abbreviated tables for base 30 or 32 on the low end 
to that of base 120 on the high end. The sexagesimal minimal abbreviated table includes 
104 unique values, with the “crossing” abbreviated table containing 125 values. 

In order to employ Class A, one simply recalls the memorized product given two factors. 
For problems involving the factor 1, the multiplicative identity rule can be applied. This 
rule states that any co-factor f’ multiplied by 1 equals that co-factor f’. For problems 
involving the factor r, the co-factor’s digits can be shifted leftward one place, and a zero 
can be written in the vacated unit place. Class A operations exist for all bases; as the 
bases increase in size, multiplication table abbreviation becomes handy and makes 
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practical bases that have tables beyond most people’s abilities to perform Class A 
operations for every product. 

The dozenal abbreviated table at right 
presents 13 of 78 products of unique 
factor combinations that populate the full 
table. The other 65 must be computed in 
other ways. A significant number of the 
products that do not lie within the table 
involve the factors 1 and r, which in this 
case is one dozen. These products are easy 
to compute, and no memorization is 
necessary. 

Bear in mind that the dozenal abbreviated 
table is presented only as an example. The 
application of the abbreviated table to 
dozenal multiplication is actually 
inefficient because dozenal is a human 
scale radix. This means that all dozenal 
multiplication can be more easily 
accommodated by memorization of its full 
multiplication table. 

Figure 4A. The dozenal “crossing” abbreviated 
multiplication table, showing reciprocal divisors next 
to their corresponding factors in the table. 

Computation Process 
In order to compute a Class A product, follow these steps: 

1. For problems involving the factor 1: use the multiplicative identity rule: any co-
factor f’ multiplied by 1 equals that co-factor f’. 

1 · f’ = f’ 
2. For problems involving the factor r: the product of any co-factor f’ multiplied by 

the factor r can be generated by shifting the digits of the product leftward one 
place, and writing a zero in the unit digit place. 

3. The abbreviated multiplication table will yield products lesser than r for some 
factors lesser than r/2. If the abbreviated table has been memorized, intuition may 
reveal whether a product lies within or outside the abbreviated table. 

4. If the product is determined to lie outside the table, use another operation class. 

Dozenal Examples 

Examples for Operation Class A are relatively straightforward. These examples are 
sufficient to illustrate Operation Class A for whichever base r is used. 

Table 4A • Operation Class B • Dozenal Examples 

2 · 5 = çÇ Per Step 3 above. The product lies within the abbreviated table. 
828Ç · 10 = 828Ç0 Per Step 2 above. The problem involves r. 
Ç · 1 = Ç Per Step 1 above. The problem involves 1. 
4 · 8 = ? We need to use another operation class. 
7 · 8 = ? We need to use another operation class. 
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Operation Class B: Effective Divisor Factors 
This operation class includes problems where at least one of the factors is member of 
Factor Class B, that is, a factor fd which is a divisor d of the base r. The reciprocal divisor 
d’ of the factor fd can be used to yield any product p which lies outside the abbreviated 
multiplication table. Figure 4B illustrates a class B operation. Operation Class B is 
available to all integer bases r which have more than 2 divisors; that is, to all composite 
bases. Use the following procedure to determine products off the abbreviated table. 

1. Determine the reciprocal divisor d’ for the divisor d which is a factor fd in the 
problem. The co-factor can be any factor f’. 

d’ = r / fd 

2. Divide the co-factor f’ by the reciprocal divisor d’. Keep the integer quotient qI 
and the remainder qr separate. 

f’ / d’ = (qI + qr) 

3. Take the integer part of the quotient which is the result of the division in step 2. 
This quotient will be carried to the place or digit one order of magnitude greater 
than the factor f. 

4. Multiply the remainder of division qr by the original fd. This product will occupy 
the digit of the product which corresponds to the place in operation. 

5. The full formula for the computation of a product p involving one factor fd which 
is a divisor d of base r appears below: 

p = (qI · r) + qr;     p = (INTEGER[ f’ / d’] · r) + REMAINDER[ f’ / d’] 

Figure 4B. An example of a Class B operation, where 
a product which involves at least one factor that is a 
divisor occurs beyond the limits of the abbreviated 
table. 
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Operation Class B • Dozenal Examples 

1. Multiply 4 by 8. The divisor involved in 
this problem is 4. The reciprocal divisor 
mate of 4 is 3. Dividing the co-factor 8 by 
the reciprocal divisor 3, we obtain 2 
remainder 2. The integer 2 will be carried. 
The remainder 2 times the original factor 4 
equals 8. Thus the product is 2 dozen 8. 

 

2. Multiply 3 by Ç. The divisor involved in 
this problem is 3. The reciprocal divisor 
mate of 3 is 4. Dividing the co-factor Ç by 
the reciprocal divisor 4, we obtain 2 
remainder 3. The integer 2 will be carried. 
The remainder 3 times the original factor 3 
equals 9. Thus the product is 2 dozen 9. 

 

3. Multiply 27; by 3. The divisor involved 
in the problem is 3. The reciprocal divisor 
mate of 3 is 4. Dividing the co-factor 7 by 
the reciprocal divisor 4 yields 1 remainder 
3. The integer 1 is carried. The remainder 3 
multiplied by the original factor 3 is 9. The 
unit digit for the product is 9. Look at the 
next digit in the co-factor, 2. The product 
of 2 and 3 appears in the abbreviated table; 
it is 6. Add the 1 which we carried from the 
last operation to the 6 to yield 7 for the 
“dozens” or 121 place. Thus the product of 
3 and 27; is 79;. 

 

Operation Class B • Sexagesimal Examples 

The images that accompany the following examples use a set of sexagesimal digits. A 
table that describes the digits appears in the Appendix. In the description, the 6-on-10 or 
decimal sub-base digits are used. The sexagesimal digits are employed here to illustrate 
the method does not depend on a decimal operation. In the decimal sub-base 
representation, each sexagesimal digit is represented by two sub-base digits. These digits 
are separated by the character “;”. The radix point used here in a sub-base notation is “:”. 
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1. Multiply 06: by 38: The divisor involved 
in this problem is 06:. The reciprocal 
divisor mate of 06: is 10:. Dividing the co-
factor 38: by the reciprocal divisor 10:, we 
obtain 03: remainder 08:. The integer 03: is 
carried to the next place. The remainder 08: 
times the original factor 06: equals 48:. 
Thus the product is 03;48:. 

 

2. Multiply 15: by 41: The divisor involved 
in this problem is 15:. The reciprocal 
divisor mate of 15: is 04:. Dividing the co-
factor 41: by the reciprocal divisor 04:, we 
obtain 10: remainder 01:. The integer 10: is 
carried. The remainder 01: times the 
original factor 15: equals 15:. Thus the 
product is 10;15:.  

3. Multiply 20: by 35: The divisor involved 
in this problem is 20:. The reciprocal 
divisor mate of 20: is 03:. Dividing the co-
factor 35: by the reciprocal divisor 03:, we 
obtain 11: remainder 02:. The integer 11: is 
carried. The remainder 02: times the 
original factor 20: equals 40:. Thus the 
product is 11;40:.  

4. Multiply 51: by 02: The divisor involved 
in this problem is 02:. The reciprocal 
divisor mate of 02: is 30:. Dividing the co-
factor 51: by the reciprocal divisor 30:, we 
obtain 01: remainder 21:. The integer 01: is 
carried. The remainder 21: times the 
original factor 02: equals 42:. Thus the 
product is 01;42:.  

5. Multiply 27: by 10: The divisor involved 
in this problem is 10:. The reciprocal 
divisor mate of 10: is 06:. Dividing the co-
factor 27: by the reciprocal divisor 06:, we 
obtain 04: remainder 03:. The integer 04: is 
carried. The remainder 03: times the 
original factor 10: equals 30:. Thus the 
product is 04;30:.  
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Operation Class C: Effective Non Divisor Non Totative Factors 

This operation class includes problems where at least one of the factors is member of 
Factor Class C. This factor class includes all those factors fn which are neither totative nor 
a divisor of the base r which are products of a “significant” divisor ds and a multiplier mn 
that is also a divisor or composed itself entirely of divisors of base r. Solution of the 
problem involving the effective fn begins by extracting mn from fn to yield ds. Once ds is 
known, we can use the reciprocal divisor pair { ds , ds’ } in a class B operation as 
described above. The factor mn must be recorded and applied at the end of the Operation 
Class B process. When the mn is itself a divisor, the application of mn becomes simply a 
second Operation Class B process. In cases where mn is a composite of divisors, the mn 
may be broken down in an Operation Class C.  

Operation Class C can be regarded as an extraction of the mn multiplier so that Operation 
Class B can be applied to the co-factor f’. This class of operation is available to all bases 
r which have 5 or more divisors and many which have 4 or more divisors. Bases which 
have a diverse set of prime factors may feature many avenues open to Operation Class C. 
Prime bases can not use Operation Class C. Figure 4C illustrates an Operation Class C 
problem. Use the following procedure to determine Operation Class C products which lie 
beyond the abbreviated table. 

1. Obtain both mn and ds from the simplified ratio fn / r. The numerator of the 
simplified ratio is mn while the denominator is equal to r / ds. 

2. Divide the factor fn by mn to obtain ds; make a note of mn (this is equivalent to 
replacing the factor fn in the problem with ds and noting mn elsewhere).  

3. Carry out a class B operation. 

4. Examine mn to see if it is itself a 
divisor of r. Proceed with the next 
step if this is true. If mn is 
composed entirely of divisors, 
begin a new second application of 
a class C operation, with a divisor 
that comprises mn serving as “ds” 
in Step 2, and the remaining 
portion of mn as “mn” which is to 
be noted. Operation Class C will 
need repetition until all the 
divisors except one which 
compose the original mn have 
been exhausted. 

5. Obtain the final product p by 
multiplying the product obtained 
in Step 3 (the class B operation) 
by (the original) mn. 

Figure 4C. An example of a Class C operation which 
involves a nontotative nondivisor. 
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Operation Class C • Dozenal Examples 

1. Multiply 7 by 8. The factor 8 has a ratio 
with the base 12 that simplifies to 2/3. 
Thus, 2 is the multiplier mn and 3 is the 
related divisor’s reciprocal mate ds’. The 
related divisor itself, ds, is 4. The problem 
is split into two stages. The first stage is a 
class B operation. Thus, the co-factor f’ = 
7 is divided by ds’ = 3, yielding 2 
remainder 1. The integer 2 is carried. The 
remainder 1 is multiplied by ds = 4, 
yielding 4. Thus Operation Class B yields 
the result 24;. This result requires 
multiplication by mn = 2, yielding the 
answer, 4 dozen 8. 

 

2. Multiply 9 by 5. The factor 9 has a ratio 
with the base 12 that simplifies to 3/4. 
Thus, 3 is the multiplier mn and 4 is the 
related divisor’s reciprocal mate ds’. The 
related divisor itself, ds, is 3. The problem 
is split into two stages. The first stage is a 
class B operation. Thus, the co-factor f’ = 
5 is divided by ds’ = 4, yielding 1 
remainder 1. The integer 1 is carried. The 
remainder 1 is multiplied by ds = 3, 
yielding 3. Thus Operation Class B yields 
the result 13;. This result requires 
multiplication by mn = 3, yielding the 
answer, 3 dozen 9. 

3. Multiply 9 by ç. The factor 9 has a ratio 
with the base 12 that simplifies to 3/4. 
Thus, 3 is the multiplier mn and 4 is the 
related divisor’s reciprocal mate ds’. The 
related divisor itself, ds, is 3. The problem 
is split into two stages. The first stage is a 
class B operation. Thus, the co-factor f’ = 
ç is divided by ds’ = 4, yielding 2 
remainder 2. The integer 2 is carried. The 
remainder 2 is multiplied by ds = 3, 
yielding 6. Thus Operation Class B yields 
the result 26;. This result requires 
multiplication by mn = 3, yielding the 
answer, 7 dozen 6. 
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Operation Class C • Sexagesimal Examples 

 

1. Multiply 22: by 08:. The factor 08: has a 
ratio with the base 60 that simplifies to 
02:/15:. Thus, 02: is the multiplier mn and 
15: is the related divisor’s reciprocal mate 
ds’. The related divisor itself, ds, is 04:. The 
problem is split into two stages. The first 
stage is a class B operation. Thus, the co-
factor f’ = 22: is divided by ds’ = 15:, 
yielding 01: remainder 07:. The integer 01: 
is carried. The remainder 07: is multiplied 
by ds = 04:, yielding 28:. Thus Operation 
Class B yields the result 01;28:. This result 
requires multiplication by mn = 02:,  

yielding the answer, 02;56:. 

 

2. Multiply 40: by 18:. The factor 40: has a 
ratio with the base 60 that simplifies to 
02:/03:. Thus, 02: is the multiplier mn and 
03: is the related divisor’s reciprocal mate 
ds’. The related divisor itself, ds, is 20:. The 
problem is split into two stages. The first 
stage is a class B operation. Thus, the co-
factor f’ = 18: is divided by ds’ = 03:, 
yielding 06: without remainder. Thus 
Operation Class B yields the result 06;00. 
This result requires multiplication by mn = 
02:, yielding the answer, 12;00:. Note that 
this problem might have employed 18: via 
the divisors {2, 3, 3}. This would require 

three rather than two phases for 40: = {2, 
20}. Thus 40: presents a more efficient 
process than 18:, so 40: is preferable. 

3. Multiply 37: by 36:. The factor 36: has a 
ratio with the base 60 that simplifies to 
06:/10:. Thus, 06: is the multiplier mn and 
10: is the related divisor’s reciprocal mate 
ds’. The related divisor itself, ds, is 06:. The 
problem is split into two stages. The first 
stage is a class B operation. Thus, the co-
factor f’ = 37: is divided by ds’ = 10:, 
yielding 03: remainder 07:. The integer 01: 
is carried. The remainder 07: is multiplied 
by ds = 06:, yielding 42:. Thus Operation 
Class B yields the result 03;42:. This result 
requires multiplication by mn = 06:, via 
another full class C operation, ultimately 
yielding the answer, 22;12:. 
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Method for Determining Effective Factors fe 

The effective factor fe is the basic tool of Operation Class C. In order to reduce the 
problem to one which can be resolved using reciprocal divisors, a multiple mn can be 
extracted from the non totative non divisor factor fn. This multiple is effective if it is the 
product of divisors or itself a divisor of the base. If the multiple involves a totative, the 
factor fn is technically unusable in a class C operation, because this particular factor fn 
would require multiplication by a totative. It is possible to transact on an “ineffective 
factor” fn. The dozenal digit ç can be broken into (5 · 2); the 5 could use a class D 
operation (yet to be described). This is more involved than necessary because the dozenal 
digit ç itself warrants a class D operation.  

The determination of a base’s effective factors is important because these factors enable 
Operation Class C. Table 4B illustrates one method of determining the factors fn which 
are non totative non divisors of base r that have an mn which is entirely composed of 
divisors. In effect, the table is simply a miniature multiplication table of divisors. We are 
only interested in single-digit results.  

1. Construct the table by multiplying all the effective divisors. Use the base’s 
notation rather than decimal. In the case of 6-on-10 notation in sexagesimal, 
decimal can be used, but care should be taken in recognizing that the products are 
not decimal products, but sexagesimal digits. Results written in decimal figures 
greater than 59 are mistakes. 

2. Ignore any product which is already accounted for in the set of effective divisors.  

3. Any product not among the set of effective divisors is an effective factor fe. 

Thus, using the dozenal table, the factors 8 and 9 are “new”, so these are effective factors. 

Table 4B • Effective Factor Tables for Several Bases 

 2 5 

2 4 10 

5 10  

Decimal 

 2 3 4 6 

2 4 6 8 10

3 6 9 10  

4 8 10   

6 10    

Dozenal 

 2 3 4 6 8 C 

2 4 6 8 C G 10

3 6 9 C I 10  

4 8 C G 10   

6 C I 10    

8 G 10     

C 10      

Quadrovigesimal (Base 24) 
 2 3 4 5 6 A C F K 30 

2 4 6 8 A C K O U e 10 

3 6 9 C F I U a j 10  

4 8 C G K O e m 10   

5 A F K P U o 10    

6 C I O U a 10     

A K U e o 10      

C O a m 10       

F U j 10        

K e 10         

U 10          

Sexagesimal (Base 60) 
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Operation Class D: Totatives and fn Involving Totatives 

This class of operations includes all remaining problems. This ends up meaning all 
problems which involve a factor belonging to Factor Class D. This factor class includes 
all totatives except the totative {1}, and all the factors fn for which only ds is a divisor of 
r, with an mn that is totative. In short, if both factors are either totative or involve a 
totative as the numerator of the simplified ratio fn / r, and neither factor is 1, then the 
problem is governed by Operation Class D. 

The class D operation renders the most difficult problems amenable by selecting one of 
the Factor Class D factors fD, adding or subtracting a small integer n from them, splitting 
the problem into two problems. The problem, originally of the form fD1 · fD2, becomes 
(fmodified · fD2 ) + (n · fD2 ). The objective of this dissociation of one of the class D factors is 
to create one, preferably two class A or B factors, in order to minimize operations. In 
bases abundant with divisors, this is not so difficult. For factors greater than r / 2 or those 
less than r / 2 at an inconvenient distance from these factor classes, transferal to a class C 
factor is helpful. Base 60 class D operations are all the more facilitated by the unbroken 
wall of divisors covering 1 through 6; any totative can be brought down if they are within 
6 units from any class C factor. Bases that are not so well entrained at times may not be 
able to transfer the problem to class C without dividing the number into three or four 
parts, thereby rendering the method far less efficacious. This is why the reciprocal divisor 
methods are suitable for highly divisible bases, and fail to support diprimes or squares 
that may be far smaller than some of these highly composite bases. 

Like Operation Class C, Operation Class D is simply a preparation applied to a problem 
that commutes the problem to one that involves a higher grade operation class. Ideally, 
the application of Operation Class D shifts the problem to class A or B, reducing the 
number of steps in the solution of the problem. There are reasons why a class B operation 
is not available from a class D problem. Certain bases aren’t as well-entrained as others; 
these tend to be the less highly divisible bases. Bases which are diprimes are initially 
adequate candidates for the reciprocal divisor method. As r becomes greater, diprimes 
offer relatively few avenues for Operation Class B, so many class D problems lie far from 
this tool.  
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Figure 4D. An example of a Class D operation, this 
example involving two totative factors. 

Figure 4E. An illustration of the method by which a 
product that involves two totative factors can be 
commuted so that the user can employ the divisors 
of the base to solve the problem. 

Figure 4D illustrates an Operation Class C problem. Use the following procedure to 
determine Operation Class C products which lie beyond the abbreviated table. 

1. Attempt to divide the problem fD1 · fD2 involving two class D factors into two 
problems using the associative property of addition. Split one factor fD into a 
factor fmodified of a higher factor class and a small integer n, preferably within 
Factor Class B. Several integers nx may be required for bases r having relatively 
few divisors; this will require a term (nx · fD2) for each nx. The “split” can either be 
an addition of a positive or negative n. There may be no “right answer” as to 
which factor of a higher class is the one to use. The resultant problem is now of 
the form: 

fD1 · fD2 = (fmodified · fD2 ) + (n · fD2) 

2. There is a special form of Operation Class D which applies to problems featuring 
a factor fD which is of the form (r - d). This problem can be divided into (r · f’) – 
(d · f’) = p. The first term is class A, and the second is class B. 

(r - d) · f’ = (r · f’) – (d · f’) = p 

3. Use Operation Classes A, B, or C as necessary to resolve both (fmodified · fD2 ) and 
(n · fD2). 

4. Reunite the problem using addition of all the terms to determine the final product.  
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Operation Class D • Dozenal Examples 

1. Multiply 7 by 7. The problem can be 
divided into (6 + 1) · 7 = (6 · 7) + (1 · 7). 
Solving the first term, a class B operation, 
the factor 6 is a divisor of 12, possessing a 
reciprocal divisor mate d’ = 2. The co-
factor f’ = 7 is divided by d’, yielding 3 
remainder 1. The integer 3 is carried. The 
remainder 1 is multiplied by 6, yielding 6. 
Thus Operation Class B yields the result 
36;. The second term (1 · 7) has a simple 
solution, 7. The sum of 36; and 7 is 41;. 

 

2. Multiply 5 by ç. The problem can be 
divided into (6 - 1) · ç = (6 · ç) + (-1 · ç). 
Solving the first term, a class B operation, 
the factor 6 is a divisor of 12, possessing a 
reciprocal divisor mate d’ = 2. The co-
factor f’ = ç is divided by d’, yielding 5, 
which is carried to the next place, 
generating a class B operation result of 50;. 
The second term (-1 · ç) has a simple 
solution, -ç. The sum of 50; and -ç is 42;.  

3. Multiply 5 by ç. The problem can be 
alternatively divided into (3 + 2) · ç = (3 · 
ç) + (2 · ç). Solving the first term using a 
class B operation yields the result 26;. The 
second term (2 · ç) yields 18;. The sum of 
26; and 18; is 42;. Operation Class D 
problems may present several viable 
solution options. Some options are more 
efficacious than others.  

 

4. Multiply Ç by ç. The problem can be 
divided into (9 + 2) · ç = (9 · ç) + (2 · ç). 
Solving the first term using a class C 
operation yields a result of 76;. The second 
term (2 · ç) yields 18;. The sum of 76; and 
18; is 92;. This problem could have used Ç  
= (3 + 4 + 4), [3 + 2(4)], etc. Another 
viable process would involve Ç · ç = (Ç · 4) 
+ (Ç · 6). The problem could have used the 
factors r and d: ç = (10 - 2).  



57 

Operation Class D • Sexagesimal Examples 

1. Multiply 34: by 13:. The problem can be 
divided into (30: + 04:) · 13: = (30: · 13:) + 
(04: · 13:). Solving the first term, a class B 
operation, the factor 30: is a divisor of 60, 
possessing a reciprocal divisor mate d’ = 
02:. The co-factor f’ = 13: is divided by d’, 
yielding 06: remainder 01:. The integer 06: 
is carried. The remainder 01: is multiplied 
by 30:, yielding 30:. Thus Operation Class 
B yields the result 06;30:. The second term 
(04: · 13:) has a class A solution, 52:. The 
sum of 06;30: and 52: is 07;22:. 

 

2. Multiply 41: by 43:. The problem can be 
divided into (40: + 01:) · 43: = (40: · 43:) + 
(43:). Solving the first term, a class C 
operation, results in the product 28;40:. 
Adding 43: to 28;40: yields the end product 
29;23:. This problem could have used 41: = 
(45: - 04:), which would have necessitated 
a class B operation on the second term (04: 
· 43:). The use of 41: = (40: + 01:) is more 
efficient.  

3. Multiply 23: by 46:. The problem can be 
divided into (24: - 01:) · 46: = (24: · 46:) + 
(-46:). Solving the first term, a class C 
operation, results in the product 18;24:. 
Adding 46: to -18;24: yields the end 
product 17;38:. This problem could have 
used 46: = (45: + 01:), 23: = (20: + 03:), 
46: = (40: + 06:). Operation Class D 
processes involving n = 1 or -1 usually are 
most efficient.  

4. Multiply 57: by 51:. The problem can be 
divided into (-03: + 01;00:) · 51: = (-03: · 
51:) + (01;00:). Solving the first term, a 
class C operation with an mn = -1, yields a 
result -02;33:. The second term is a simple 
Operation Class A problem yielding 51;00: 
as its result. The sum of these terms is 
48;27:. The factor r can be a powerful ally 
in the solution of problems involving a 
factor f = (r – d).  



58 

Multiplication Processes 

Thus far multiplication has been covered. There are four operation classes. Operation 
Class A resolves problems involving 1 or r or any product on the abbreviated table. 
Operation Class B involves a divisor of the base; the reciprocal divisor is leveraged to 
yield a product beyond the abbreviated table. Operation Class C simply extracts a 
multiplier which is a divisor or wholly composed of divisors so that Operation Class B 
can work. The multiplier is applied to the result of the class B operation to obtain the 
product of the class C operation. Operation Class D splits the problem into two separate 
problems, preferably both of class A or B, but C is also possible. The results of these two 
separate sub-problems are added, yielding the product of the class D operation. Figure 4F 
is a flow chart appropriate for multiplication. 

Several items should be handy or present in mind when operating in base r. The purpose 
of constructing an abbreviated multiplication table is to facilitate its memorization. The 
abbreviated table is intended to be concise enough to be kept in mind. It is your judgment 
how large a table can be handled. Since the Reciprocal Divisor Method leverages the 
reciprocal divisor pairs of base r, it is essential to know these keenly. The set of totatives 
for base r is also handy but not essential. Knowing the list of effective factors decreases 
guesswork using class C. The class C and D operations normally have several avenues 
toward solution, so precise knowledge of totatives and effective factors is not necessary. 
Memorization is the key to computational fluency. 

There are certain factors which, despite their status as Class C, may be easily resolved 
using a class D operation. An example of this is the sexagesimal digit 16:. This is very 
easily (15f’ + f’). The class C interpretation uses 4(4f’). Thus, Operation Classes C and D 
involve some measure of creativity. In a well-entrained base, this “wiggle room” is 
tremendously advantageous, because precise knowledge of which factors are totative or 
effective, etc. is unnecessary. 
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Figure 4F. The multiplication process. 
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Division Processes 

Division using the Reciprocal Divisor Method involves the same processes used to 
maneuver the multiplication problem to one which can be solved using the reciprocal 
divisor pairs of a highly divisible integer. The problem-divisor (referred to as such to 
avoid confusion with a divisor of the base) is assessed, and the appropriate operation 
class is selected.  

Division is the reversal of a multiplication process; thus the divisor (denominator) is a 
former factor f and the dividend (numerator) a former product p. The quotient to be found 
is another factor f’.  

p / f = f’ 

The factor classes by which each digit of figures involved in a multiplication problem are 
classified do apply to the numerator and denominator of a division problem. Operations 
involving totatives are notably more difficult under division. This is because the process 
of dividing by totatives involves an empirical and iterative process. The following 
subsections describe division processes. 

Operation Class A: Dividends within the Abbreviated Table 

Like the multiplicative class A operation, the division operation of the same class is 
easiest. There are two principal applications of Operation Class A on division problems. 
The first involves problems where the problem-divisor f is either 1 or r or an integer 
power of r. This simply involves doing nothing, or shifting the radix point right 1 or more 
places in the dividend. The second application involves a dividend p and problem-divisor 
f which are both lesser than r. For dividends that are directly represented on the 
abbreviated table, the answer is given by finding the problem divisor on the table and 
locating the quotient on the other axis. It goes without saying that division by 0 is not 
defined. If the resonances of higher rank divisors of base r are known, these may also be 
leveraged: these resonances are not covered in this booklet. 

Computation Process 
In order to compute a Class A quotient, follow these steps: 

1. Problems involving a problem-divisor or denominator of 0 are undefined. 

2. For problems involving the problem divisor 1: the quotient f’ is equal to the 
dividend p. 

p / 1 = p 

3. For problems involving the problem divisor or denominator which is an integer 
power of r: the quotient of any dividend f divided by rn can be generated by 
shifting the digits of the dividend rightward n places. 

4. The abbreviated multiplication table will feature composite dividends lesser than r 
for some problem divisors. 

5. If the product is determined to lie outside the table, use another operation class. 
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Operation Class B: Effective Divisor Problem-Divisors 
This operation class includes division problems where the problem divisor fd is a member 
of Factor Class B, that is, a factor fd which is a divisor d of the base r. The reciprocal 
divisor d’ of the factor fd can be used to yield any product p which lies outside the 
abbreviated multiplication table. Figure 4B illustrates a class B operation. Operation 
Class B is available to all integer bases r which have more than 2 divisors; that is, to all 
composite bases. Use the following procedure to determine products off the abbreviated 
table. 

1. Verify that the entire denominator (problem divisor) f is an element in the set of 
divisors Dr of base r. 

In the problem p / f = f’,     f œ Dr is true;    f is a divisor factor fd 

2. Begin with the highest rank digit of the dividend p, and iterate for each digit in the 
dividend p. The digits of the dividend p are referred to in the steps below as { x0, 
x1, … } where x0 is the most significant digit of the dividend p. 

a. Divide the digit x0 by the problem-divisor fd which is a divisor d of base r. 

b. Take the integer part of the result and retain this as a digit of the problem’s 
quotient f’. These integer parts will accumulate, assembling the problem’s 
quotient f’ from most to least significant digit. 

c. Multiply the remainder of the result by the reciprocal divisor d’ of fd. 

d. If there is a digit in the dividend p which is lesser in significance (i.e. to 
the right of the digit just played), add the result of the remainder operation 
to the integer part of the next digit x0’s step 2a result. The sum of these 
will be retained as the next digit in the problem quotient f’. 

3. Continue process until no further digits xn are available. The accumulated integers 
are the digits of the problem’s quotient f’. 

Operation Class B • Dozenal Examples 

1. Divide 23; by 3. Starting with the 
highest-rank digit of 23;, divide the digit 2 
by the problem-divisor fd, which is 3. The 
result is 0 remainder 2. Multiply the 
remainder 2 by the reciprocal divisor 4 to 
yield 8. Using the digit 3 of 23;, divide by 
3 again. The result is 1, which will be 
added to the result of the remainder 
operation from the last step to get 9. There 
is no remainder for this step. Collect the 
integer part from the initial step, and the 
sums of the integer parts and remainder 
operation results of the ensuing steps.  

The answer to the problem is 09.0 or simply 
the number 9; 2 dozen 3 divided by 3 is 9. 
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2. Divide 28; by 4. Beginning with the 
highest-rank digit of 28;, divide the digit 2 
by the problem-divisor fd, which is 4. The 
result is 0 remainder 2. Multiply the 
remainder 2 by the reciprocal divisor 3 
yielding 6. Using the digit 8 from 28;, 
divide by 4 again. The result is 2, with no 
remainder. Add the 6 from the previous 
step to the integer 2 from this step to 
obtain 8. Collect the results of all steps to 
obtain the quotient: 2 dozen 8 divided by 4 
yields a quotient of 8 

3. Divide 5 dozen 9 by 4. Dividing the first 
digit of the dividend by the problem 
divisor 4 yields 1 remainder 1. The 
remainder 1 times the reciprocal divisor 3 
yields 3. Dividing the next digit 9 by 4 
yields 2 remainder 1. Adding the 
remainder operation result from the last 
step, 3, to this integer part 2 sums to 5. The 
remainder 1 times the reciprocal divisor 3 
yields 3. Thus 5 dozen 9 divided by 4 
equals 1 dozen 5 and one quarter. 

4. Divide 9 dozen ten by 6. Nine divided 
by 6 yields 1 remainder 3. Multiplying the 
remainder by the reciprocal divisor 2 
yields 6. The next digit in the dividend, 
ten, divided by 6 yields 1 remainder 4. 
Adding 6 and 1 totals 7. The remainder 4 
times the reciprocal divisor 2 yields 8. 
Thus, nine dozen ten divided by six equals 
one dozen seven and two thirds. 
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Operation Class B • Sexagesimal Examples 

1. Divide 02;24: by 12:. Divide the digits 
of the dividend by the problem-divisor 12:, 
then multiply the remainders of these 
operations by the reciprocal divisor 05:. 
Sum the products of the remainder 
operation and the integer part of the digit 
greater than the current digit in play. 
Collect the sums to build the quotient 12;. 
(144 / 12 = 12). 

2. Divide 45;49: by 06:. Divide the digits 
of the dividend by the problem-divisor 06:, 
then multiply the remainders of these 
operations by the reciprocal divisor 10:. 
Sum the products of the remainder 
operation and the integer part of the digit 
greater than the current digit in play. 
Collect the sums to build the quotient 
07;38:10;. (2,749 / 6 = 458+1/6). 

3. Divide 31;28: by 20:. Divide the digits 
of the dividend by the problem-divisor 20:, 
then multiply the remainders of these 
operations by the reciprocal divisor 03:. 
Sum the products of the remainder 
operation and the integer part of the digit 
greater than the current digit in play. 
Collect the sums to build the quotient 
01;34:24;. (1888 / 20 = 94.4). 

3. Divide 46;16: by 04:. Divide the digits 
of the dividend by the problem-divisor 04:, 
then multiply the remainders of these 
operations by the reciprocal divisor 15:. 
Sum the products of the remainder 
operation and the integer part of the digit 
greater than the current digit in play. 
Collect the sums to build the quotient 
11;34:. (2776 / 4 = 694). 
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Operation Class C: Non Totative Non Divisor Problem-Divisors 

The class C operation involves division problems where the problem-divisor fn is member 
of Factor Class C. This factor class includes all those factors fn which are neither totative 
nor a divisor of the base r which are products of a “significant” divisor ds and a multiplier 
mn that is also a divisor or composed itself entirely of divisors of base r.  

Solution of the problem involving the effective fn begins by extracting mn from fn to yield 
ds. Once ds is known, we can use the reciprocal divisor pair { ds , ds’ } in a class B 
operation as described above. The factor mn must be recorded and applied at the end of 
the Operation Class B process. When the mn is itself a divisor, the application of mn 
becomes simply a second Operation Class B process. In cases where mn is a composite of 
divisors, the mn may be broken down in an Operation Class C.  

Operation Class C can be regarded as an extraction of the mn multiplier so that Operation 
Class B can be applied to the co-factor f’. This class of operation is available to all bases 
r which have 5 or more divisors and many which have 4 or more divisors. Bases which 
have a diverse set of prime factors may feature many avenues open to Operation Class C. 
Prime bases can not use Operation Class C. Figure 4C illustrates an Operation Class C 
problem for multiplication: in division, the product “?” is known, but one or the other 
factors is unknown. Use the following procedure given a dividend p beyond the 
abbreviated table, and a class C factor as problem-divisor f. 

1. Verify that the entire denominator (problem divisor) f is neither a totative t nor 
divisor d of base r. Further, simplify the ratio f / r to obtain mn / ds’. The 
numerator mn must be fully composed of divisors d of base r, thus no totative t is 
a part of mn. Since ds’ is known, the related divisor ds can be identified. 

2. For each digit of the dividend p, beginning with the highest rank digit μ, divide μ 
by the related divisor ds to obtain an integer part and a remainder. 

3. Multiply each remainder by the reciprocal divisor ds’, and add the product to the 
integer part from the digit immediately to the left or of immediately greater rank. 
Each of these sums will serve as a digit in the subquotient. 

4. Collect the sums to build the subquotient, and divide the subquotient by mn. 
Division by mn may necessitate another class C or higher (A or B) operation. This 
is the final quotient of the problem 
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Operation Class C • Dozenal Examples 

1. Divide 68; by 8. The simplified ratio 
8/12 supplies mn = 2, ds’ = 3, and ds = 4. 
Divide the digits of the dividend by the 
related divisor 4. Multiply the remainders 
of these quotients by the reciprocal divisor 
3.  Collect the results from each step to 
assemble the sub-quotient 18;. Divide the 
subquotient by the mn 2 to yield the final 
quotient, ten (dek). (Six dozen eight is 
decimal 80).  

2. Divide ten dozen one by nine. The 
simplified ratio 9/12 supplies mn = 3, ds’ = 
4, and ds = 3. Divide the digits of the 
dividend by the related divisor 3. Multiply 
the remainders of these quotients by the 
reciprocal divisor 4.  Collect the digits of 
the subquotient to obtain 34;3. Reapply mn 
by dividing 34;3 by 3. The quotient 11;54 
is the result of dividing ten dozen one by 
nine. (121 / 9 = 13+4/9). 

3. Divide 55; by 8. Dividing the digits of 
the dividend by the related divisor 4, then 
multiplying the remainders of these 
operations by the reciprocal divisor 3 
yields the subquotient 14;3. Dividing the 
subquotient 14;3 by the mn, 2 yields 8;16. 
Thus five dozen five divided by 8 yields 
the quotient 8;16 or eight and one eighth. 
(Decimal 65 / 8 = 8.125). 

4. Divide 47; by 9. Dividing the digits of 
the dividend by the related divisor 3, then 
multiplying the remainders of these 
operations by the reciprocal divisor 4 
yields the subquotient 16;4. Dividing the 
subquotient 16;4 by the mn, 3 yields 6;14. 
Thus four dozen seven divided by nine 
yields the quotient 6;14 or six and one 
ninth. (Decimal 55 / 9 = 6+1/9). 
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Operation Class C • Sexagesimal Examples 

1. Divide 28;48: by 24:. The simplified 
ratio 24/60 supplies mn = 02:, ds’ = 05:, 
and ds = 12:. Divide the digits of the 
dividend by the related divisor 12:. 
Multiply the remainders of these quotients 
by the reciprocal divisor 05:.  Collect the 
digits of the subquotient to obtain 02;24:. 
Reapply mn by dividing 02;24: by 02:. The 
quotient is 01;12:. (1728 / 24 = 72). 

 

2. Divide 53: by 54:. The simplified ratio 
54/60 supplies mn = 09:, ds’ = 10:, and ds = 
06:. Divide the digits of the dividend by 
the related divisor 06:. Multiply the 
remainders of these quotients by the 
reciprocal divisor 10:.  Collect the digits of 
the subquotient to obtain 08:25. Reapply 
mn by dividing 08:25; by 09:. The quotient 
is 00:58;53;20;. (53 / 54 = 0.9814814…).  

3. Divide 19;13: by 45:. The simplified 
ratio 45/60 supplies mn = 03:, ds’ = 04:, 
and ds = 15:. Divide the digits of the 
dividend by the related divisor 15:. 
Multiply the remainders of these quotients 
by the reciprocal divisor 04:.  Collect the 
digits of the subquotient to obtain 
01;16:52;. Reapply mn by dividing 
01;16:52; by 03:. The quotient is 
25:37;20;. (1153 / 45 = 25.6222…).  

4. Divide 48;17: by 18:. The simplified 
ratio 18/60 supplies mn = 06:, ds’ = 20:, 
and ds = 03:. Divide the digits of the 
dividend by the related divisor 03:. 
Multiply the remainders of these quotients 
by the reciprocal divisor 20:.  Collect the 
digits of the subquotient to obtain 
16;05:40;. Reapply mn by dividing 
16;05:40; by 06:. The quotient is 
02;40:56;40;. (2897 / 18 = 160.9444…).  
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Operation Class D: Totative Problem-Divisors 

Division problems which involve a problem-divisor that is a member of Factor Class D 
may use the class D operation. This factor class includes all totatives except the totative 
{1}, and all the factors fn for which only ds is a divisor of r, with an mn that is totative. In 
short, if both factors are either totative or involve a totative as the numerator of the 
simplified ratio fn / r, and neither factor is 1, then the problem is governed by Operation 
Class D. 

The Operation Class D for division is similar to decimal long division. It employs an 
empirical and iterative process to produce the quotient. The class D operation requires an 
estimation of which multiple of the problem divisor might be subtracted from a set of 
digits of the dividend. Because the abbreviated multiplication table does not contain 
every product for the totatives by definition, this estimation process is more involved. It 
is noticeably more tedious than the other division operation methods described in this 
booklet. 

Figure 4G summarizes the process of division under the Reciprocal Divisor Method. 

Operation Class D • Examples 

1. Divide dozenal 8ç2ç; by Ç5; to 3 
significant digits. Dividing the dividend 
8ç2ç; by a surrogate divisor 100; obtains 
an estimated quotient of 8ç;2ç. A trial 
multiplication of the problem divisor Ç5; 
and the first digit of this surrogate, 8; , 
yields 774;. When 774; is subtracted from 
8ç2; it is too low. Using 9; instead of 8; 
proves better. The difference, 35ç;, divided 
by the surrogate suggests 3; as the next 
quotient digit. This proves correct. The 
difference, 770;, divided by the surrogate 
suggests 7; as the final digit to compute. 
The difference, Ç1; is relatively high and 
certainly more than half of the problem 
divisor, so the quotient is rounded up to 
nine dozen three and two thirds.  
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2. Divide sexagesimal 57: by 13: to two 
significant digits. Division of the dividend 
57: by a surrogate divisor 12: suggests 04: 
as a possible quotient digit. The 
multiplication of 13: and 04: is a class A 
operation. The difference of 50: divided by 
the surrogate 12: suggests 25:, but 
multiplication of 13: by 25: proves too 
large. Subtracting 50: from the product of 
13: and 25:, which is 05;25: suggests the 
number 23: is the correct quotient digit. A 
remainder of 11: suggests the two-place 
figure be rounded up to 04;24:. 

 

3. Divide sexagesimal 02;06: by 17:. 
Division of the dividend 02;06: by a non 
divisor non totative 16: suggests 08:. This 
proves too high, so 07: is used as the 
quotient digit, and proves correct. The 
difference, 07;00:, is divided by the 
surrogate 16: to yield 26:. This figure is 
likewise too large, and 24; is indicated. 
The difference 12;00: divided by the 
surrogate 16: suggests 45:. This is too 
large, so 42: is used. The three-place 
answer is 07:24;42; 
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4. Divide sexagesimal 07;08;01;14: by 
41;02:. Applying the surrogate 40;00: to 
the dividend suggests 10: as the first digit 
of the quotient. This proves correct. The 
difference 17;41;14: divided by the 
surrogate suggests 26:, which proves too 
large. The figure 25: proves to be the next 
digit in the quotient. Division of the 
difference 35;24;00: by the surrogate 
suggests that the last digit is 53:. This 
proves too large. The digit that proves to 
be correct is 51:. Thus the quotient is 
10;25:52; via rounding up. 

 

5. Divide 46;40;00: by 02;13;20:. This is 
perhaps a trick problem. If the third rank 
divisors are familiar, the fact that 02;13;20: 
is the reciprocal divisor to 27;, and the 
figure 46;40;00: is 21; / 27; may be more 
evident. This particular problem can be 
resolved entirely with fraction 
simplification. 
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Range of Effectiveness for the RDM 

Let’s examine the range of bases for which the Reciprocal Divisor Method might be a 
useful toolset.  

Range Limited by Human Ability 

The two principal factors which govern the usefulness of a base r for general human 
computation are the properties of integers and the capacity of the human mind. These two 
principal factors thus generate a spectrum of integral bases which run from the simple 
bases, which are generally less than about 6 or 7. This is the range where human 
perception of the quantity of objects present in a group nearly never fails to be accurate. 
The “human scale” bases include integers larger than the simple bases but smaller than a 
size where the human memory has difficulty learning and practicing the full 
multiplication table within a period of training time comparable to today’s decimal 
training time. These integers perhaps range between approximately 6 or 7 through 
approximately 12 through 16, possibly including the two integers 18 and 20, which 
possess the same number of divisors as twelve, and therefore should be aided by rhythms 
in their tables. Bases greater than the human scale bases, running up to 36 are the inner 
large bases, which are representable using the numerals and the letters of the Latin 
alphabet. Bases greater than the inner large bases to around 60 or 64 comprise the middle 
large bases. All bases greater than these are simply the large bases. This is neither a 
scientifically studied nor defined scale. 

Figure 4H. Perhaps the RDM facilitates “exploration” of certain “mid-scale” bases. The most significant 
of these “mid-scale” bases is sexagesimal. 
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Range Determined by Mathematical Properties of Integers 

The RDM yields useful abbreviations for composite bases that range between 
hexadecimal through sexagesimal. Above sexagesimal, the RDM yields useful 
abbreviations for bases having more than 5 divisors perhaps through base 120. The size 
of the abbreviated multiplication table for base 120 includes 246 products of unique 
factor combinations, with the “crossing” table including 301 elements. Thus the 
abbreviated table for r = 120 is comparable to the full traditional hexadecimal 
multiplication table, which is perhaps the upper limit of the “human scale bases”. No 
empirical testing for these ranges has been conducted to date, to the knowledge of the 
author. 

Entrainment 

The operation classes function fully for all bases which have more than 5 divisors. Such 
bases can be called “entrained”. This means that the following operations are possible: 

• The Class A operations among the factors on the abbreviated multiplication table 
and those which involve 1 and r, 

• The Class B operations which extend the factors fd, 

• The Class C operations between any factor f and a factor fd, via commutation of m 
which is a divisor d of the base r, and 

• The Class D technique that commutes one of two totative or ineffective 
nontotative nondivisor factors to a factor fd so Class B can be applied. 

Table 4C • Effectiveness of Operation Classes versus Number of Divisors of Base r 

 Class A Class B Class C Class D 
2 divisors •    
3 divisors • •  • 
4 divisors • • limited • 
> 5 divisors • • • • 
All the operations classes function for these entrained bases because two or more 
reciprocal divisor pairs can cross-interact. For instance, the dozenal nontotative 
nondivisor factors fn include two factors {8, 9} which are multiples m of the divisors {4, 
3} that are themselves divisors of twelve {2, 3}. The dozenal nontotative nondivisor 
factor 10 cannot technically employ the Class C because the multiplier m is 5, which is a 
totative of twelve. At the scale of the dozenal system, the fact that 10 is the product of a 
divisor and a totative is perhaps not insurmountable. But at scales on the par of bases 60, 
72, or 120, using a factor that is the product of a divisor and a totative is prohibitively 
impractical. Figure 4J illustrates the entrainment of decimal and dozenal, which are too 
small for RDM to be effective. The range of integers between 20 and 25 better illustrate 
entrainment. The highly entrained sexagesimal table appears at the end of the study. 
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Base 10, Dr = {1, 2, 5, 10} Base 12, Dr = {1, 2, 3, 4, 6, 12} 

  
Base 20, Dr = {1, 2, 4, 5, 10, 20} Base 21, Dr = {1,3, 7, 21} 

  
Base 22, Dr = {1, 2, 11, 22} Base 23, Dr = {1, 23} 

Figure 4J. An illustration of the entrainment of several bases. 
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Base 24, Dr = {1, 2, 3, 4, 6, 8, 12, 24} Base 25, Dr = {1, 5, 25} 

 
Base 60, Dr = {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60} 

Figure 4J continued. 
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Conclusion 
This booklet illustrates how the reciprocal divisor pairs of bases with 3 or more divisors 
can be used to abbreviate a large multiplication table, thereby facilitating computation in 
that base. The patterns present in the multiplication table of every integer base indicate 
that abbreviation to the first period is possible, dramatically reducing the quantity of 
products that must be memorized. The reciprocal divisors can be used in multiplication 
and division to compute products beyond the abbreviated table, or to find quotients that 
involve elements not found in the table. The computations are more circuitous than direct 
computation for “human scale” or simple bases whose multiplication tables are easily 
memorized. However, the methods do render computation possible in bases between 
“human scale” and the range where the abbreviated table rivals the size of the largest 
“human scale” bases. 

The three types of factors found in a multiplication table have been described and 
classified into four “factor classes”. Four kinds of “operation classes” have been 
developed to handle each of these classes of factors. The first class handles problems 
where one factor or dividend or problem-divisor follows simple rules, or is represented 
on the abbreviated table. The second class leverages the reciprocal divisor of a factor or 
problem-divisor which is also a divisor of the base. Two of the four classes merely adjust 
the problem so that reciprocal divisors can be used to solve the problem. The third splits 
the problem into one which can be resolved by a reciprocal divisor (i.e. class B), and a 
multiplier operation. The fourth splits the problem into the sum of a class B operation and 
a smaller operation. Examples of the multiplication and division under bases twelve and 
sixty are given.  

The Reciprocal Divisor Method functions more efficiently for bases with more than 5 
divisors. Bases which possess relatively many divisors are said to have “entrained” 
multiplication tables. There are many avenues toward solution under such bases. 

The intent of this booklet is to share “climbing equipment and techniques” with others 
who enjoy “climbing the mountains” of the higher bases. The equipment and techniques 
are perhaps imperfect, but they are complete enough and do work, allowing our safe 
ascent. There are those that would debate the equipment and techniques, but in my mind, 
the climb and the views are far more important than these. If enough of us ascend these 
heights, an “industry” might arise, and provide proper standards. This is perhaps only the 
beginning, and there is a lot to see up here. 

I believe that dozenal is the optimum base for general human computation. I do recognize 
that sexagesimal and the other superabundant bases 120, 360, 2520, etc. offer even more 
powerful opportunities to resolve nature’s order.  

This booklet and a second describing the Argam transdecimal numerals represent the 
culmination of twenty five years of preoccupation with transdecimal number bases. The 
effort that has been invested in this booklet is an attempt to ascend to these summits and 
survey the universe. The patterns from these heights are as beautiful as the Colorado 
vistas. I do invite fellow climbers to see the land and sky from these mountains, even 
though we may not inhabit them. We can still enjoy the climb and the view. Perhaps 
someone might even build an observatory up here. Happy climbing! 
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Index of Plates in the Appendices 

Appendix A1 • Properties of Integers 
Table of the Properties of Integers: Divisor and Totient Functions 

Appendix A2 • Multiplication Tables 
Octal – Base 8 
Hexadecimal – Base 16 
Dozenal – Base 12 
Decimal – Base 10 
Sexagesimal – Base 60 

Appendix B  • Analysis of Multiplication Tables 
Octal – Base 8 
Hexadecimal – Base 16 
Dozenal – Base 12 
Decimal – Base 10 
Sexagesimal – Base 60 

Appendix C1 • Abbreviated Multiplication Tables 
Sexagesimal Mixed Radix Notation 
Sexagesimal Pure Radix Notation (Argam) 
Bases 16, 18, 20, 24, and 30 (Argam) 
Bases 36, 48, and 60 (Argam) 
Bases 72 and 84 (Argam) 
Bases 90 and 96 (Argam) 
Bases 108 and 120 (Argam) 

Appendix D • Argam Symbology and Nomenclature 
Presenting the First 120 Argam 
Argam Sorted by Superabundant Numbers, presently digitized 
Argam Arranged in an Infinite Multiplication Table 

Appendix E  • Sample Studies written in Argam notation. 
Study of the Sexagesimal Powers of Popular Integer Bases 
Study of the Third Rank Divisors versus Prime Factorization Shape 
Study of the Factorization of Integers Which Set or Tie Records for σ0  
Study of the Divisors of Integers Which Set or Tie Records for σ0 
 

The booklet “Argam: a Transdecimal Numeral System” by Michael De Vlieger, will be 
finalized in 2008. 



Pr
im

e 
Fa

ct
or

iz
at

io
n

σ 0
, T

ot
al

 N
um

be
r 

of
 D

iv
is

or
s

σ 1
, D

iv
is

or
s 

Su
m

m
ed

Φ
, E

ul
er

 T
ot

ie
nt

 
Fu

nc
tio

n

Pr
im

e 
Fa

ct
or

iz
at

io
n

σ 0
, T

ot
al

 N
um

be
r 

of
 D

iv
is

or
s

σ 1
, D

iv
is

or
s 

Su
m

m
ed

Φ
, E

ul
er

 T
ot

ie
nt

 
Fu

nc
tio

n

0 0 8 60 8 1 2 3 4

0.333 2.500 0.333 O C 8 6

1 1 1 3 31 20 1

1.000 1.000 1.000 0.120 1.240 0.800 P

2 3 1 1 4 42 12 1 2

1.000 1.500 0.500 2 0.154 1.615 0.462 Q D

2 4 2 1 4 40 18 1 3

0.667 1.333 0.667 3 0.148 1.481 0.667 R 9

3 7 2 1 6 56 12 1 2 4

0.750 1.750 0.500 4 0.214 2.000 0.429 S 7 E

2 6 4 1 2 30 28 1

0.400 1.200 0.800 5 0.069 1.034 0.966 T

4 12 2 1 2 8 72 8 1 2 3 5

0.667 2.000 0.333 6 3 0.267 2.400 0.267 U F A 6

2 8 6 1 2 32 30 1

0.286 1.143 0.857 7 0.065 1.032 0.968 V

4 15 4 1 2 6 63 16 1 2 4

0.500 1.875 0.500 8 4 0.188 1.969 0.500 W G 8

3 13 6 1 4 48 20 1 3

0.333 1.444 0.667 9 0.121 1.455 0.606 X B

4 18 4 1 2 4 54 16 1 2

0.400 1.800 0.400 A 5 0.118 1.588 0.471 Y H

2 12 10 1 4 48 24 1 5

0.182 1.091 0.909 B 0.114 1.371 0.686 Z 7

6 28 4 1 2 3 9 91 12 1 2 3 4

0.500 2.333 0.333 C 6 4 0.250 2.528 0.333 a I C 9

2 14 12 1 2 38 36 1

0.154 1.077 0.923 D 0.054 1.027 0.973 b

4 24 6 1 2 4 60 18 1 2

0.286 1.714 0.429 E 7 0.105 1.579 0.474 c J

4 24 8 1 3 4 56 24 1 3

0.267 1.600 0.533 F 5 0.103 1.436 0.615 d D

5 31 8 1 2 8 90 16 1 2 4 5

0.313 1.938 0.500 G 8 0.200 2.250 0.400 e K A 8

2 18 16 1 2 42 40 1

0.118 1.059 0.941 H 0.049 1.024 0.976 f

6 39 6 1 2 3 8 96 12 1 2 3 6

0.333 2.167 0.333 I 9 6 0.190 2.286 0.286 g L E 7

2 20 18 1 2 44 42 1

0.105 1.053 0.947 J 0.047 1.023 0.977 h

6 42 8 1 2 4 6 84 20 1 2 4

0.300 2.100 0.400 K A 5 0.136 1.909 0.455 i M B

4 32 12 1 3 6 78 24 1 3 5

0.190 1.524 0.571 L 7 0.133 1.733 0.533 j F 9

4 36 10 1 1 4 72 22 1 2

0.182 1.636 0.455 M B 0.087 1.565 0.478 k N

2 24 22 1 2 48 46 1

0.087 1.043 0.957 N 0.043 1.021 0.979 l

Divisors in 
Argam 

Notation
Divisors in Argam 

Notation

47 47

45 32 · 5

46 2 · 23

43 43

44 22 · 11

41 41

42 2 · 3 · 7

39 3 · 13

40 23 · 5

37 37

38 2 · 19

35 5 · 7

36 22 · 32

33 3 · 11

34 2 · 17

31 31

32 25

29 23 · 3

30 2 · 3 · 5

27 33

28 22 · 7

22 · 5

3 · 7

2 · 11

23

24

17

2 · 32

19

22 · 3

13

2 · 7

3 · 5

23

32

2 · 5

11

22

5

2 · 3

7

0

1

2

3

20

21

22

23

16

17

18

19

12

13

14

15

8

9

10

11

4

5

6

7

0

1

2

3

1

0

1

A

7

8

9

2

3

4 2

3

B

6

5

C

D

E

F

G 4

H

I

J

K

L

M

N

O

P 5

24 23 · 3

25 52

26 2 · 13

U

V

W

Q

R

S

T

Y

Z

a 6

b

c

d

e

l

f

g

h

i

j

k

X



Pr
im

e 
Fa

ct
or

iz
at

io
n

σ 0
, T

ot
al

 N
um

be
r 

of
 D

iv
is

or
s

σ 1
, D

iv
is

or
s 

Su
m

m
ed

Φ
, E

ul
er

 T
ot

ie
nt

 
Fu

nc
tio

n

Pr
im

e 
Fa

ct
or

iz
at

io
n

σ 0
, T

ot
al

 N
um

be
r 

of
 D

iv
is

or
s

σ 1
, D

iv
is

or
s 

Su
m

m
ed

Φ
, E

ul
er

 T
ot

ie
nt

 
Fu

nc
tio

n

10 124 16 1 2 3 4 6 12 195 24 1 2 3 4 6 8

0.208 2.583 0.333 m O G C 8 0.167 2.708 0.333 К a O I C 9

3 57 42 1 2 74 72 1

0.061 1.163 0.857 n 0.027 1.014 0.986 Л

6 93 20 1 2 5 4 114 36 1 2

0.120 1.860 0.400 o P A 0.054 1.541 0.486 М b

4 72 32 1 3 6 124 40 1 3 5

0.078 1.412 0.627 p H 0.080 1.653 0.533 Н P F

6 98 24 1 2 4 6 140 36 1 2 4

0.115 1.885 0.462 q Q D 0.079 1.842 0.474 О c J

2 54 52 1 4 96 60 1 7

0.038 1.019 0.981 r 0.052 1.247 0.779 П B

8 120 18 1 2 3 6 8 168 24 1 2 3 6

0.148 2.222 0.333 s R I 9 0.103 2.154 0.308 Р d Q D

4 72 40 1 5 2 80 78 1

0.073 1.309 0.727 t B 0.025 1.013 0.987 С

8 120 24 1 2 4 7 10 186 32 1 2 4 5 8

0.143 2.143 0.429 u S E 8 0.125 2.325 0.400 Т e K G A

4 80 36 1 3 5 121 54 1 3

0.070 1.404 0.632 v J 0.062 1.494 0.667 У R

4 90 28 1 2 4 126 40 1 2

0.069 1.552 0.483 w T 0.049 1.537 0.488 Ф f

2 60 58 1 2 84 82 1

0.034 1.017 0.983 x 0.024 1.012 0.988 Х

12 168 16 1 2 3 4 5 6 12 224 24 1 2 3 4 6 7

0.200 2.800 0.267 y U K F C A 0.143 2.667 0.286 Ц g S L E C

2 62 60 1 4 108 64 1 5

0.033 1.016 0.984 z 0.047 1.271 0.753 Ч H

4 96 30 1 2 4 132 42 1 2

0.065 1.548 0.484 А V 0.047 1.535 0.488 Ш h

6 104 36 1 3 7 4 120 56 1 3

0.095 1.651 0.571 Б L 9 0.046 1.379 0.644 Щ T

7 127 32 1 2 4 8 180 40 1 2 4 8

0.109 1.984 0.500 В W G 0.091 2.045 0.455 Ъ i M B

4 84 48 1 5 2 90 88 1

0.062 1.292 0.738 Г D 0.022 1.011 0.989 Ы

8 144 20 1 2 3 6 12 234 24 1 2 3 5 6 9

0.121 2.182 0.303 Д X M B 0.133 2.600 0.267 Ь j U I F A

2 68 66 1 4 112 72 1 7

0.030 1.015 0.985 Е 0.044 1.231 0.791 Э D

6 126 32 1 2 4 6 168 44 1 2 4

0.088 1.853 0.471 Ж Y H 0.065 1.826 0.478 Ю k N

4 96 44 1 3 4 128 60 1 3

0.058 1.391 0.638 З N 0.043 1.376 0.645 Я V

8 144 24 1 2 5 7 4 144 46 1 2

0.114 2.057 0.343 И Z E A 0.043 1.532 0.489 а l

2 72 70 1   4 120 72 1 5

0.028 1.014 0.986 Й 0.042 1.263 0.758 б J

Divisors in Argam 
Notation

Divisors in Argam 
Notation

95 5 · 19

93 3 · 31

94 2 · 47

91 7 · 13

92 22 · 23

89 89

90 2 · 32 · 5

87 3 · 29

88 23 · 11

85 5 · 17

86 2 · 43

83 83

84 22 · 3 · 7

81 34

82 2 · 41

79 79

80 24 · 5

22 · 19

77 7 · 11

78 2 · 3 · 13

72 23 · 32

73 73

74 2 · 37

75 3 · 52

76

70 2 · 5 · 7

71 71

68 22 · 17

69 3 · 23

66 2 · 3 · 11

67 67

64 26

65 5 · 13

62 2 · 31

63 32 · 7

60 22 · 3 · 5

61 61

58 2 · 29

59 59

56 23 · 7

57 3 · 19

54 2 · 33

55 5 · 11

48 24 · 3

49 72

50 2 · 52

51 3 · 17
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52 22 · 13

53 53
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12 252 32 1 2 3 4 6 8 16 360 32 1 2 3 4 5 6 8 A

0.125 2.625 0.333 в m W O G C 0.133 3.000 0.267 ъ y e U O K F C

2 98 96 1 3 133 110 1

0.021 1.010 0.990 г 0.025 1.099 0.909 ы

6 171 42 1 2 7 4 186 60 1 2

0.061 1.745 0.429 д n E 0.033 1.525 0.492 ь z

6 156 60 1 3 9 4 168 80 1 3

0.061 1.576 0.606 е X B 0.033 1.366 0.650 э f

9 217 40 1 2 4 5 6 224 60 1 2 4

0.090 2.170 0.400 ж o P K 0.048 1.806 0.484 ю А V

2 102 100 1 4 156 100 1 5

0.020 1.010 0.990 з 0.032 1.248 0.800 я P

8 216 32 1 2 3 6 12 312 36 1 2 3 6 7 9

0.078 2.118 0.314 и p Y H 0.095 2.476 0.286 ѐ Б g L I E

2 104 102 1 2 128 126 1

0.019 1.010 0.990 й 0.016 1.008 0.992 ё

8 210 48 1 2 4 8 8 255 64 1 2 4 8

0.077 2.019 0.462 к q Q D 0.063 1.992 0.500 ђ В W G

8 192 48 1 3 5 7 4 176 84 1 3

0.076 1.829 0.457 л Z L F 0.031 1.364 0.651 ѓ h

4 162 52 1 2 8 252 48 1 2 5 A

0.038 1.528 0.491 м r 0.062 1.938 0.369 є Г Q D

2 108 106 1 2 132 130 1

0.019 1.009 0.991 н 0.015 1.008 0.992 ѕ

12 280 36 1 2 3 4 6 9 12 336 40 1 2 3 4 6 B

0.111 2.593 0.333 о s a R I C 0.091 2.545 0.303 і Д i X M C

2 110 108 1 4 160 108 1 7

0.018 1.009 0.991 п 0.030 1.203 0.812 ї J

8 216 40 1 2 5 A 4 204 66 1 2

0.073 1.964 0.364 р t M B 0.030 1.522 0.493 ј Е

4 152 72 1 3 8 240 72 1 3 5 9

0.036 1.369 0.649 с b 0.059 1.778 0.533 љ j R F

10 248 48 1 2 4 7 8 8 270 64 1 2 4 8

0.089 2.214 0.429 т u S G E 0.059 1.985 0.471 њ Ж Y H

2 114 112 1 2 138 136 1

0.018 1.009 0.991 у 0.015 1.007 0.993 ћ

8 240 36 1 2 3 6 8 288 44 1 2 3 6

0.070 2.105 0.316 ф v c J 0.058 2.087 0.319 ќ З k N

4 144 88 1 5 2 140 138 1

0.035 1.252 0.765 х N 0.014 1.007 0.993 ѝ

6 210 56 1 2 4 12 336 48 1 2 4 5 7 A

0.052 1.810 0.483 ц w T 0.086 2.400 0.343 ў И Z S K E

6 182 72 1 3 9 4 192 92 1 3

0.051 1.556 0.615 ч d D 0.028 1.362 0.652 џ l

4 180 58 1 2 4 216 70 1 2

0.034 1.525 0.492 ш x 0.028 1.521 0.493 Ѡ Й

4 144 96 1 7 4 168 120 1 B

0.034 1.210 0.807 щ H 0.028 1.175 0.839 ѡ D

15 403 48 1 2 3 4 6 8 9

0.104 2.799 0.333 Ѣ К m a O I G

143 11 · 13

Ѣ C144 24 · 32

141 3 · 47

142 2 · 71

139 139

140 22 · 5 · 7

137 137

138 2 · 3 · 23

135 33 · 5

136 23 · 17

133 5 · 17

134 2 · 67

131 131

132 22 · 3 · 11

129 3 · 43

130 2 · 5 · 13

127 127

128 27

22 · 31

125 53

126 2 · 32 · 7
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120 23 · 3 · 5

121 112

122 2 · 61

123 3 · 41
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Divisors in Argam 
Notation

A

Divisors in Argam Notation

118 2 · 59

119 7 · 17

116 22 · 29

117 32 · 13

114 2 · 3 · 19

115 5 · 23

112 24 · 7

113 113

110 2 · 5 · 11

111 3 · 37

108 22 · 33

109 109

106 2 · 53

107 107

104 23 · 13

105 3 · 5 · 7

102 2 · 3 · 17

103 103

100 23 · 52

101 101

96 25 · 3

97 97

98 2 · 72

99 32 · 11
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1 2 3 4 5 6 7 10

2 4 6 10 12 14 16 20

3 6 11 14 17 22 25 30

4 10 14 20 24 30 34 40

5 12 17 24 31 36 43 50

6 14 22 30 36 44 52 60

7 16 25 34 43 52 61 70

10 20 30 40 50 60 70 100

2 /4 3 14

Octal
(Base 8)

Full Multiplication Table.



1 2 3 4 5 6 7 8 9 A B C D E F 10

2 4 6 8 A C E 10 12 14 16 18 1A 1C 1E 20

3 6 9 C F 12 15 18 1B 1E 21 24 27 2A 2D 30

4 8 C 10 14 18 1C 20 24 28 2C 30 34 38 3C 40

5 A F 14 19 1E 23 28 2D 32 37 3C 41 46 4B 50

6 C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A 60

7 E 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69 70

8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80

9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 6E 87 90

A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96 A0

B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5 B0

C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4 C0

D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3 D0

E 1C 2A 38 46 54 62 70 6E 8C 9A A8 B6 C4 D2 E0

F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0

10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 100

Hexadecimal
(Base 16)

248 1/8 3 /8 5 /4 3 /8 7

Full Multiplication Table with Argam notation for transdecimal bases.



1 2 3 4 5 6 7 8 9 ç Ç 10

2 4 6 8 ç 10 12 14 16 18 1ç 20

3 6 9 10 13 16 19 20 23 26 29 30

4 8 10 14 18 20 24 28 30 34 38 40

5 ç 13 18 21 26 2Ç 34 39 42 47 50

6 10 16 20 26 30 36 40 46 50 56 60

7 12 19 24 2Ç 36 41 48 53 5ç 65 70

8 14 20 28 34 40 48 54 60 68 74 80

9 16 23 30 39 46 53 60 69 76 83 90

ç 18 26 34 42 50 5ç 68 76 84 92 ç0

Ç 1ç 29 38 47 56 65 74 83 92 ç1 Ç0

10 20 30 40 50 60 70 80 90 ç0 Ç0 100

Dozenal
(Base 12)

234 /6 5/4 3 16 /3 2

Traditional Full Dozenal Multiplication Table.



1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

2/ / /5 5 5
4 3 2 15

Decimal
(Base 10)

Full Multiplication Table.



1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U

2 4 6 8 A C E G I K M O Q S U W Y a c e g i k m o q s u w 10

3 6 9 C F I L O R U X a d g j m p s v 10 13 16 19 1C 1F 1I 1L 1O 1R 1U

4 8 C G K O S W a e i m q u 10 14 18 1C 1G 1K 1O 1S 1W 1a 1e 1i 1m 1q 1u 20

5 A F K P U Z e j o t 10 15 1A 1F 1K 1P 1U 1Z 1e 1j 1o 1t 20 25 2A 2F 2K 2P 2U

6 C I O U a g m s 10 16 1C 1I 1O 1U 1a 1g 1m 1s 20 26 2C 2I 2O 2U 2a 2g 2m 2s 30

7 E L S Z g n u 13 1A 1H 1O 1V 1c 1j 1q 1x 26 2D 2K 2R 2Y 2f 2m 2t 32 39 3G 3N 3U

8 G O W e m u 14 1C 1K 1S 1a 1i 1q 20 28 2G 2O 2W 2e 2m 2u 34 3C 3K 3S 3a 3i 3q 40

9 I R a j s 13 1C 1L 1U 1d 1m 1v 26 2F 2O 2X 2g 2p 30 39 3I 3R 3a 3j 3s 43 4C 4L 4U

A K U e o 10 1A 1K 1U 1e 1o 20 2A 2K 2U 2e 2o 30 3A 3K 3U 3e 3o 40 4A 4K 4U 4e 4o 50

B M X i t 16 1H 1S 1d 1o 21 2C 2N 2Y 2j 2u 37 3I 3X 3e 3p 42 4D 4O 4Z 4k 4v 58 5J 5U

C O a m 10 1C 1O 1a 1m 20 2C 2O 2a 2m 30 3C 3O 3a 3m 40 4C 4O 4a 4m 50 5C 5O 5a 5m 60

D Q d q 15 1I 1V 1i 1v 2A 2N 2a 2n 32 3F 3S 3f 3s 47 4K 4X 4k 4x 5C 5P 5c 5p 64 6H 6U

E S g u 1A 1O 1c 1q 26 2K 2Y 2m 32 3G 3U 3i 3w 4C 4Q 4e 4s 58 5M 5a 5o 64 6I 6W 6k 70

F U j 10 1F 1U 1j 20 2F 2U 2j 30 3F 3U 3j 40 4F 4U 4j 50 5F 5U 5j 60 6F 6U 6j 70 7F 7U

G W m 14 1K 1a 1q 28 2O 2e 2u 3C 3S 3i 40 4G 4W 4m 54 5K 5a 5q 68 6O 6e 6u 7C 7S 7i 80

H Y p 18 1o 1g 1x 2G 2X 2o 37 3O 3f 3w 4F 4W 4n 56 5N 5e 5v 6E 6V 6m 75 7M 7d 7u 8D 8U

I a s 1C 1U 1m 26 2O 2g 30 3I 3a 3s 4C 4U 4m 56 5O 5g 60 6I 6a 6s 7C 7U 7m 86 8O 8g 90

J c v 1G 1Z 1s 2D 2W 2p 3A 3T 3m 47 4Q 4j 54 5N 5g 61 6K 6d 6w 7H 7a 7t 89 8X 8q 9B 9U

K e 10 1K 1e 20 2K 2e 30 3K 3e 40 4K 4e 50 5K 5e 60 6K 6e 70 7K 7e 80 8K 8e 90 9K 9e A0

L g 13 1O 1j 26 2R 2m 39 3U 3p 4C 4X 4s 5F 5a 5v 6I 6d 70 7L 7g 83 8O 8j 96 9b 9m A9 AU

M i 16 1S 1o 2C 2Y 2u 3I 3e 42 4O 4k 58 5U 5q 6E 6a 6w 7K 7g 84 8Q 8m 9A 9W 9s AG Ac B0

N k 19 1W 1t 2I 2f 34 3R 3o 4D 4a 4x 5M 5j 68 6V 6s 7H 7e 83 8Q 8n 9C 9Z 9w AL Ai B7 BU

O m 1C 1a 20 2O 2m 3C 3a 40 4O 4m 5C 5a 60 6O 6m 7C 7a 80 8O 8m 9C 9a A0 AO Am BC Ba C0

P o 1F 1e 25 2U 2t 3K 3j 4A 4Z 50 5P 5o 6F 6e 75 7U 7t 8K 8j 9A 9Z A0 AP Ao BF Be C5 CU

Q q 1I 1i 2A 2a 32 3S 3s 4K 4k 5C 5c 64 6U 6u 7M 7m 89 8e 96 9W 9w AO Ao BG Bg C8 CY D0

R s 1L 1m 2F 2g 39 3a 43 4U 4v 5O 5p 6I 6j 7C 7d 86 8X 90 9b 9s AL Am BF Bg C9 Ca D3 DU

S u 1O 1q 2K 2m 3G 3i 4C 4e 58 5a 64 6W 70 7S 7u 8O 8q 9K 9m AG Ai BC Be C8 Ca D4 DW E0

T w 1R 1u 2P 2s 3N 3q 4L 4o 5J 5m 6H 6k 7F 7i 8D 8g 9B 9e A9 Ac B7 Ba C5 CY D3 DW E1 EU

U 10 1U 20 2U 30 3U 40 4U 50 5U 60 6U 70 7U 80 8U 90 9U A0 AU B0 BU C0 CU D0 DU E0 EU F0

V 12 1X 24 2Z 36 3b 48 4d 5A 5f 6C 6h 7E 7j 8G 8l 9I 9n AK Ap BM Br CO Ct DQ Dv ES 4x FU

W 14 1a 28 2e 3C 3i 4G 4m 5K 5q 6O 6u 7S 80 8W 94 9a A8 Ae BC Bi CG Cm DK Ds EO Eu FS G0

X 16 1d 2C 2j 3I 3p 4O 4v 5U 63 6a 79 7g 8F 8m 9L 9s AR B0 BX C6 Cd DC Dj EI Ep FO Fv GU

Y 18 1g 2G 2o 3O 3w 4W 56 5e 6E 6m 7M 7u 8U 94 9c AC Ak BK Bs CS D2 Da EA Ei FI Fq GQ H0

Z 1A 1j 2K 2t 3U 45 4e 5F 5o 6P 70 7Z 8A 8j 9K 9t AU B5 Be CF Co DP E0 EZ FA Fj GK Gt HU

a 1C 1m 2O 30 3a 4C 4m 5O 60 6a 7C 7m 8O 90 9a AC Am BO C0 Ca DC Dm EO F0 Fa GC Gm HO I0

b 1E 1p 2S 35 3g 4J 4u 5X 6A 6l 7O 81 8c 9F 9q AT B6 Bh CK Cv DY EB Em FP G2 Gd HG Hr IU

c 1G 1s 2W 3A 3m 4Q 54 5g 6K 6w 7a 8E 8q 9U A8 Ak BO C2 Ce DI Du EY FC Fo GS H6 Hi IM J0

d 1I 1v 2a 3F 3s 4X 5C 5p 6U 79 7m 8R 96 9j AO B3 Bg CL D0 Dd E8 El Fa GF Gs HX IC Ip JU

e 1K 20 2e 3K 40 4e 5K 60 6e 7K 80 8e 9K A0 Ae BK C0 Ce DK E0 Ee FK G0 Ge HK I0 Ie JK K0

f 1M 23 2i 3P 46 4l 5S 69 6o 7V 8C 8r 9Y AF Au Bb CI Cx De EL F2 Fh GO H5 Hk IR J8 Jn KU

g 1O 26 2m 3U 4C 4s 5a 6I 70 7g 8O 96 9m AU BC Bs Ca DI E0 Eg FO G6 Gm HU IC Is Ja KI L0

h 1Q 29 2q 3Z 4I 51 5i 6R 7A 7r 8a 9J A2 Aj BS CB Cs Db EK F3 Fk GT HC Ht Ic JL K4 Kl LU

i 1S 2C 2u 3e 4O 58 5q 6a 7K 84 8m 9W AG B0 Bi CS DC Du Ee FO G8 Gq Ha IK J4 Jm KW LG M0

j 1U 2F 30 3j 4U 5F 60 6j 7U 8F 90 9j AU BF C0 Cj DU EF F0 Fj GU HF I0 Ij JU KF L0 Lj MU

k 1W 2I 34 3o 4a 5M 68 6s 7e 8Q 9C 9w Ai BU CG D2 Dm EY FK G6 Gq Hc IO JA Ju Kg LS ME N0

l 1Y 2L 38 3t 4g 5T 6G 73 7o 8b 9O AB Aw Bj CW DJ E6 Er Fe GR HE I1 Im JZ KM L9 Lu Mh NU

m 1a 2O 3C 40 4m 5a 6O 7C 80 8m 9a AO BC C0 Cm Da EO FC G0 Gm Ha IO JC K0 Km La MO NC O0

n 1c 2R 3G 45 4s 5h 6W 7L 8A 8x 9m Ab BQ CF D4 Dr Eg FV GK H9 Hw Il Ja KP LE M3 Mq Nf OU

o 1e 2U 3K 4A 50 5o 6e 7U 8K 9A A0 Ao Be CU DK EA F0 Fo Ge HU IK JA K0 Ko Le MU NK OA P0

p 1g 2X 3O 4F 56 5v 6m 7d 8U 9L AC B3 Bs Cj Da ER FI G9 H0 Hp Ig JX KO LF M6 Mv Nm Od PU

q 1i 2a 3S 4K 5C 64 6u 7m 8e 9W AO BG C8 D0 Dq Ei Fa GS HK IC J4 Ju Km Le MW NO OG P8 Q0

r 1k 2d 3W 4P 5I 6B 74 7v 8o 9h Aa BT CM DF E8 F1 Fs Gl He IX JQ JX LC M5 Mw Np Oi Pb QU

s 1m 2g 3a 4U 5O 6I 7C 86 90 9s Am Bg Ca DU EO FI GC H6 I0 Is Jm Kg La MU NO OI PC Q6 R0

t 1o 2j 3e 4Z 5U 6P 7K 8F 9A A5 B0 Bt Co Dj Ee FZ GU HP IK JF KA L5 M0 Mt No Oj Pe QZ RU

u 1q 2m 3i 4e 5a 6W 7S 8O 9K AG BC C8 D4 E0 Eu Fq Gm Hi Ie Ja KW LS MO NK OG PC Q8 R4 S0

v 1s 2p 3m 4j 5g 6d 7a 8X 9U AR BO CL DI EF FC G9 H6 I3 J0 Jv Ks Lp Mm Nj Og Pd Qa RX SU

w 1u 2s 3q 4o 5m 6k 7i 8g 9e Ac Ba CY DW EU FS GQ HO IM JK KI LG ME NC OA P8 Q6 R4 S2 T0

x 1w 2v 3u 4t 5s 6r 7q 8p 9o An Bm Cl Dk Ej Fi Gh Hg If Je Kd Lc Mb Na OZ PY QX RW SV TU

10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 G0 H0 I0 J0 K0 L0 M0 N0 O0 P0 Q0 R0 S0 T0 U0

U K F C A 6 5 4 3 2/F 2 /K 3 /U 7 /F 4 /K 6 /K 7 /U B /5 2 /C 5 /U D /K 9 /F 7



V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x 10

12 14 16 18 1A 1C 1E 1G 1I 1K 1M 1O 1Q 1S 1U 1W 1Y 1a 1c 1e 1g 1i 1k 1m 1o 1q 1s 1u 1w 20

1X 1a 1d 1g 1j 1m 1p 1s 1v 20 23 26 29 2C 2F 2I 2L 2O 2R 2U 2X 2a 2d 2g 2j 2m 2p 2s 2v 30

24 28 2C 2G 2K 2O 2S 2W 2a 2e 2i 2m 2q 2u 30 34 38 3C 3G 3K 3O 3S 3W 3a 3e 3i 3m 3q 3u 40

2Z 2e 2j 2o 2t 30 35 3A 3F 3K 3P 3U 3Z 3e 3j 3o 3t 40 45 4A 4F 4K 4P 4U 4Z 4e 4j 4o 4t 50

36 3C 3I 3O 3U 3a 3g 3m 3s 40 46 4C 4I 4O 4U 4a 4g 4m 4s 50 56 5C 5I 5O 5U 5a 5g 5m 5s 60

3b 3i 3p 3w 45 4C 4J 4Q 4X 4e 4l 4s 51 58 5F 5M 5T 5a 5h 5P 5v 64 6B 6I 6P 6W 6d 6k 6r 70

48 4G 4O 4W 4e 4m 4u 54 5C 5K 5S 5a 5i 5q 60 68 6G 6O 6W 6e 6m 6u 74 7C 7K 7S 7a 7i 7q 80

4d 4m 4v 56 5F 5O 5X 5g 5p 60 69 6I 6R 6a 6j 6s 73 7C 7L 7U 7d 7m 7v 86 8F 8O 8X 8g 8p 90

5A 5K 5U 5e 5o 60 6A 6K 6U 6e 6o 70 7A 7K 7U 7e 7o 80 8A 8K 8U 8e 8o 90 9A 9K 9U 9e 9o A0

5f 5q 63 6E 6P 6a 6l 6w 79 7K 7V 7g 7r 84 8F 8Q 8l 8m 8x 9A 9L 9W 9h 9s A5 AG AR Ac An B0

6C 6O 6a 6m 70 7C 7O 7a 7m 80 8C 8O 8a 8m 90 9C 9O 9a 9m A0 AC AO Aa Am B0 BC BO Ba Bm C0

6h 6u 79 7M 7Z 7m 81 8E 8R 8e 8r 96 9J 9W 9j 9w AB AO Ab Ao B3 BG BT Bg Bt C8 CL CY Cl D0

7E 7S 7g 7u 8A 8O 8c 8q 96 9K 9Y 9m A2 AG AU Ai Aw BC BQ Be Bs C8 CM Ca Co D4 DI DW Dk E0

7j 80 8F 8U 8j 90 9F 9U 9j A0 AF AU Aj B0 BF BU Bj C0 CF CU Cj D0 DF DU Dj E0 EF FU Ej F0

8G 8W 8m 94 9K 9a 9q A8 AO Ae Au BC BS Bi C0 CG CW Cm D4 DK Da Dq E8 EO Ee Eu FC FS Fi G0

8l 94 9L 9c 9t AC AT Ak B3 BK Bb Bs CB CS Cj D2 DJ Da Dr EA ER Ei F1 FI FZ Fq G9 GQ Gh H0

9I 9a 9s AC AU Am B6 BO Bg C0 CI Ca Cs DC DU Dm C6 EO Eg F0 FI Fa Fs GC GU Gm H6 HO Hg I0

9n A8 aR Ak B5 BO Bh C2 CL Ce Cx DI Db Du EF EY Er FC FV Fo G9 GS Gl H6 HP Hi I3 IM If J0

AK Ae B0 BK Be C0 CK Ce D0 DK De E0 EK Ee F0 FK Fe G0 GK Ge H0 HK He I0 IK Ie J0 JK Je K0

Ap BC BX Bs CF Ca Cv DI Dd E0 EL Eg F3 FO Fj G6 GR Gm H9 HU Hp IC IX Is JF Ja Jv KI Kd L0

BM Bi C6 CS Co DC DY Du E8 Ee F2 FO Fk G8 GU Gq HE Ha Hw IK Ig J4 JQ Jm KA KW Ks LG Lc M0

Br CG Cd D2 DP Dm EB EY El FK Fh G6 GT Gq HF Hc I1 IO Il JA JX Ju KJ Kg L5 LS Lp ME Mb N0

CO Cm DC Da E0 EO Em FC Fa G0 GO Gm HC Ha I0 IO Im JC Ja K0 KO Km LC La M0 MO Mm NC Na O0

Ct DK Dj EA EZ F0 FP Fo GF Ge H5 HU Ht IK Ij JA JZ K0 KP Ko LF Le M5 MU Mt NK Nj OA OZ P0

DQ Ds EI Ei FA Fa G2 GS Gs HK Hk Ic IX J4 JU Ju KM Km LE Le M6 MW Mw NO No OG Og P8 PY Q0

Dv EO Ep FI Fj GC Gd H6 HX I0 IR JL JQ Jm KF Kg L9 La M3 MU Mv NO Np OI Oj PC Pd Q6 QX R0

ES Eu FO Fq GK Gm HG Hi IC Ie J8 Ja K4 KW L0 LS Lu MO Mq NK Nm OG Oi PC Pe Q8 Qa R4 RW S0

4x FS Fv GQ Gt HO Hr IM Ip JK Jn KI Kl LG Lj ME Mh NC Nf OA Od P8 Pb Q6 QZ R4 RX S2 SV T0

FU G0 GU H0 HU I0 IU J0 JU K0 KU L0 LU M0 MU N0 NU O0 OU P0 PU Q0 QU R0 RU S0 SU T0 TU U0

G1 GW H3 HY J5 Ia J7 Jm K9 Ke LB Lg MD Mi NF Nk OH Om PJ Po QL Qq RN Rs SP Su TR Tw UT V0

GW H4 Ha I8 Je JC Ji KG Km LK Lq MO Mu NS O0 OW P4 Pa Q8 Qe RC Ri SG Sm TK Tq UO Uu VS W0

H3 Ha I9 Ig JF Jm KL Ks LR M0 MX N6 Nd OC Oj PI Pp QO Qv RU S3 Sa T9 Tg UF Um VL Vs WR X0

HY I8 Ig JG Jo KO Kw LW M6 Me NE Nm OM Ou PU Q4 Qc RC Rk SK Ss TS U2 Ua VA Vi WI Wq XQ Y0

J5 Je JF Jo KP L0 LZ MA Mj NK Nt OU P5 Pe QF Qo RP S0 SZ TA Tj UK Ut VU W5 We XF Xo YP Z0

Ia JC Jm KO L0 La MC Mm NO O0 Oa PC Pm QO R0 Ra SC Sm TO U0 Ua VC Vm WO X0 Xa YC Ym ZO a0

J7 Ji KL Kw LZ MC Mn No OR Oe PH Ps QV R8 Rj SM Sx Ta UD Uo VR W4 Wf XI Xt YW Z9 Zk aN b0

Jm KG Ks LW MA Mm No OS Og PK Pw Qa RE Rq SU T8 Tk UO V2 Ve WI Wu XY YC Yo ZS a6 ai bM c0

K9 Km LR M6 Mj NO OR Og PL Q0 Qd RI Rv Sa TF Ts UX VC Vp WU X9 Xm YR Z6 Zj aO b3 bg cL d0

Ke LK M0 Me NK O0 Oe PK Q0 Qe RK S0 Se TK U0 Ue VK W0 We XK Y0 Ye ZK a0 ae bK c0 ce dK e0

LB Lq MX NE Nt Oa PH Pw Qd RK S1 Sg TN U4 Uj VQ W7 Wm XT YA Yp ZW aD as bZ cG cv dc eJ f0

Lg MO N6 Nm OU PC Ps Qa RI S0 Sg TO U6 Um VU WC Ws Xa YI k0 Zg aO b6 bm cU dC ds ea fI g0

MD Mu Nd OM P5 Pm QV RE Rv Se TN U6 Un VW WF Ww Xf YO k7 Zo aX bG bx cg dP e8 ep fY gH h0

Mi NS OC Ou Pe QO R8 Rq Sa TK U4 Um VW WG X0 Xi YS ZC Zu ae bO c8 cq da eK f4 fm gW hG i0

NF O0 Oj PU QF R0 Rj SU TF U0 Uj VU WF X0 Xj YU ZF a0 aj bU cF d0 dj eU fF g0 gj hU iF j0

Nk OW PI Q4 Qo Ra SM T8 Ts Ue VQ WC Ww Xi YU ZG a2 am bY Ck d6 dq ec fO gA gu hg iS jE k0

OH P4 Pp Qc RP SC Sx Tk UX VK W7 Ws Xf YS ZF a2 an ba cN dA dv ei fW gI h5 hq id kQ kD l0

Om Pa QO pC S0 Sm Ta UO VC W0 Wm Xa YO ZC a0 am ba cO dC e0 em fa gO hC i0 im ja kO lC m0

PJ Q8 Qv Rk SZ TO UD V2 Vp We XT YI k7 Zu aj bY cN dC e1 eo fd gS hH i6 it ji kX lM mB n0

Po Qe RU SK TA W0 Wo Xe YU XK YA Z0 Zo ae bU Ck dA e0 eo fe gU hK iA j0 jo ke qU rK nA o0

QL RC S3 Ss Tj Ua VR WI X9 Y0 Yp Zg aX bO cF d6 dv em fd gU hL iC jh js kj la mR nI o9 p0

Qq Ri Sa TS UK VC W4 Wu Xm Ye ZW aO bG c8 d0 dq ei fa gS hK iC ji ju km le mW nO oG p8 q0

RN SG T9 U2 Ut Vm Wf XY YR ZK aD b6 bx cq dj ec fW gO hH iA jh ju kn lg mZ nS oL pE q7 r0

Rs Sm Tg Ua VU WO XI YC Z6 a0 as bm cg da eU fO gI hC i6 j0 js km lg ma nU oO pI qC r6 s0

SP TK UF VA W5 X0 Xt Yo Zj ae bZ cU dP eK fF gA h5 i0 it jo kj le mZ nU oP pK qF rA s5 t0

Su Tq Um Vi We Xa YW ZS aO bK cG dC e8 f4 g0 gu hq im ji ke la mW nS oO pK qG rC s8 t4 u0

TR UO VL WI XF YC Z9 a6 b3 c0 cv ds ep fm gj hg id ja kX lU mR nO oL pI qF rC s9 t6 u3 v0

Tw Uu Vs Wq Xo Ym Zk ai bg ce dc ea fY gW hU iS jQ kO lM mK nI oG pE qC rA s8 t6 u4 v2 w0

UT VS WR XQ YP ZO aN bM cL dK eJ fI gH hG iF jE kD lC mB nA o9 p8 qC r6 s5 t4 u3 v2 w1 x0

V0 W0 X0 Y0 Z0 a0 b0 c0 d0 e0 f0 g0 h0 i0 j0 k0 l0 m0 n0 o0 p0 q0 r0 s0 t0 u0 v0 w0 x0 100

1/U J /K D/F 8 /K B /U H /C 7 /5 3 /F B/3 2 /A 7 /4 3 /U N /5 4 /K H/6 5 /F D /A 9 /C B /F E /K J /U T

Sexagesimal  (Base 60)



2 /4 3 14

1 2 3 4 5 6 7 10

2 4 6 10 12 14 16 20

3 6 11 14 17 22 25 30

4 10 14 20 24 30 34 40

5 12 17 24 31 36 43 50

6 14 22 30 36 44 52 60

7 16 25 34 43 52 61 70

10 20 30 40 50 60 70 100

Octal
(Base 8)



248 1/8 3 /8 5 /4 3 /8 7

1 2 3 4 5 6 7 8 9 A B C D E F 10

2 4 6 8 A C E 10 12 14 16 18 1A 1C 1E 20

3 6 9 C F 12 15 18 1B 1E 21 24 27 2A 2D 30

4 8 C 10 14 18 1C 20 24 28 2C 30 34 38 3C 40

5 A F 14 19 1E 23 28 2D 32 37 3C 41 46 4B 50

6 C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A 60

7 E 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69 70

8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80

9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 6E 87 90

A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96 A0

B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5 B0

C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4 C0

D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3 D0

E 1C 2A 38 46 54 62 70 6E 8C 9A A8 B6 C4 D2 E0

F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0

10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 100

Hexadecimal
(Base 16)

Multiplication Table Analysis.
Circles indicate periods. Phases are shaded triangular areas. The 
width of the phases relates to the magnitude of the unit digit. Multi-
phase cycles feature a phase which begins on a period and one 
which ends on a period. Cycles which start and end on a period and 
include one uptrending phase are divisors of the base.
Notation above the table indicates the integral reciprocal divisor for 
divisor factors. A “T” in a circle marks totative factors. The simpli-
fied ratio d’ / r = d / mn appears above non totative non divisor 
factors. The periods of totative factors 1 and  r - 1 are indicated, but 
all other totative factors are marked with a simple gray stroke. 



234 /6 5/4 3 16 /3 2

1 2 3 4 5 6 7 8 9 ç Ç 10

2 4 6 8 ç 10 12 14 16 18 1ç 20

3 6 9 10 13 16 19 20 23 26 29 30

4 8 10 14 18 20 24 28 30 34 38 40

5 ç 13 18 21 26 2Ç 34 39 42 47 50

6 10 16 20 26 30 36 40 46 50 56 60

7 12 19 24 2Ç 36 41 48 53 5ç 65 70

8 14 20 28 34 40 48 54 60 68 74 80

9 16 23 30 39 46 53 60 69 76 83 90

ç 18 26 34 42 50 5ç 68 76 84 92 ç0

Ç 1ç 29 38 47 56 65 74 83 92 ç1 Ç0

10 20 30 40 50 60 70 80 90 ç0 Ç0 100

Dozenal
(Base 12)



2/ / /5 5 5
4 3 2 15

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

Decimal
(Base 10)

Multiplication Table Analysis.
Circles indicate periods. Phases are shaded triangular areas. The 
width of the phases relates to the magnitude of the unit digit. Multi-
phase cycles feature a phase which begins on a period and one 
which ends on a period. Cycles which start and end on a period and 
include one uptrending phase are divisors of the base.
Notation above the table indicates the integral reciprocal divisor for 
divisor factors. A “T” in a circle marks totative factors. The simpli-
fied ratio d’ / r = d / mn appears above non totative non divisor 
factors. The periods of totative factors 1 and  r - 1 are indicated, but 
all other totative factors are marked with a simple gray stroke. 



1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U

2 4 6 8 A C E G I K M O Q S U W Y a c e g i k m o q s u w 10

3 6 9 C F I L O R U X a d g j m p s v 10 13 16 19 1C 1F 1I 1L 1O 1R 1U

4 8 C G K O S W a e i m q u 10 14 18 1C 1G 1K 1O 1S 1W 1a 1e 1i 1m 1q 1u 20

5 A F K P U Z e j o t 10 15 1A 1F 1K 1P 1U 1Z 1e 1j 1o 1t 20 25 2A 2F 2K 2P 2U

6 C I O U a g m s 10 16 1C 1I 1O 1U 1a 1g 1m 1s 20 26 2C 2I 2O 2U 2a 2g 2m 2s 30

7 E L S Z g n u 13 1A 1H 1O 1V 1c 1j 1q 1x 26 2D 2K 2R 2Y 2f 2m 2t 32 39 3G 3N 3U

8 G O W e m u 14 1C 1K 1S 1a 1i 1q 20 28 2G 2O 2W 2e 2m 2u 34 3C 3K 3S 3a 3i 3q 40

9 I R a j s 13 1C 1L 1U 1d 1m 1v 26 2F 2O 2X 2g 2p 30 39 3I 3R 3a 3j 3s 43 4C 4L 4U

A K U e o 10 1A 1K 1U 1e 1o 20 2A 2K 2U 2e 2o 30 3A 3K 3U 3e 3o 40 4A 4K 4U 4e 4o 50

B M X i t 16 1H 1S 1d 1o 21 2C 2N 2Y 2j 2u 37 3I 3X 3e 3p 42 4D 4O 4Z 4k 4v 58 5J 5U

C O a m 10 1C 1O 1a 1m 20 2C 2O 2a 2m 30 3C 3O 3a 3m 40 4C 4O 4a 4m 50 5C 5O 5a 5m 60

D Q d q 15 1I 1V 1i 1v 2A 2N 2a 2n 32 3F 3S 3f 3s 47 4K 4X 4k 4x 5C 5P 5c 5p 64 6H 6U

E S g u 1A 1O 1c 1q 26 2K 2Y 2m 32 3G 3U 3i 3w 4C 4Q 4e 4s 58 5M 5a 5o 64 6I 6W 6k 70

F U j 10 1F 1U 1j 20 2F 2U 2j 30 3F 3U 3j 40 4F 4U 4j 50 5F 5U 5j 60 6F 6U 6j 70 7F 7U

G W m 14 1K 1a 1q 28 2O 2e 2u 3C 3S 3i 40 4G 4W 4m 54 5K 5a 5q 68 6O 6e 6u 7C 7S 7i 80

H Y p 18 1o 1g 1x 2G 2X 2o 37 3O 3f 3w 4F 4W 4n 56 5N 5e 5v 6E 6V 6m 75 7M 7d 7u 8D 8U

I a s 1C 1U 1m 26 2O 2g 30 3I 3a 3s 4C 4U 4m 56 5O 5g 60 6I 6a 6s 7C 7U 7m 86 8O 8g 90

J c v 1G 1Z 1s 2D 2W 2p 3A 3T 3m 47 4Q 4j 54 5N 5g 61 6K 6d 6w 7H 7a 7t 89 8X 8q 9B 9U

K e 10 1K 1e 20 2K 2e 30 3K 3e 40 4K 4e 50 5K 5e 60 6K 6e 70 7K 7e 80 8K 8e 90 9K 9e A0

L g 13 1O 1j 26 2R 2m 39 3U 3p 4C 4X 4s 5F 5a 5v 6I 6d 70 7L 7g 83 8O 8j 96 9b 9m A9 AU

M i 16 1S 1o 2C 2Y 2u 3I 3e 42 4O 4k 58 5U 5q 6E 6a 6w 7K 7g 84 8Q 8m 9A 9W 9s AG Ac B0

N k 19 1W 1t 2I 2f 34 3R 3o 4D 4a 4x 5M 5j 68 6V 6s 7H 7e 83 8Q 8n 9C 9Z 9w AL Ai B7 BU

O m 1C 1a 20 2O 2m 3C 3a 40 4O 4m 5C 5a 60 6O 6m 7C 7a 80 8O 8m 9C 9a A0 AO Am BC Ba C0

P o 1F 1e 25 2U 2t 3K 3j 4A 4Z 50 5P 5o 6F 6e 75 7U 7t 8K 8j 9A 9Z A0 AP Ao BF Be C5 CU

Q q 1I 1i 2A 2a 32 3S 3s 4K 4k 5C 5c 64 6U 6u 7M 7m 89 8e 96 9W 9w AO Ao BG Bg C8 CY D0

R s 1L 1m 2F 2g 39 3a 43 4U 4v 5O 5p 6I 6j 7C 7d 86 8X 90 9b 9s AL Am BF Bg C9 Ca D3 DU

S u 1O 1q 2K 2m 3G 3i 4C 4e 58 5a 64 6W 70 7S 7u 8O 8q 9K 9m AG Ai BC Be C8 Ca D4 DW E0

T w 1R 1u 2P 2s 3N 3q 4L 4o 5J 5m 6H 6k 7F 7i 8D 8g 9B 9e A9 Ac B7 Ba C5 CY D3 DW E1 EU

U 10 1U 20 2U 30 3U 40 4U 50 5U 60 6U 70 7U 80 8U 90 9U A0 AU B0 BU C0 CU D0 DU E0 EU F0

V 12 1X 24 2Z 36 3b 48 4d 5A 5f 6C 6h 7E 7j 8G 8l 9I 9n AK Ap BM Br CO Ct DQ Dv ES 4x FU

W 14 1a 28 2e 3C 3i 4G 4m 5K 5q 6O 6u 7S 80 8W 94 9a A8 Ae BC Bi CG Cm DK Ds EO Eu FS G0

X 16 1d 2C 2j 3I 3p 4O 4v 5U 63 6a 79 7g 8F 8m 9L 9s AR B0 BX C6 Cd DC Dj EI Ep FO Fv GU

Y 18 1g 2G 2o 3O 3w 4W 56 5e 6E 6m 7M 7u 8U 94 9c AC Ak BK Bs CS D2 Da EA Ei FI Fq GQ H0

Z 1A 1j 2K 2t 3U 45 4e 5F 5o 6P 70 7Z 8A 8j 9K 9t AU B5 Be CF Co DP E0 EZ FA Fj GK Gt HU

a 1C 1m 2O 30 3a 4C 4m 5O 60 6a 7C 7m 8O 90 9a AC Am BO C0 Ca DC Dm EO F0 Fa GC Gm HO I0

b 1E 1p 2S 35 3g 4J 4u 5X 6A 6l 7O 81 8c 9F 9q AT B6 Bh CK Cv DY EB Em FP G2 Gd HG Hr IU

c 1G 1s 2W 3A 3m 4Q 54 5g 6K 6w 7a 8E 8q 9U A8 Ak BO C2 Ce DI Du EY FC Fo GS H6 Hi IM J0

d 1I 1v 2a 3F 3s 4X 5C 5p 6U 79 7m 8R 96 9j AO B3 Bg CL D0 Dd E8 El Fa GF Gs HX IC Ip JU

e 1K 20 2e 3K 40 4e 5K 60 6e 7K 80 8e 9K A0 Ae BK C0 Ce DK E0 Ee FK G0 Ge HK I0 Ie JK K0

f 1M 23 2i 3P 46 4l 5S 69 6o 7V 8C 8r 9Y AF Au Bb CI Cx De EL F2 Fh GO H5 Hk IR J8 Jn KU

g 1O 26 2m 3U 4C 4s 5a 6I 70 7g 8O 96 9m AU BC Bs Ca DI E0 Eg FO G6 Gm HU IC Is Ja KI L0

h 1Q 29 2q 3Z 4I 51 5i 6R 7A 7r 8a 9J A2 Aj BS CB Cs Db EK F3 Fk GT HC Ht Ic JL K4 Kl LU

i 1S 2C 2u 3e 4O 58 5q 6a 7K 84 8m 9W AG B0 Bi CS DC Du Ee FO G8 Gq Ha IK J4 Jm KW LG M0

j 1U 2F 30 3j 4U 5F 60 6j 7U 8F 90 9j AU BF C0 Cj DU EF F0 Fj GU HF I0 Ij JU KF L0 Lj MU

k 1W 2I 34 3o 4a 5M 68 6s 7e 8Q 9C 9w Ai BU CG D2 Dm EY FK G6 Gq Hc IO JA Ju Kg LS ME N0

l 1Y 2L 38 3t 4g 5T 6G 73 7o 8b 9O AB Aw Bj CW DJ E6 Er Fe GR HE I1 Im JZ KM L9 Lu Mh NU

m 1a 2O 3C 40 4m 5a 6O 7C 80 8m 9a AO BC C0 Cm Da EO FC G0 Gm Ha IO JC K0 Km La MO NC O0

n 1c 2R 3G 45 4s 5h 6W 7L 8A 8x 9m Ab BQ CF D4 Dr Eg FV GK H9 Hw Il Ja KP LE M3 Mq Nf OU

o 1e 2U 3K 4A 50 5o 6e 7U 8K 9A A0 Ao Be CU DK EA F0 Fo Ge HU IK JA K0 Ko Le MU NK OA P0

p 1g 2X 3O 4F 56 5v 6m 7d 8U 9L AC B3 Bs Cj Da ER FI G9 H0 Hp Ig JX KO LF M6 Mv Nm Od PU

q 1i 2a 3S 4K 5C 64 6u 7m 8e 9W AO BG C8 D0 Dq Ei Fa GS HK IC J4 Ju Km Le MW NO OG P8 Q0

r 1k 2d 3W 4P 5I 6B 74 7v 8o 9h Aa BT CM DF E8 F1 Fs Gl He IX JQ JX LC M5 Mw Np Oi Pb QU

s 1m 2g 3a 4U 5O 6I 7C 86 90 9s Am Bg Ca DU EO FI GC H6 I0 Is Jm Kg La MU NO OI PC Q6 R0

t 1o 2j 3e 4Z 5U 6P 7K 8F 9A A5 B0 Bt Co Dj Ee FZ GU HP IK JF KA L5 M0 Mt No Oj Pe QZ RU

u 1q 2m 3i 4e 5a 6W 7S 8O 9K AG BC C8 D4 E0 Eu Fq Gm Hi Ie Ja KW LS MO NK OG PC Q8 R4 S0

v 1s 2p 3m 4j 5g 6d 7a 8X 9U AR BO CL DI EF FC G9 H6 I3 J0 Jv Ks Lp Mm Nj Og Pd Qa RX SU

w 1u 2s 3q 4o 5m 6k 7i 8g 9e Ac Ba CY DW EU FS GQ HO IM JK KI LG ME NC OA P8 Q6 R4 S2 T0

x 1w 2v 3u 4t 5s 6r 7q 8p 9o An Bm Cl Dk Ej Fi Gh Hg If Je Kd Lc Mb Na OZ PY QX RW SV TU

10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 G0 H0 I0 J0 K0 L0 M0 N0 O0 P0 Q0 R0 S0 T0 U0

U K F C A 6 5 4 3 2/F 2 /K 3 /U 7 /F 4 /K 6 /K 7 /U B /5 2 /C 5 /U D /K 9 /F 7



V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x 10

12 14 16 18 1A 1C 1E 1G 1I 1K 1M 1O 1Q 1S 1U 1W 1Y 1a 1c 1e 1g 1i 1k 1m 1o 1q 1s 1u 1w 20

1X 1a 1d 1g 1j 1m 1p 1s 1v 20 23 26 29 2C 2F 2I 2L 2O 2R 2U 2X 2a 2d 2g 2j 2m 2p 2s 2v 30

24 28 2C 2G 2K 2O 2S 2W 2a 2e 2i 2m 2q 2u 30 34 38 3C 3G 3K 3O 3S 3W 3a 3e 3i 3m 3q 3u 40

2Z 2e 2j 2o 2t 30 35 3A 3F 3K 3P 3U 3Z 3e 3j 3o 3t 40 45 4A 4F 4K 4P 4U 4Z 4e 4j 4o 4t 50

36 3C 3I 3O 3U 3a 3g 3m 3s 40 46 4C 4I 4O 4U 4a 4g 4m 4s 50 56 5C 5I 5O 5U 5a 5g 5m 5s 60

3b 3i 3p 3w 45 4C 4J 4Q 4X 4e 4l 4s 51 58 5F 5M 5T 5a 5h 5P 5v 64 6B 6I 6P 6W 6d 6k 6r 70

48 4G 4O 4W 4e 4m 4u 54 5C 5K 5S 5a 5i 5q 60 68 6G 6O 6W 6e 6m 6u 74 7C 7K 7S 7a 7i 7q 80

4d 4m 4v 56 5F 5O 5X 5g 5p 60 69 6I 6R 6a 6j 6s 73 7C 7L 7U 7d 7m 7v 86 8F 8O 8X 8g 8p 90

5A 5K 5U 5e 5o 60 6A 6K 6U 6e 6o 70 7A 7K 7U 7e 7o 80 8A 8K 8U 8e 8o 90 9A 9K 9U 9e 9o A0

5f 5q 63 6E 6P 6a 6l 6w 79 7K 7V 7g 7r 84 8F 8Q 8l 8m 8x 9A 9L 9W 9h 9s A5 AG AR Ac An B0

6C 6O 6a 6m 70 7C 7O 7a 7m 80 8C 8O 8a 8m 90 9C 9O 9a 9m A0 AC AO Aa Am B0 BC BO Ba Bm C0

6h 6u 79 7M 7Z 7m 81 8E 8R 8e 8r 96 9J 9W 9j 9w AB AO Ab Ao B3 BG BT Bg Bt C8 CL CY Cl D0

7E 7S 7g 7u 8A 8O 8c 8q 96 9K 9Y 9m A2 AG AU Ai Aw BC BQ Be Bs C8 CM Ca Co D4 DI DW Dk E0

7j 80 8F 8U 8j 90 9F 9U 9j A0 AF AU Aj B0 BF BU Bj C0 CF CU Cj D0 DF DU Dj E0 EF FU Ej F0

8G 8W 8m 94 9K 9a 9q A8 AO Ae Au BC BS Bi C0 CG CW Cm D4 DK Da Dq E8 EO Ee Eu FC FS Fi G0

8l 94 9L 9c 9t AC AT Ak B3 BK Bb Bs CB CS Cj D2 DJ Da Dr EA ER Ei F1 FI FZ Fq G9 GQ Gh H0

9I 9a 9s AC AU Am B6 BO Bg C0 CI Ca Cs DC DU Dm C6 EO Eg F0 FI Fa Fs GC GU Gm H6 HO Hg I0

9n A8 aR Ak B5 BO Bh C2 CL Ce Cx DI Db Du EF EY Er FC FV Fo G9 GS Gl H6 HP Hi I3 IM If J0

AK Ae B0 BK Be C0 CK Ce D0 DK De E0 EK Ee F0 FK Fe G0 GK Ge H0 HK He I0 IK Ie J0 JK Je K0

Ap BC BX Bs CF Ca Cv DI Dd E0 EL Eg F3 FO Fj G6 GR Gm H9 HU Hp IC IX Is JF Ja Jv KI Kd L0

BM Bi C6 CS Co DC DY Du E8 Ee F2 FO Fk G8 GU Gq HE Ha Hw IK Ig J4 JQ Jm KA KW Ks LG Lc M0

Br CG Cd D2 DP Dm EB EY El FK Fh G6 GT Gq HF Hc I1 IO Il JA JX Ju KJ Kg L5 LS Lp ME Mb N0

CO Cm DC Da E0 EO Em FC Fa G0 GO Gm HC Ha I0 IO Im JC Ja K0 KO Km LC La M0 MO Mm NC Na O0

Ct DK Dj EA EZ F0 FP Fo GF Ge H5 HU Ht IK Ij JA JZ K0 KP Ko LF Le M5 MU Mt NK Nj OA OZ P0

DQ Ds EI Ei FA Fa G2 GS Gs HK Hk Ic IX J4 JU Ju KM Km LE Le M6 MW Mw NO No OG Og P8 PY Q0

Dv EO Ep FI Fj GC Gd H6 HX I0 IR JL JQ Jm KF Kg L9 La M3 MU Mv NO Np OI Oj PC Pd Q6 QX R0

ES Eu FO Fq GK Gm HG Hi IC Ie J8 Ja K4 KW L0 LS Lu MO Mq NK Nm OG Oi PC Pe Q8 Qa R4 RW S0

4x FS Fv GQ Gt HO Hr IM Ip JK Jn KI Kl LG Lj ME Mh NC Nf OA Od P8 Pb Q6 QZ R4 RX S2 SV T0

FU G0 GU H0 HU I0 IU J0 JU K0 KU L0 LU M0 MU N0 NU O0 OU P0 PU Q0 QU R0 RU S0 SU T0 TU U0

G1 GW H3 HY J5 Ia J7 Jm K9 Ke LB Lg MD Mi NF Nk OH Om PJ Po QL Qq RN Rs SP Su TR Tw UT V0

GW H4 Ha I8 Je JC Ji KG Km LK Lq MO Mu NS O0 OW P4 Pa Q8 Qe RC Ri SG Sm TK Tq UO Uu VS W0

H3 Ha I9 Ig JF Jm KL Ks LR M0 MX N6 Nd OC Oj PI Pp QO Qv RU S3 Sa T9 Tg UF Um VL Vs WR X0

HY I8 Ig JG Jo KO Kw LW M6 Me NE Nm OM Ou PU Q4 Qc RC Rk SK Ss TS U2 Ua VA Vi WI Wq XQ Y0

J5 Je JF Jo KP L0 LZ MA Mj NK Nt OU P5 Pe QF Qo RP S0 SZ TA Tj UK Ut VU W5 We XF Xo YP Z0

Ia JC Jm KO L0 La MC Mm NO O0 Oa PC Pm QO R0 Ra SC Sm TO U0 Ua VC Vm WO X0 Xa YC Ym ZO a0

J7 Ji KL Kw LZ MC Mn No OR Oe PH Ps QV R8 Rj SM Sx Ta UD Uo VR W4 Wf XI Xt YW Z9 Zk aN b0

Jm KG Ks LW MA Mm No OS Og PK Pw Qa RE Rq SU T8 Tk UO V2 Ve WI Wu XY YC Yo ZS a6 ai bM c0

K9 Km LR M6 Mj NO OR Og PL Q0 Qd RI Rv Sa TF Ts UX VC Vp WU X9 Xm YR Z6 Zj aO b3 bg cL d0

Ke LK M0 Me NK O0 Oe PK Q0 Qe RK S0 Se TK U0 Ue VK W0 We XK Y0 Ye ZK a0 ae bK c0 ce dK e0

LB Lq MX NE Nt Oa PH Pw Qd RK S1 Sg TN U4 Uj VQ W7 Wm XT YA Yp ZW aD as bZ cG cv dc eJ f0

Lg MO N6 Nm OU PC Ps Qa RI S0 Sg TO U6 Um VU WC Ws Xa YI k0 Zg aO b6 bm cU dC ds ea fI g0

MD Mu Nd OM P5 Pm QV RE Rv Se TN U6 Un VW WF Ww Xf YO k7 Zo aX bG bx cg dP e8 ep fY gH h0

Mi NS OC Ou Pe QO R8 Rq Sa TK U4 Um VW WG X0 Xi YS ZC Zu ae bO c8 cq da eK f4 fm gW hG i0

NF O0 Oj PU QF R0 Rj SU TF U0 Uj VU WF X0 Xj YU ZF a0 aj bU cF d0 dj eU fF g0 gj hU iF j0

Nk OW PI Q4 Qo Ra SM T8 Ts Ue VQ WC Ww Xi YU ZG a2 am bY Ck d6 dq ec fO gA gu hg iS jE k0

OH P4 Pp Qc RP SC Sx Tk UX VK W7 Ws Xf YS ZF a2 an ba cN dA dv ei fW gI h5 hq id kQ kD l0

Om Pa QO pC S0 Sm Ta UO VC W0 Wm Xa YO ZC a0 am ba cO dC e0 em fa gO hC i0 im ja kO lC m0

PJ Q8 Qv Rk SZ TO UD V2 Vp We XT YI k7 Zu aj bY cN dC e1 eo fd gS hH i6 it ji kX lM mB n0

Po Qe RU SK TA W0 Wo Xe YU XK YA Z0 Zo ae bU Ck dA e0 eo fe gU hK iA j0 jo ke qU rK nA o0

QL RC S3 Ss Tj Ua VR WI X9 Y0 Yp Zg aX bO cF d6 dv em fd gU hL iC jh js kj la mR nI o9 p0

Qq Ri Sa TS UK VC W4 Wu Xm Ye ZW aO bG c8 d0 dq ei fa gS hK iC ji ju km le mW nO oG p8 q0

RN SG T9 U2 Ut Vm Wf XY YR ZK aD b6 bx cq dj ec fW gO hH iA jh ju kn lg mZ nS oL pE q7 r0

Rs Sm Tg Ua VU WO XI YC Z6 a0 as bm cg da eU fO gI hC i6 j0 js km lg ma nU oO pI qC r6 s0

SP TK UF VA W5 X0 Xt Yo Zj ae bZ cU dP eK fF gA h5 i0 it jo kj le mZ nU oP pK qF rA s5 t0

Su Tq Um Vi We Xa YW ZS aO bK cG dC e8 f4 g0 gu hq im ji ke la mW nS oO pK qG rC s8 t4 u0

TR UO VL WI XF YC Z9 a6 b3 c0 cv ds ep fm gj hg id ja kX lU mR nO oL pI qF rC s9 t6 u3 v0

Tw Uu Vs Wq Xo Ym Zk ai bg ce dc ea fY gW hU iS jQ kO lM mK nI oG pE qC rA s8 t6 u4 v2 w0

UT VS WR XQ YP ZO aN bM cL dK eJ fI gH hG iF jE kD lC mB nA o9 p8 qC r6 s5 t4 u3 v2 w1 x0

V0 W0 X0 Y0 Z0 a0 b0 c0 d0 e0 f0 g0 h0 i0 j0 k0 l0 m0 n0 o0 p0 q0 r0 s0 t0 u0 v0 w0 x0 100

1/U J /K D/F 8 /K B /U H /C 7 /5 3 /F B/3 2 /A 7 /4 3 /U N /5 4 /K H/6 5 /F D /A 9 /C B /F E /K J /U T

Sexagesimal  (Base 60)



30 20 15 12 10
▼ ▼ ▼ ▼ ▼

1 2 3 4 5 6 7
2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49
8 16 24 32 40 48 56
9 18 27 36 45 54

6 ▶ 10 20 30 40 50 60
11 22 33 44 55

5 ▶ 12 24 36 48 60
13 26 39 52
14 28 42 56

4 ▶ 15 30 45 60
16 32 48
17 34 51
18 36 54
19 38 57

3 ▶ 20 40 60
21 42
22 44
23 46
24 48 Reciprocals

25 50 1 ⇔ 60
26 52 2 ⇔ 30
27 54 3 ⇔ 20
28 56 4 ⇔ 15
29 58 5 ⇔ 12

2 ▶ 30 60 6 ⇔ 10



Sexagesimal Multiplication Table using Reciprocal Divisors
U K F C A Argam Numeral Set and Names
▼ ▼ ▼ ▼ ▼ appropriate for Base-60.

1 2 3 4 5 6 7 0 zero K score e kinoct

2 4 6 8 A C E 1 one L tress f alume

3 6 9 C F I L 2 two M dell g exeff

4 8 C G K O S 3 three N flore h silick

5 A F K P U Z 4 four O cadex i cadell

6 C I O U a g 5 five P quint j kinove

7 E L S Z g n 6 six Q dithe k diore
7U ▷ 8 G O W e m u 7 seven R trine l foss

6e ▷ 9 I R a j s 8 eight S cadeff m exoct

6 ▶ A K U e o 10 9 nine T neve n effent

B M X i t A dess U kinex o kiness
5 ▶ C O a m 10 B ell V sode p trizote

D Q d q C zen W cadoct q cadithe

E S g u D thise X trell r sull
4 ▶ F U j 10 E zeff Y dizote s exove

3j ▷ G W m F trick Z kineff t kinell

H Y p G tess a exent u sevoct
3K ▷ I a s Other values from H zote b mack v triax

J c v the full table may be I dine c dax w dineve
3 ▶ K e 10 memorized in the future J ax d trithe x clore

L g to enhance your fluency

M i with base -60 computation 1

N k

2U ▷ O m Reciprocals 2

2O ▷ P o 1 ⇔ 10

Q q 2 ⇔ U

2DK ▷ R s 3 ⇔ K 3

S u 4 ⇔ F

T w 5 ⇔ C

2 ▶ U 10 6 ⇔ A 4

Copyright 2007 Michael Thomas De Vlieger

Class IV computations use addition to reach 
factors that are near the divisors:                              
                                         f*h = (e*h)+h = 
(10(h/3)*2)+h =         (EK*2)+h = Se+h 

= TN.

Class I computations involve factors whose 
product is represented in the table. An example is 
9*5 = j

Class II computations involve the usage of 
reciprocal divisors for operations involving at 
least one divisor in order to obtain carries for 
products greater than 10. Example is:                      
        K*C = 10(C/3) = 40
Class III computations extend the basic set of 
reciprocal divisors to their simple multiples by 
splitting the operation into two parts. An example 
is:                                                                             
N*e = 10(N/3)*2 = 7e*2 = FK.



Base 16 Base 24
8 4 C 8 6

▼ ▼ ▼ ▼ ▼
1 2 3 4 1 2 3 4

2 4 6 8 2 4 6 8

3 6 9 C 3 6 9 C

4 ▶ 4 8 C 10 4 8 C G

5 A F 5 A F K

6 C G 4 ▶ 6 C I 10

7 E 4 ⇔ 4 7 E L

2 ▶ 8 10 2 ⇔ 8 3 ▶ 8 G 10

9 I O

A K 4 ⇔ 6

Base 18 B M 3 ⇔ 8

9 6 2 ▶ C 10 2 ⇔ C

▼ ▼
1 2 3 4

2 4 6 8 Base 30
3 6 9 C F A 6

4 8 C G ▼ ▼ ▼
5 A F 1 2 3 4 5

3 ▶ 6 C 10 2 4 6 8 A

7 E I 3 6 9 C F

8 G 3 ⇔ 6 4 8 C G K

2 ▶ 9 10 2 ⇔ 9 5 A F K P

5 ▶ 6 C I O 10

7 E L S

Base 20 8 G O

A 5 9 I R

▼ ▼ 3 ▶ A K 10

1 2 3 4 B M

2 4 6 8 C O U

3 6 9 C D Q 5 ⇔ 6

4 8 C G E S 3 ⇔ A

4 ▶ 5 A F 10 2 ▶ F 10 2 ⇔ F

6 C I

7 E

8 G K

9 I 4 ⇔ 5

2 ▶ A 10 2 ⇔ A

I

K

O

U

G



Base 36 Base 60
I C 9 6 U K F C A

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
1 2 3 4 5 6 1 2 3 4 5 6 7

2 4 6 8 A C 2 4 6 8 A C E

3 6 9 C F I 3 6 9 C F I L

4 8 C G K O 4 8 C G K O S

5 A F K P U 5 A F K P U Z

6 ▶ 6 C I O U 10 6 C I O U a g

7 E L S Z 7 E L S Z g n

8 G O W 8 G O W e m u

4 ▶ 9 I R 10 9 I R a j s

A K U 6 ▶ A K U e o 10

B M X B M X i t

3 ▶ C O 10 5 ▶ C O a m 10

D Q D Q d q

E S a E S g u

F U 6 ⇔ 6 4 ▶ F U j 10

G W 4 ⇔ 9 G W m

H Y 3 ⇔ C H Y p

2 ▶ I 10 2 ⇔ I I a s

J c v

3 ▶ K e 10

Base 48 L g

O G C 8 M i

▼ ▼ ▼ ▼ N k

1 2 3 4 5 6 O m

2 4 6 8 A C P o y

3 6 9 C F I Q q 6 ⇔ A

4 8 C G K O R s 5 ⇔ C

5 A F K P U S u 4 ⇔ F

6 C I O U a T w 3 ⇔ K

7 E L S Z g 2 ▶ U 10 2 ⇔ U

6 ▶ 8 G O W e 10

9 I R a j

A K U e

B M X i

4 ▶ C O a 10

D Q d

E S g

F U j

3 ▶ G W 10

H Y

I a

J c

K e m

L g 6 ⇔ 8

M i 4 ⇔ C

N k 3 ⇔ G

2 ▶ O 10 2 ⇔ O

ya

m



Base 72 Base 84
a O I C 9 g S L E C

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9

2 4 6 8 A C E G 2 4 6 8 A C E G I

3 6 9 C F I L O 3 6 9 C F I L O R

4 8 C G K O S W 4 8 C G K O S W a

5 A F K P U Z e 5 A F K P U Z e j

6 C I O U a g m 6 C I O U a g m s

7 E L S Z g n u 7 E L S Z g n u Б

8 G O W e m u В 8 G O W e m u В К

8 ▶ 9 I R a j s Б 10 9 I R a j s Б К У

A K U e o y И A K U e o y И Т

B M X i t Д B M X i t Д П

6 ▶ C O a m y 10 7 ▶ C O a m y К 10

D Q d q Г D Q d q Г Р

E S g u И 6 ▶ E S g u И 10

F U j y F U j y Н

G W m В G W m В Т

H Y p Ж H Y p Ж

4 ▶ I a s 10 I a s К

J c v J c v О

K e y K e y Т

L g Б 4 ▶ L g Б 10

M i Д M i Д

N k З N k З

3 ▶ O m 10 O m К

P o P o Н

Q q Q q Р

R s R s У

S u 3 ▶ S u 10

T w T w

U y U y

V А К V А

W В 8 ⇔ 9 W В

X Д 6 ⇔ C X Д

Y Ж 4 ⇔ I Y Ж

Z И 3 ⇔ O Z И

2 ▶ a 10 2 ⇔ a a К

b М Ц

c О 7 ⇔ C

d Р 6 ⇔ E

e Т 4 ⇔ L

f Ф 3 ⇔ S

2 ▶ g 10 2 ⇔ g

ЦК



Base 90 Base 96
j U I F A m W O G C

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 A

2 4 6 8 A C E G I 2 4 6 8 A C E G I K

3 6 9 C F I L O R 3 6 9 C F I L O R U

4 8 C G K O S W a 4 8 C G K O S W a e

5 A F K P U Z e j 5 A F K P U Z e j o

6 C I O U a g m s 6 C I O U a g m s y

7 E L S Z g n u Б 7 E L S Z g n u Б И

8 G O W e m u В К 8 G O W e m u В К Т

9 I R a j s Б К У 9 I R a j s Б К У Ь

9 ▶ A K U e o y И Т 10 A K U e o y И Т Ь

B M X i t Д П Ъ B M X i t Д П Ъ

C O a m y К Ц 8 ▶ C O a m y К Ц 10

D Q d q Г Р D Q d q Г Р Э

E S g u И Ц E S g u И Ц

6 ▶ F U j y Н 10 F U j y Н Ь

G W m В Т 6 ▶ G W m В Т 10

H Y p Ж Ч H Y p Ж Ч

5 ▶ I a s К 10 I a s К Ь

J c v О J c v О б

K e y Т K e y Т

L g Б Ц L g Б Ц

M i Д Ъ M i Д Ъ

N k З N k З Ю

O m К 4 ▶ O m К 10

P o Н P o Н

Q q Р Q q Р

R s У R s У

S u Ц S u Ц

T w Щ T w Щ

3 ▶ U y 10 U y Ь

V А V А Я

W В 3 ▶ W В 10

X Д X Д

Y Ж Y Ж

Z И Z И

a К a К

b М b М

c О c О

d Р d Р

e Т Ь e Т

f Ф 9 ⇔ A f Ф

g Ц 6 ⇔ F g Ц

h Ш 5 ⇔ I h Ш в

i Ъ 3 ⇔ U i Ъ 8 ⇔ C

2 ▶ j 10 2 ⇔ j j Ь 6 ⇔ G

k Ю 4 ⇔ O

l а 3 ⇔ W

2 ▶ m 10 2 ⇔ m

Ь в



Base 108 Base 120
s a R I C y e U O K F C

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
1 2 3 4 5 6 7 8 9 A 1 2 3 4 5 6 7 8 9 A B

2 4 6 8 A C E G I K 2 4 6 8 A C E G I K M

3 6 9 C F I L O R U 3 6 9 C F I L O R U X

4 8 C G K O S W a e 4 8 C G K O S W a e i

5 A F K P U Z e j o 5 A F K P U Z e j o t

6 C I O U a g m s y 6 C I O U a g m s y Д

7 E L S Z g n u Б И 7 E L S Z g n u Б И П

8 G O W e m u В К Т 8 G O W e m u В К Т Ъ

9 I R a j s Б К У Ь 9 I R a j s Б К У Ь е

A K U e o y И Т Ь ж A K U e o y И Т Ь ж р

B M X i t Д П Ъ е B M X i t Д П Ъ е р 11

9 ▶ C O a m y К Ц в 10 A ▶ C O a m y К Ц в о 10

D Q d q Г Р Э к D Q d q Г Р Э к ч

E S g u И Ц д E S g u И Ц д т 16

F U j y Н Ь л 8 ▶ F U j y Н Ь л 10

G W m В Т в G W m В Т в т

H Y p Ж Ч и H Y p Ж Ч и щ

6 ▶ I a s К Ь 10 I a s К Ь о 16

J c v О б J c v О б ф

K e y Т ж 6 ▶ K e y Т ж 10

L g Б Ц л L g Б Ц л

M i Д Ъ M i Д Ъ р

N k З Ю N k З Ю х

O m К в 5 ▶ O m К в 10

P o Н ж P o Н ж 15

Q q Р к Q q Р к

4 ▶ R s У 10 R s У о

S u Ц S u Ц т

T w Щ T w Щ ц

U y Ь 4 ▶ U y Ь 10

V А Я V А Я

W В в W В в

X Д е X Д е

Y Ж и Y Ж и

Z И л Z И л

3 ▶ a К 10 a К о

b М b М с

c О c О ф

d Р d Р ч

e Т 3 ▶ e Т 10

f Ф f Ф

g Ц g Ц

h Ш h Ш

i Ъ i Ъ

j Ь j Ь

k Ю k Ю

l а l а

m в m в

n д о n д

o ж 9 ⇔ C o ж

p и 6 ⇔ I p и

q к 4 ⇔ R q к

r м 3 ⇔ a r м ъ

2 ▶ s 10 2 ⇔ s s о A ⇔ C

t р 8 ⇔ F

u т 6 ⇔ K

v ф 5 ⇔ O

w ц 4 ⇔ U

x ш 3 ⇔ e

2 ▶ y 10 2 ⇔ y

ъо



0 zero 0 U kinex 30 y shock 60 Ь novess 90 ъ hund 120

1 one 1 V sode 31 z ark 61 Э sevithe 91 Ѻ cadexeff 168

2 two 2 W cadoct 32 А disode 62 Ю caflore 92 ҆ catkinove 180

3 three 3 X trell 33 Б senove 63 Я trisode 93 ӂ kinexoct 240

4 four 4 Y dizote 34 В octent 64 а difoss 94 Ā exsevoct 336

5 five 5 Z kineff 35 Г kinithe 65 б kinax 95 ā kinoctove 360

6 six 6 a exent 36 Д exell 66 в extess 96 Ă exsevess 420

7 seven 7 b mack 37 Е kale 67 г mang 97 ă exoctess 480

8 eight 8 c diax 38 Ж cazote 68 д effendi 98 Ą sevoctove 504

9 nine 9 d trithe 39 З triore 69 е novell 99 ą cadexquint 600

A dess 10 e kinoct 40 И sevess 70 ж kent 100 Ć senovess 630

B ell 11 f alume 41 Й calse 71 з ferr 101 ć exdessell 660

C zen 12 g exeff 42 К octove 72 и exote 102 Ĉ exeftess 672

D thise 13 h silick 43 Л scand 73 й cobe 103 ĉ octovess 720

E zeff 14 i cadell 44 М dimack 74 к octithe 104 Ċ seveszen 840

F trick 15 j kinove 45 Н kinchick 75 л sechick 105 ċ noveszen 1080

G tess 16 k diore 46 О cadax 76 м disull 106 Č catkisenove 1260

H zote 17 l foss 47 П sevell 77 н nick 107 č novestess 1440

I dine 18 m exoct 48 Р exithe 78 о catrine 108 Ď sechitess 1680

J ax 19 n effent 49 С tite 79 п cupe 109 ď kintestrine 2160

K score 20 o kiness 50 Т kintess 80 р dessell 110 Ɇ kinsevoctove 2520

L tress 21 p trizote 51 У novent 81 с trimack 111 ɇ sevoctovess 5040

M dell 22 q cadithe 52 Ф dilume 82 т setess 112 Ɉ sevoctovessell 55440

N flore 23 r sull 53 Х van 83 у zinn 113 ɉ sevoctovessellithe 720720

O cadex 24 s exove 54 Ц sezen 84 ф exax 114

P quint 25 t kinell 55 Ч kinote 85 х kinore 115

Q dithe 26 u sevoct 56 Ш disill 86 ц cateve 116

R trine 27 v triax 57 Щ trineve 87 ч novithe 117

S cadeff 28 w dineve 58 Ъ octell 88 ш diclore 118 Argam copyright 2007

T neve 29 x clore 59 Ы crome 89 щ sevote 119
Michael Thomas De Vlieger

Table of the First 120 Argam and Selected Highly Composite Integers



Argam Test Page, sort by superior highly composite, A002201 |18 September 2007|
0 C O a m y К Ц в о ъ і Ì Ѯ Ѻ ҆ Ғ Ҟ Ó Ҷ Â ӎ Ӛ Ӧ Ӳ Ӿ Ԋ Ԗ Ԣ 348

1 D P b n z Л Ч г п ы ї ѣ ѯ ѻ ҇ ғ ҟ ҫ ҷ Ӄ ӏ ӛ 277 ӳ 301 313 325 ԣ 349

2 E Q c o А М Ш д р ь ј Ѥ Ѱ Ѽ ҈ Ҕ Ҡ Ҭ Ҹ ӄ Ӑ Ӝ 278 Ӵ 302 314 326 338 

3 F R d p Б Н Щ е с э љ ѥ ѱ ѽ ҉ ҕ ҡ ҭ ҹ é ӑ ӝ 279 291 303 ԍ 327 339 351

4 G S e q В О Ъ ж т ю њ Ѧ Ѳ Ѿ Ҋ Җ Ң Ү Һ ӆ Ӓ 268 Ӫ Ӷ 304 Ԏ 328 340 352

5 H T f r Г П Ы з у я ћ ѧ ѳ ѿ ҋ җ ң ү һ Ӈ ӓ 269 281 293 305 317 329 341 353

6 I U g s Д Р Ь и ф ѐ ќ Ѩ Ѵ Ҁ Ҍ Ҙ Ҥ Ұ Ҽ ӈ Ӕ Ӡ 282 294 306 318 Ԝ 342 354

7 J V h t Е С Э й х ё ѝ ѩ ѵ ҁ ҍ ҙ ҥ ұ ҽ Ӊ ӕ 271 283 295 307 319 331 ò 355

8 K W i u Ж Т Ю к ц ђ ў Ѫ Ѷ ҂ Ҏ Қ Ҧ Ҳ Ҿ ӊ Ӗ 272 284 Ӻ 308 Ԓ 332 344 356

9 L X j v З У Я л ч ѓ џ ѫ ѷ ҃ ҏ қ ҧ ҳ ҿ Ӌ ӗ 273 285 ӻ 309 321 ԟ ԫ 357

A M Y k w И Ф а м ш є Ѡ Ѭ Ѹ ҄ Ґ Ҝ Ҩ Ҵ Ӏ ӌ Ә 274 Ӱ 298 Ԉ 322 334 346 358

B N Z l x Й Х б н щ ѕ ѡ ѭ ѹ ҅ ґ ҝ ҩ ҵ Ӂ Ӎ ә ӥ ӱ 299 311 323 335 347 359

Ժ 372 Ւ 396 408 ն ւ 444 456 468 ă 492  516 528 540 552 564 ؒ 588 ؤ 612 624 636 648 ć Ĉ 684 696 708

Ի Շ 385 397 409 421 433 445 457 469 481 493 505 517 ף 541 553 565 577 589 601 613 ؼ 637 649 661 673 685 697 709

362 374 386 398 410 422 434 446 458 470 482 494 506 518 530 542 554 566 578 590 602 614 626 638 650 662 674 686 698 710

363 375 387 399 411 423 435 447 459 471 483 495 507 519 531 543 555 567 579 591 603 615 627 639 651 663 675 687 699 711

364 376 388 բ 412 424 436 448 460 472 484 496 508 520 532 544 556 568 580 592 604 616 628 640 652 664 676 688 700 712

365 377 389 401 413 425 437 449 461 473 485 497 509 521 533 545 557 569 581 593 605 617 629 641 653 665 677 689 701 713

366 378 390 402 414 426 438 450 462 474 486 498 510 522 534 546 558 570 582 594 606 618 ق 642 654 666 678 690 702 714

367 379 391 403 415 427 439 451 463 475 487 499 511 523 535 547 559 571 583 595 607 619 631 643 655 667 679 691 703 715

368 380 392 404 416 428 440 452 464 476 488 500 ג 524 536 548 560 572 584 596 608 620 632 644 656 668 680 692 704 716

369 381 393 405 417 429 441 453 465 477 489 501 513 525 537 549 561 573 585 597 609 621 633 645 657 669 681 693 705 717

Մ 382 394 406 418 430 442 454 466 478 490 502 514 526 538 550 562 574 586 598 610 622 634 646 658 670 682 694 706 718

371 383 395 407 419 431 443 455 467 479 491 503 515 527 539 551 563 575 587 599 611 623 635 647 659 671 683 695 707 719

ڢ 732 744 756 768 780 792 804 816 828 Ċ 852 864 876 888 900 912 924 936 948 ċ 972 984 996 1008 1020 1032 1044 1056 1068

721 733 745 757 769 781 793 805 817 829 841 853 865 877 889 901 913 925 937 949 961 973 985 997 1009 1021 1033 1045 1057 1069

722 734 746 758 770 782 794 806 818 830 842 854 866 878 890 902 914 926 938 950 962 974 986 998 1010 1022 1034 1046 1058 1070

723 735 747 759 771 783 795 807 819 831 843 855 867 879 891 903 915 927 939 951 963 975 987 999 1011 1023 1035 1047 1059 1071

724 736 748 760 772 784 796 808 820 832 844 856 868 880 892 904 916 928 940 952 964 976 988 É 1012 1024 1036 1048 1060 1072

725 737 749 761 773 785 797 809 821 833 845 857 869 881 893 905 917 929 941 953 965 977 989 1001 1013 1025 1037 1049 1061 1073

726 738 750 762 774 786 798 810 822 834 846 858 870 882 894 906 918 930 942 954 966 978 990 1002 1014 1026 1038 1050 1062 1074

727 739 751 763 775 787 799 811 823 835 847 859 871 883 895 907 919 931 943 955 967 979 991 1003 1015 1027 1039 1051 1063 1075

728 740 752 764 776 788 800 812 824 836 848 860 872 884 896 908 920 932 944 956 968 980 992 1004 1016 1028 1040 1052 1064 1076

729 741 753 765 777 789 801 813 825 837 849 861 873 885 897 909 921 933 945 957 969 981 993 1005 1017 1029 1041 1053 1065 1077

730 742 754 766 778 790 802 814 826 838 850 862 874 886 898 910 922 934 946 958 970 982 994 1006 1018 1030 1042 1054 1066 1078

731 743 755 767 779 791 803 815 827 839 851 863 875 887 899 911 923 935 947 959 971 983 995 1007 1019 1031 1043 1055 1067 1079

ɀ Ɂ ɂ Ƀ Ʉ Ʌ Ɇ ɇ Ɉ ɉ

ɀ 3 4 6 8 A C I K O a m y К Ц Ь в о ъ Ѻ ҆ Ӓ Ā ā Ă ă Ą ą Ć ć

Ĉ ĉ Ċ ċ Č č Ď ď Ɇ
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1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O

2 4 6 8 A C E G I K M O Q S U W Y a c e g i k m

3 6 9 C F I L O R U X a d g j m p s v y Б Д З К

4 8 C G K O S W a e i m q u y В Ж К О Т Ц Ъ Ю в

5 A F K P U Z e j o t y Г И Н Т Ч Ь б ж х р х ъ

6 C I O U a g m s y Д К Р Ц Ь в и о ф ъ ѐ і ќ Ì

7 E L S Z g n u Б И П Ц Э д л т щ ѐ ї ў ѥ Ѭ ѳ Ѻ

8 G O W e m u В К Т Ъ в к т ъ á њ Ì Ѫ Ѳ Ѻ ҈ Ҋ ú

9 I R a j s Б К У Ь е о ч ѐ љ Ì ѫ Ѵ ѽ ҆ ҏ Ң ҡ Ҫ

A K U e o y И Т Ь ж р ъ є ў Ѩ Ѳ Ѽ ҆ Ґ Қ Ҥ Ү Ҹ Â

B M X i t Д П Ъ е р ы і ѡ Ѭ ѷ ҂ ҍ Ҙ ң Ү ҹ ӄ ӏ Ӛ

C O a m y К Ц в о ъ і Ì Ѯ Ѻ ҆ ú Ҟ Ҫ Ҷ Â ӎ Ӛ Ӧ Ӳ

D Q d q Г Р Э к ч є ѡ Ѯ ѻ ҈ ҕ Ң ү Ҽ Ӗ Ӱ Ԋ

E S g u И Ц д т ѐ ў Ѭ Ѻ ҈ Җ Ҥ Ҳ Ӏ ӎ Ӝ Ӫ Ԣ

F U j y Н Ь л ъ љ Ѩ ѷ ҆ ҕ Ҥ ҳ Â ӑ Ӡ ӱ Ӿ ԍ Ԝ ԫ Ú

G W m В Т в т á Ì Ѳ ҂ ú Ң Ҳ Â â Ӳ û

H Y p Ж Ч и щ њ ѫ Ѽ ҍ Ҟ ү Ӏ ӑ ӳ

I a s К Ь о ѐ Ì Ѵ ҆ Ҙ Ҫ Ҽ ӎ Ӡ Ӳ Ԗ Ú

J c v О б ф ї Ѫ ѽ Ґ ң Ҷ Ӝ ӱ Ի

K e y Т ж ъ ў Ѳ ҆ Қ Ү Â Ӗ Ӫ Ӿ Ú բ Ă ă

L g Б Ц х ѐ ѥ Ѻ ҏ Ҥ ҹ ӎ ԍ Ă Ą

M i Д Ъ р і Ѭ ҈ Ң Ү ӄ Ӛ Ӱ Ԝ ֶ

N k З Ю х ќ ѳ Ҋ ҡ Ҹ ӏ Ӧ ԫ ף

O m К в ъ Ì Ѻ ú Ҫ Â Ӛ Ӳ Ԋ Ԣ Ú û ă Ą ؒ

P o Н ж я Ѩ ҁ Қ ҳ ӌ ӥ Ӿ բ ą

Q q Р к є Ѯ ҈ Ң Ҽ Ӗ Ӱ Ԋ

R s У о љ Ѵ ҏ Ҫ é Ӡ ӻ Ԗ ւ

S u Ц т ў Ѻ Җ Ҳ ӎ Ӫ Ԣ Ĉ

T w Щ ц ѣ Ҁ ҝ Һ ӗ Ӵ

U y Ь ъ Ѩ ҆ Ҥ Â Ӡ Ӿ Ԝ Ú ն ă ą Ć ć ĉ

V А Я ю ѭ Ҍ ҫ Ԉ

W В в á Ѳ ú Ҳ â Ԓ ؒ

X Д е і ѷ Ҙ ҹ Ӛ ӻ Ԝ

Y Ж и њ Ѽ Ҟ

Z И л ў ҁ Ҥ Ӈ ԍ   

a К о Ì ҆ Ҫ ӎ Ӳ Ԗ Ú ւ ؒ ĉ



Sexagesimal Powers of Popular Bases

8 A C G
(eight) (dess = 10) (zen = 12) (tess = 16)

O 2 A9to jaOC qH8G 7d NbA7 d4Yr nbke A8e KokB HZaZ Srja 2 mUFF Nbu4 vRZr fxWG

N GGES og31 aW8W j uLh0 jsRT Mvke oh LiDo uRw2 vOSm AVrR ChbF IZST aMSG

M 221m aKFM g414 4 ZcAI 4ZQi uHke 4D amf9 EgJo El2O dTZ R2hY gOh1 p1OG

L FFD YWVt KFU8 RXn1 mRWe Tbke L 843P kDVd BDtC 2S5 vuPD P92f LuKG

K 1sO Bn3x P1uG 2jMs AojG 2vke 1 jeKH 8p7c Fu9a 9F MMGY ZJIt 57GG

J EI 1Sbx tbiW GWH P54V aHke 8mLf PiFc Bjem Y gcrW 9gRP uYCG

I 1l FB4i xRD4 1dD iUUR 9bke i1m R8fI AucO 2 A9to jaOC qH8G

H D ONr5 bPs8 9t MR32 gvke 3e9 2FhQ UshC 887E PL1U mG4G

G 1 eWx8 CAiG x WEgI GHke IK jBIb CYXa UUR 953o eV0G

F CY7N VVKW 5 vDSD nbke 1V hjuX 62qm 1sO Bn3x P1uG

E 1YFt QQP4 ZhKn Mvke 7 ccng jUEO 79 0iIx vmqG

D Vkx PmI8 3YK4 uHke cDE8 XlVC Q mlkB EpmG

C 1SM PhWG LQ0 Tbke 3B6A gmva 1 eWx8 CAiG

B B2 mCuW 28a 2vke FtU rY4m 6H3f jjeG

A 1M p1b4 Cv aHke 1Jb YRoO NXw paaG

9 A LMg8 1H 9bke 6c 7qJC 1SM PhWG

8 1 HeKG 7 gvke X AdLa 5V O6SG

7 9gWW kHke 2 jrGm K gjOG

6 1Cn4 4bke DnQO 1 HeKG

5 968 Rke 197C 4pGG

4 18G 2ke 5ja ICG

3 8W Ge Sm 18G

2 14 1e 2O 4G

1 8 A C G

0 1 1 1 1

-1 0.7U 0.6 0.5 0.3j

-2 0.0uF 0.0a 0.0P 0.0E3j

-3 0.071q U 0.03a 0.025 0.00qi 3j

-4 0.00qi 3j 0.00La 0.00AP 0.003H jE3j

-5 0.006Z US7U 0.0029 a 0.000q 5 0.000C Lybi 3j

-6 0.000n QIUu F 0.000C va 0.0004 KP 0.0000 kKsp UE3j

-7 0.0006 AlIq 1qU 0.0001 Hja 0.0000 Lg5 0.0000 2rmP h8Mi 3j

-8 0.0000 kKsp UE3j 0.0000 7kXa 0.0000 1mUP 0.0000 0Apk aQkP FE3j

Table and Argam Font Copyright 2007 Michael Thomas De Vlieger



Study of the third rank divisors versus prime factorization shape
six dess (10) zeff (14)
23 25 27

2 3 6 2 3 2 5 A 2 5 2 7 E 2 7

0 0 1 1000 3 3 0 0 1 1000 3 3 0 0 1 1000 3 3

1 0 2 300 2 3 1 0 2 500 2 3 1 0 2 700 2 3

0 1 3 200 3 2 2 0 4 250 1 3 2 0 4 370 1 3

2 0 4 130 1 3 0 1 5 200 3 2 0 1 7 200 3 2

1 1 10 100 2 2 3 0 8 125 0 3 3 0 8 137 0 3

3 0 12 43 0 3 1 1 10 100 2 2 1 1 10 100 2 2

0 2 13 40 3 1 2 1 20 50 1 2 2 1 20 70 1 2

2 1 20 30 1 2 0 2 25 40 3 1 0 2 37 40 3 1

zen (12) score (20) cadeff (28)
2
2
 3 2

2
 5 2

2
 7

2 3 C 2 3 2 5 K 2 5 2 7 S 2 7

0 0 1 1000 6 3 0 0 1 1000 6 3 0 0 1 1000 6 3

1 0 2 600 5 3 1 0 2 A00 5 3 1 0 2 E00 5 3

0 1 3 400 6 2 2 0 4 500 4 3 2 0 4 700 4 3

2 0 4 300 4 3 0 1 5 400 6 2 0 1 7 400 6 2

1 1 6 200 5 2 3 0 8 2A0 3 3 3 0 8 3E0 3 3

3 0 8 160 3 3 1 1 A 200 5 2 1 1 E 200 5 2

0 2 9 140 6 1 4 0 G 150 2 3 4 0 G 1L0 2 3

2 1 10 100 4 2 2 1 10 100 4 2 2 1 10 100 4 2

4 0 14 90 2 3 0 2 15 G0 6 1 5 0 14 OE 1 3

1 2 16 80 5 1 5 0 1C CA 1 3 0 2 1L G0 6 1

3 1 20 60 3 2 3 1 20 A0 3 2 3 1 20 E0 3 2

0 3 23 54 6 0 1 2 2A 80 5 1 6 0 28 C7 0 3

5 0 28 46 1 3 6 0 34 65 1 3 1 2 3E 80 5 1

2 2 30 30 4 1 4 1 40 50 2 2 4 1 40 70 2 2

exent (36) kent (100) zeffent (196)
2
2
 3

2
2
2
 5

2
2
2
 7

2

2 3 a 2 3 2 5 ж 2 5 2 7 Җ 2 7

0 0 1 1000 6 6 0 0 1 1000 6 6 0 0 1 1000 6 6

1 0 2 I00 5 6 1 0 2 o00 5 6 1 2 д00 5 6

0 1 3 C00 6 5 2 0 4 P00 4 6 2 4 n00 4 6

2 0 4 900 4 6 0 1 5 K00 6 5 1 7 S00 6 5

1 1 6 600 5 5 3 0 8 Co0 3 6 3 8 Oд0 3 6

3 0 8 4I0 3 6 1 1 A A00 5 5 1 1 E E00 5 5

0 2 9 400 6 4 4 0 G 6P0 2 6 4 G Cn0 2 6

2 1 C 300 4 5 2 1 K 500 4 5 2 1 S 700 4 5

4 0 G 290 2 6 0 2 P 400 6 4 5 W 6Oд 1 6

1 2 I 200 5 4 5 0 W 3Co 1 6 2 n 400 6 4

3 1 O 1I0 3 5 3 1 e 2o0 3 5 3 1 u 3д0 3 5

0 3 R 1C0 6 3 1 2 o 200 5 4 6 В 3Cn 6

5 0 W 14I 1 6 6 0 В 1uP 6 1 2 д 200 5 4

2 2 10 100 4 4 5 1 Т 1P0 1 5 4 1 т 1ѥ0 2 5

4 1 1C R0 2 5 2 2 10 100 4 4 2 2 10 100 4 4

1 3 1I O0 5 3 3 1P Т0 6 3 5 1 1S ѽд 1 5

6 0 1S K9 0 6 5 1 1y Аo 1 5 3 1ѥ т0 6 3

3 2 20 I0 3 4 3 2 20 o0 3 4 3 2 20 д0 3 4

0 4 29 G0 6 2 1 3 2o e0 5 3 6 1 2u Чѥ 5

5 1 2O DI 1 5 6 1 3K VP 5 1 3 3д u0 5 3

2 3 30 C0 4 3 4 2 40 P0 2 4 4 2 40 n0 2 4

4 2 40 90 2 4 2 3 50 K0 4 3 2 3 70 S0 4 3

1 4 4I 80 5 2 4 6P G0 6 2 5 2 80 Oд 1 4

6 1 5C 6R 0 5 5 2 80 Co 1 4 4 Cn G0 6 2

3 3 60 3 3 3 3 A0 3 3 E0



Study of the third rank divisors versus prime factorization shape
trick (15) tress (21)

35 37

3 5 F 3 5 3 7 L 3 7

0 0 1 1000 3 3 0 0 1 1000 3 3

1 0 3 500 2 3 1 0 3 500 2 3

0 1 5 300 3 2 0 1 5 300 3 2

2 0 9 1A0 1 3 2 0 9 1A0 1 3

1 1 10 100 2 2 1 1 10 100 2 2

0 2 1A 90 3 1 0 2 1A 90 3 1

3 0 1C 85 0 3 3 0 1C 85 0 3

2 1 30 50 1 2 2 1 30 50 1 2

kinove (45) senove (63)
3
2
 5 3

2
 7

3 5 j 3 5 3 7 Б 3 7

0 0 1 1000 6 3 0 0 1 1000 6 3

1 0 3 F00 5 3 1 0 3 L00 5 3

0 1 5 900 6 2 0 1 7 900 6 2

2 0 9 500 4 3 2 0 9 700 4 3

1 1 F 300 5 2 1 1 L 300 5 2

0 2 P 1a0 6 1 3 0 R 2L0 3 3

3 0 R 1U0 3 3 0 2 n 1I0 6 1

2 1 10 100 4 2 2 1 10 100 4 2

1 2 1U R0 5 1 4 0 1I n0 2 3

4 0 1a P0 2 3 1 2 2L R0 5 1

0 3 2Z G9 6 0 3 1 30 L0 3 2

3 1 30 F0 3 2 5 0 3s GL 1 3

2 2 50 90 4 1 2 2 70 90 4 1

5 0 5I 8F 1 3 6 0 Ba 5S 0 3



Study of the third rank divisors versus prime factorization shape
kinex (30) shock (60)
2 3 5 2

2
 3 5

2 3 5 U 2 3 5 2 3 5 y 2 3 5

0 0 0 1 1000 3 3 3 0 0 0 1 1000 6 3 3

1 0 0 2 F00 2 3 3 1 0 0 2 U00 5 3 3

0 1 0 3 A00 3 2 3 0 1 0 3 K00 6 2 3

2 0 0 4 7F0 1 3 3 2 0 0 4 F00 4 3 3

0 0 1 5 600 3 3 2 0 0 1 5 C00 6 3 2

1 1 0 6 500 2 2 3 1 1 0 6 A00 5 2 3

3 0 0 8 3MF 0 3 3 3 0 0 8 7U0 3 3 3

0 2 0 9 3A0 3 1 3 0 2 0 9 6e0 6 1 3

1 0 1 A 300 2 3 2 1 0 1 A 600 5 3 2

2 1 0 C 2F0 1 2 3 2 1 0 C 500 4 2 3

0 1 1 F 200 3 2 2 0 1 1 F 400 6 2 2

1 2 0 I 1K0 2 1 3 4 0 0 G 3j0 2 3 3

2 0 1 K 1F0 1 3 2 1 2 0 I 3K0 5 1 3

3 1 0 O 17F 0 2 3 2 0 1 K 300 4 3 2

0 0 2 P 160 3 3 1 3 1 0 O 2U0 3 2 3

0 3 0 R 13A 3 0 3 0 0 2 P 2O0 6 3 1

1 1 1 10 100 2 2 2 0 3 0 R 2DK 6 0 3

2 2 0 16 P0 1 1 3 1 1 1 U 200 5 2 2

3 0 1 1A MF 0 3 2 5 0 0 W 1qU 1 3 3

0 2 1 1F K0 3 1 2 2 2 0 a 1e0 4 1 3

1 0 2 1K I0 2 3 1 3 0 1 e 1U0 3 3 2

1 3 0 1O GK 2 0 3 0 2 1 j 1K0 6 1 2

2 1 1 20 F0 1 2 2 4 1 0 m 1F0 2 2 3

0 1 2 2F C0 3 2 1 1 0 2 o 1C0 5 3 1

1 2 1 30 A0 2 1 2 1 3 0 s 16e 5 0 3

2 0 2 3A 90 1 3 1 2 1 1 10 100 4 2 2

3 1 1 40 7F 0 2 2 6 0 0 14 uF 0 3 3

0 0 3 4F 6K 3 3 0 3 2 0 1C o0 3 1 3

1 1 2 50 60 2 2 1 0 1 2 1F m0 6 2 1

4 0 1 1K j0 2 3 2

1 2 1 1U e0 5 1 2

5 1 0 1a bU 1 2 3

2 0 2 1e a0 4 3 1

2 3 0 1m XK 4 0 3

3 1 1 20 U0 3 2 2

0 0 3 25 Sm 6 3 0

4 2 0 2O P0 2 1 3

2 1 2 2U O0 4 2 1

2 2 1 30 K0 4 1 2

3 0 2 3K I0 3 3 1

0 2 2 3j G0 6 1 1

4 1 1 40 F0 2 2 2

2 1 2 50 C0 4 2 1

3 2 1 60 A0 3 1 2

4 0 2 6e 90 2 3 1

1 2 2 7U 80 5 1 1



σ
Number of 
Divisors

A002183

two two three

2 2 3
1 10

three four

3 4
2

four six eight dess (10)

4 6 8 A
11 3 101

six zen (12) dine (18) score (20)

6 C I K
12 21 102

eight cadex (24) kinex (30)

8 O U
13 111

nine exent (36)

9 a
22

dess (10) exoct (48)

A m
14

zen (12) shock (60) octove (72) sezen (84) novess (90) extess (96) catrine (108)

C y К Ц Ь в о
112 23 1012 121 15 32

tess (16) hund (120) cadexeff (168)

G ъ Ѻ
113 1013

dine (18) catkinove (180)

I ҆
122

score (20) kinexoct (240) exsevoct (336)

K ӂ Ā
114 1014

cadex (24) kinoctove (360) exsevess (420) exodess (480) sevoctove (504) cadexquint (600) senovess (630) exdessell (660) exeftess (672)

O ā Ă ă Ą ą Ć ć Ĉ
123 1112 115 1023 213 1121 10112 1015

kinex (30) octovess (720)

U ĉ
124

cadoct (32) seveszen (840) noveszen (1080)

W Ċ ċ
1113 133

exent (36) catkisenove (1260) novestess (1440)

a Č č
1122 125

kinoct (40) sechitess (1680) kintestrine (2160)

e Ď ď
1114 134

exoct (48) kinsevoctove (2520)

m Ɇ
1123

A005179

Highly Composite
Study of the factorization of integers which set or tie records for the number 
of divisors. The notation below the argam indicates the exponents of the 
primes which compose the integer. The notation situates two at the right, 
zeros holding places for skipped primes.



two three
1 1

2 3

four
1

4

six eight dess (10)
1 2 1 2 1 2

6 3 8 4 A 5

zen (12) dine (18) score (20)
1 2 3 1 2 3 1 2 4

C 6 4 I 9 6 K A 5

cadex (24) kinex (30)
1 2 3 4 1 2 3 5

O C 8 6 U F A 6

exent (36)
1 2 3 4

a I C 9

exoct (48)
1 2 3 4 6

m O G C 8

shock (60) octove (72) sezen (84)
1 2 3 4 5 6 1 2 3 4 6 8 1 2 3 4 6 7

y U K F C A К a O I C 9 Ц g S L E C

novess (90) extess (96) catrine (108)
1 2 3 5 6 9 1 2 3 4 6 8 1 2 3 4 6 9

Ь j U I F A в m W O G C о s a R I C

hund (120) cadexeff (168)
1 2 3 4 5 6 8 A 1 2 3 4 6 7 8 C

ъ y e U O K F C Ѻ Ц u g S O L E

catkinove (180)
1 2 3 4 5 6 9 A C

҆ Ь y j a U K I F

kinexoct (240) exsevoct (336)
1 2 3 4 5 6 8 A C F 1 2 3 4 6 7 8 C E G

ӂ ъ Т y m e U O K G Ā Ѻ т Ц u m g S O L

kinoctove (360)
1 2 3 4 5 6 8 9 A C F I

Ʌ ҆ ъ Ь К y j e a U O K

Study of the divisors of the first integers which 
either set or meet records for total number of 
divisors.

3

2

Ь в

ӂ

Ʌ

m

a

O

6

ъ

y

C

2

4

6

҆

A

I K

Ц

8

К

U

о

Ѻ

Ā
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