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Preface

This booklet describes the Reciprocal Divisor Method for Abbreviated Multiplication
Tables, which was developed in March and April 2007. The objective of this booklet is to
describe a set of methods enabling the leverage of the divisors of highly composite
numbers so that memorization of their multiplication tables is minimized. A secondary
objective is to describe how the methods work. The Reciprocal Divisor Method is a
toolset with which exploration of a range of bases between around 16 through 120 is
rendered less burdensome.

I do not know whether this method is or is not my invention. It is shameful to me that I
am no academic and lack the time or patience to properly research the issue. Instead of
academics, my focus has been the development of a technique to facilitate the use of pure
sexagesimal in daily business. Perhaps this development, at best, is akin to Baron
Haussmann’s in 19" century Paris; for this I apologize. I do hope you enjoy the
“boulevards” these techniques might open up for your thought.

The ancient Sumerians and Babylonians, our forefathers, are known to have used
sexagesimal notation and mathematics millennia before Christ. These people knew about
the reciprocal divisor pairs across several sexagesimal ranks, using cuneiform digits and
place notation to record their affairs. Perceivably, our fathers had some knowledge of
multiplication using a method involving reciprocal divisors. They produced and used
sexagesimal multiplication tables which can be viewed today on the internet.

In 1992 T expanded a set of transdecimal digits which I had developed to represent the
larger bases 12, 16, and 20 to include 50 new symbols. This set was called argam
arimaxa, Arabic for “Reema’s numbers”, named after an erstwhile girlfriend. This
symbol set, now simply Argam, has presently grown into the thousands, with special
glyphs for special numbers % (2520 =2° - 3* - 5 - 7) and £ (2187 = 3%), as examples. This
set of symbols was instrumental to the “discovery” of the Reciprocal Divisor Method.

The dozenal system has been and remains an important tool in my work as an architect
and businessman. I believe that dozenal is the optimum base for human general
computation. The next greater integer in the set of superabundant numbers after 12 is 60.
Sixty is even more powerful than twelve, but it cannot be wielded without the ability to
multiply. The ability to effectively multiply in pure sexagesimal is limited by the human
ability to memorize its multiplication table of 1830 products of unique factor
combinations. So the development of a set of methods to render pure sexagesimal
multiplication became a personal holy grail.

It is with a humble layman’s honor that I present to you exclusively this morning the first
draft of this “Reciprocal Divisor Method”. May you climb mountains ever higher with
the tools presented in this simple booklet. I have surveyed the heights myself during the
past few months and am entirely awestruck by the patterns the Lord has laid out within
His numbers, made more evident with the twin toolsets of the Argam and the RDM.

Sincerely, Michael Thomas De Vlieger, 3 October 2007, Saint Louis, Missouri



Part1- Properties of Integers

The Reciprocal Divisor Method for Abbreviated Multiplication tables relies on the
properties of highly composite integers. The set of divisors D, of a given integer r, when
paired {d, d’} so that d - d’ = r, establishes a reciprocal relationship between divisors d
and d’. This relationship can be leveraged so that a fraction of the full multiplication table
of a large base needs to be memorized. The prime composition of the integer r is the
source of that integer’s divisors. The prime factors dictate how the base » will relate to
quantities which will be expressed in terms of r. The totatives of r reveal “gaps in
coverage” that the prime factors of the base cannot reach. These totatives are weaknesses
that must be overcome by the method. Thus, the first section of this booklet deals with
the elementary nature of integers.

Integral Bases

We will consider a handful of integers 7 as radices in this presentation. Integral bases are
exclusively considered because the presentation focuses on practical solutions to the
human perception of numbers. The numbers that will be considered are 8 (octal), 10
(decimal), 12 (dozenal), 16 (hexadecimal), and 60 (sexagesimal). Sexagesimal
proficiency is the target for the Reciprocal Divisor Method.

Prime Composition

Each integer is a product of a set of prime numbers. These numbers are the prime factors
of the integer in question. Each integer possesses a unique set of prime numbers, so that it
is possible to construct a means of identifying each integer by its prime factors.

Eight consists of three instances of the same prime factor 2; it is the cube of 2. Octal
expresses a quantity, probing deeply for content of the prime 2. Because there is no
diversity among the prime factors of eight beyond repetition of the same simplest prime,
eight cannot test for any other content. All the odd digits of an octal number are relatively
prime to eight, and may harbor a prime number besides 2.

Ten is the product of the first and third primes, namely 2 and 5. Because it is the product
of two primes, some mathematicians call ten a “diprime”. Ten does not represent the
second prime number, 3, which occurs more often than 5. Users of decimal, the system
based on ten, do benefit from the fact that ten is one more than nine, the square of three.
This fact means that decimal users have an easy way to “detect” the divisibility by three
of an integer represented in decimal.



8 2’ 8 2 10 2°-5
Octal (Base 8) ! f ®  Decimal (Base 10)

N 12 2°3 16 2
8 4 Duodecimal (Base 12) Hexadecimal (Base 16)
7 6 5
60 2°-3-5
Sexagesimal (Base 60)

Figure 1A. Prime factors of certain integers.

Twelve is the product of the second prime and the square of the simplest prime, namely
22.3. It is thus the simplest expression of the prime factor “shape” Iy’ - T1,. Because the
prime factors involved are the simplest and occur so frequently, these interact often. The
dozenal multiplication table is highly rhythmic and intuitive compared to that of other
small integers. The dozen is naturally pervasive in life, simply because its factors are the
simplest and commonest factors; thus multiples of the dozen are very common multiples.
Dozenal does not support five the way decimal does three; five is relatively prime to
twelve; it is a totative, so detecting divisibility by five in base twelve is complicated.

Sixteen is the fourth power of two; it is sheerly a product of the first prime. Hexadecimal
bundles quantities terms of two, four times over; thus it is a deep study of a given number
for that number’s content of two. Where ten includes two as a factor, offering the basic
ability to test for evenness, and twelve includes the second power of two for additional
power to detect content of two, sixteen focuses its power on two to the exclusion of any
other prime. Each additional hexadecimal digit yields only four additional divisors
because the prime factors of 16 are indeed the same prime number. This slower
compounding occurs despite the fact that this base has four prime factors,

Sixty is the product of the simplest three primes, representing the first prime twice. Thus
sixty’s prime factors are 2>:3-5. Sixty offers the user a diverse set of primes through
which to see the world while putting a little power behind its ability to test for content of
two. Where dozenal yields a “compact” set of prime factors, sixty continues the trend
established by dozenal. In fact, 12 and 60 are the third and fourth integers in the series of
superabundant numbers, integers that represent the peak divisibility among integers up to
twice their size. Sixty is also the reconciliation between those doubled composites of
three, and those doubled composites of five. Ten and twelve meet and intertwine at 60.
Sixty possesses four prime factors, just as sixteen. However, with each additional digit,
sixty compounds divisors at an enormous velocity.
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Divisors

The multiplicative permutations of the prime factors of each integer r yields a set of
integer divisors of base . A number is a divisor of the radix if the number divides the
radix, yielding an integer. The number of divisors (cy) is a measure of the versatility of
the base. The consideration of the sums of the divisors (o;) perhaps is a better indicator of
versatility. We can also consider greater powers of the integers we are examining as
bases to see how their “hundreds” and “thousands” might function as decimal percents do
in today’s society. Figure 1B shows all the divisors for each of the integers considered.
The list of divisors runs from left to right until it reaches ”, then proceeds right to left so
that the divisors which align yield » as a product. In the case of 16, there is a divisor
which is precisely 7 this divisor appears once in the list, and is understood to be
multiplied by another instance of itself to yield ». This method of listing divisors
illustrates symmetry among the divisors of a base. This symmetry, and the paired nature
of divisors, is a crucial concept in the method described in this booklet.

9 1

1 2
10 10 5

Decimal (Base 10)

1 2
8 s 4
Octal (Base 8)

1 2
16 16 8 4

Hexadecimal (Base 16)

1 2 3
12 12 6 4

8 4 Duodecimal (Base 12)

1 2 3 4 5 6
60 60 30 20 15 12 10

Sexagesimal (Base 60)

Figure 1B. Divisors of certain bases. The “reciprocal divisors” of each integer are paired.

Eight has four divisors: {1, 2, 4, 8}; of the integers possessing four divisors, only six is
simpler. Half of the octal digits are divisors, if we regard the divisor » as zero. The sum of
these divisors is 15; when divided by eight, this yields a ratio of 1.875.

Ten has four divisors: {1, 2, 5, 10}. Thus 40% of decimal digits are divisors. The sum of
these divisors is 18; when divided by ten, this leaves us with a ratio of 1.8 or 9/5.

Twelve has six divisors: {1, 2, 3, 4, 6, 12}. Thus, 50% of dozenal digits are divisors. The
sum of these divisors is 28; when divided by twelve this yields a ratio of 2.33... or 7/3. In
both cases, twelve offers a greater divisibility, thus versatility, than decimal.

Sixteen has five divisors: {1, 2, 4, 8, 16}. Only 31.25% of hexadecimal digits are
divisors. Summing these, we arrive at 31; when divided by sixteen, we get 1.9375.
When society wants to improve the “resolution” of their base, they turn to “percents” or
“per-mils”; when we consider the divisors of the second and third powers of 16, we see
that its ability to yield integral divisors winces even in the face of decimal powers.
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Decimal thousandths are superior to hexadecimal’s; this is because the interaction of
dissimilar primes is not confined to the powers of one prime.

Sixty has ten divisors: {1, 2, 3,4, 5, 6, 10, 12, 15, 20, 30, 60}. One fifth of sexagesimal
digits are divisors. Summing these, we obtain the number 168; dividing this figure by 60
yields 2.8 or 14/5.

It’s easy to see that sixty yields far more divisors than any of the smaller bases. We can
see that the sum of the divisors, (o), indicate that dozenal is pretty attractive at a ratio of
2.33, but sexagesimal offers 2.8. This wonderful versatility is not necessarily the result of
a magnitude represented by sixty; base 61 features fewer divisors than any we are
considering. The product of sixty’s prime factors is indeed large, and this is the
paramount barrier to the application of pure sexagesimal in human society.

Compounding Divisibility and Rank

A recent poll determined that the average person perceives fractions written as percents
as being “more accurate” than “vulgar” fractions. This is, of course, incorrect: 1/3 is
precise, whereas 33% is deficient. But this poll underscores the effectiveness of the
technique of using the powers of a base to obtain greater resolution. If we examine the
powers of integers to be considered as bases, we will see that the number of divisors
compound at different rates for different classes of integers. Prime integers will add one
divisor per power. Table 1A shows that integers » which are powers of one prime number
add divisibility at a slower rate than integers with a diverse set of prime factors. Decimal
thousandths, or per mils, offer a greater set of resolved fractions than hexadecimal
fractions carried out to three places. Examination of the trends established in the table for
each r reveals a sequence which is easy to extrapolate to additional ranks.

Table 14 * Extension of Divisibility via Additional Places

Prime 1 Place 2 Places 3 Places
Factors oo(r ") oo(r?) oo(r°)
5 5 2 3 4
6 2-3 4 9 16
8 2} 4 7 10
10 2-5 4 9 16
12 22.3 6 15 28
16 24 5 9 13
18 2-3° 6 15 28
20 22.5 6 15 28
24 233 8 21 40
27 33 4 7 10
30 2-3-5 8 27 64
36 2232 9 25 49
60 2°-3-5 12 45 112
360 2°-3%-5 24 105 280
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8 10 12 16
1 10 1 10 1 10 1 10
2 4 2 5 2 6 2 8
3 4 4
1 100 1 100 1 100 1 100
2 40 2 50 2 60 2 80
4 20 4 25 3 40 4 40
10 5 20 4 30 8 20
10 6 20 10
8 16
9 14
10
1 1000 1 1000 1 1000 1 1000
2 400 2 500 2 600 2 800
4 200 4 250 3 400 4 400
10 100 5 200 4 300 8 200
20 40 8 125 6 200 10 100
10 100 8 160 20 80
20 50 9 140 40
25 40 10 100
14 90
16 80
20 60
23 54
28 46
30 40

Figure 1C. The number of divisors of " increases as x increases at a faster rate for integers which have a
diverse set of prime factors. Even though 12 has fewer prime factors than 16, the dozenal prime factors are
more diverse. Even decimal wins out over hexadecimal by the time three digits are in play. The divisors are
arranged in reciprocal pairs such that d - d’=r, and are expressed in base r.

Table 1A shows that divisibility compounds at rates which are the same for integers
which have the same prime factorization “template”. Thus, integers 12, 18, and 20, each
being an instance of the “template” ( II,” - I1, ), exhibit an addition of 9 divisors when the
number of digits in a given figure rises to 2 from 1, and an addition of 13 divisors when
the number of digits in a given figure rises to 3 from 2.

Primes add 1 new divisor for each additional place, starting with the 2 divisors for r'. The
“diprimes”, composite integers of the “template” ( Iy - II; ), have (r + 1)* divisors for
their x-th power.

The powers of primes which follow the “template” of “templates” ( Ily" ) add x divisors
for each new digit to the 1 divisor for 7° = 1.
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60

1 10 1 100 1 1000
2 G 2 ¢0 2 &00
3 ] 3 20 3 200
4 Y 4 €0 4 Q00
5 ¥ 5 50 5 %00
6 (4 6 20 6 200
8 78 8 760

9 69 9 690

4 60 (4 600

¥ 50 ¥ 500

Y 40 e 400

P 34 £ 340

2 32 R 320

2 30 2 300

¥ 28 ¥ 260

q 2% 9 2%0

5 20 3 202

2 19 3 200

b 1é 3 163

4 12 2 190

¥ 1e )| 160

¢ 1% 4 120

10 ¥ 1e0

¢ 130

2 169

10 100

14 3@

1% co

1e 50

12 €0

1é 90

19 20

13 zd

20 ¢0

25 £%

2@ 8

2% GO

Figure 1D. The sexagesimal first, second, and third rank divisors, expressed in a sexagesimal single digit
notation. This simply illustrates the further compounding of a more diverse set of prime factors.

Table 1A shows the divisors for each integer per the number of places or “rank” used in a
figure. The rank is another name for the power of an integer, thus /* represents the second
rank. The square of 12 or 144 is the second rank of twelve. Divisors pertaining to the
square of an integer are called “second rank divisors”. Dozenal clearly possesses more
divisors when two dozenal digits are used than any base of comparable size. Thus, the
dozenal “percent” or per gross resolves 15 fractional denominations in two digits.
Sexagesimal “percents” resolve 45 fractional denominations in two digits.
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Magnitude and Human Scale

One thing that becomes obvious is that the magnificent versatility of sixty comes at the
price of its large size. Studies have illustrated that the human mind can deal effectively
with group sizes of around 7 to 12 objects, and that a group size of 60 is simply beyond
the ability of the great majority of people to manipulate. The usage of a base as large as
sixty suggests the application of a mixed radix, usually 6 on 10, to yield a less pure form
of sexagesimal. We’ll return to this consideration shortly.

Reciprocal Divisors

We can arrange the list of divisors D, for each integer in such a way that pairs of divisors
can be created that, when the members of the pairs are multiplied together, yield the
integer ». We will refer to such pairs of divisors as reciprocal divisors in this
presentation. The formulae relevant to reciprocal divisor pairs are:

d-d'=r; d=rld

By these definitions, a reciprocal divisor d’ can be determined by using the ratio of the
base r to the divisor d. The notion of reciprocal divisors and RDPs is key to the process
described in this presentation.

The reciprocal divisor pair {1, r} is an element of the set of divisors D, for every integer
r. This pair is called the “unity-identity” pair of divisors.

Octal features two reciprocal divisor pairs, {{1, 8}, {2, 4}}
Decimal has two reciprocal divisor pairs, {{1, 10}, {2, 5}}.
Dozenal has three RDPs, {{1, 12}, {2, 6}, {3, 4}}.

Hexadecimal has 22 RDPs {{1, 16}, {2, 8}, {4}}. Four multiplied by itself yields
sixteen. The divisor set {4} actually represents four multiplied by itself.

Sexagesimal features six RDPs, {1-60, 2-30, 3-20, 4-15, 5-12, 6-10}.

Totatives

Each integer r greater than one possesses a set of integers T, which are lesser than r that
are relatively prime to ». Two integers are said to be relatively prime when the lesser
integer ¢ does not divide the greater integer » to yield an integer quotient. Relatively
prime digits are referred to as fotatives. The least common multiple of an integer » and its
totative ¢ is ( - £). Because of this, totative digits in base » do not reach a multiple of r
until they are multiplied by r. The totatives are the “weird numbers” that are not covered
by the multiplicative permutations of the prime factors I1, of . The number of totatives of
a given integer is given by the Euler totient function ®,. A smaller totient function value
indicates a base r that features more factors which are divisors and factors which are
products of one or more divisors. Prime numbers IT have a totient function value IT - 1.

Every integer possesses a pair of totatives To = {1, (r — 1)}. These totatives exhibit
patterns in the multiplication table M, of » which are relatively simple to understand.
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The integer 1 as a factor is very special. Note that the totative 1 of every integer 7 is also
a divisor of every integer ». Thus, 1 is the only divisor of any integer base » which is also
a totative. Like all divisors d of base r, 1 exhibits a cycle of products which repeat within
one multiple of ». Like all totatives ¢ of base », 1 yields a multiple of » as a product only
when 1 is multiplied by r.

Figure 1E lists the totatives of the integers considered in this section. Note that the
totatives also exhibit symmetry. The lists place the totatives lesser than  / 2 above those
greater than  / 2. The smaller totatives run left to right, while the greater run right to left.
This method of listing totatives places the totatives in pairs whose sums are 7. The first
pair, read vertically, is the totative pair To = {1, ( - 1)}, which is a subset of the totatives
T, of every integer base r. This symmetry is evident in the multiplication tables for their
respective bases, and is an important tool.

Eight possesses four totatives {1, 3, 5, 7}, which are all the odd octal digits, because 8 is
a power of the prime factor 2. The totient function ® for 8 is 4. The totative ratio is ®, / r
= 4/8 or one half.

Ten has four totatives {1, 3, 7, 9}. The totient function of ten is 4; the totative ratio is 0.4
or 2/5.

Twelve also has four totatives {1, 5, 7, 11}. The totient function of twelve is 4; the
totative ratio is 0.333... or 1/3.

Sixteen has eight totatives, which are the odd digits, because it is a pure power of a prime
number. Its totient function is 8, its totative ratio is 0.5 or Y.

Sixty has 16 totatives {1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59}; its
totient function is 16. Sixty’s totative ratio is 0.266... or 4/15.

This study shows that dozenal resolves two thirds of its digits, while decimal resolves
60% of its digits. Sexagesimal resolves 46 of its digits, or more than 73%.

0 1 3 9 0 1 3 s 0 4 1 5
7 ! 8 7 5 8 2 10 9 7 X 2 12 1 1 7
° > Qctal 7 s Decimal 98 .’ Duodecimal
° °  (Base8) o5 4  (Base 10) (Base 12)

f 1 3 5 7
; c, 16 s 3 01 o

‘. .. Hexadecimal (Base 16)

B 60 1 7 11 13 17 19 23 29
: 59 53 49 47 43 41 37 31
Sexagesimal (Base 60)

Figure 1E. Totatives of certain bases.
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Table 1B » Summary of the Properties of Selected Integers * 6, 8, 10, 12

0
. . Senal 2-3
1 2 1
6 6 3 5
4 2 DIVISORS TOTATIVES
3
=36 Py =21 co=4 o1 =12 O=2
36/100 21/55 4/8 5/6 2/6
36% 38.2% 50% 83.3% 33.3%
r*/ 10* Puey/ Puio) oo/r [o1- (r+1)]/r O/r
Octal 73
1 2 1 3
8 8 4 9 7
DIVISORS TOTATIVES
=64 Py =36 co=4 o1=15 O=4
64 /100 36/55 4/8 6/8 4/8
64% 65.5% 50% 75% 50%
/”2/ 102 I)M(,-)/ I)M“()) (5()//’ [(5[ - (1‘+1)]/r D/r
Decimal 2-5
1 3
10 110 g o 7
TOTATIVES
DIVISORS
# =100 Py =55 oo =4 o1 =18 O=4
100/ 100 55/55 4/10 7/10 4/10
100% 100% 40% 70% 40%
I‘z/ 102 PM(,-)/ PM(](» G()/I’ [G[ - (r+l)]/r O/r
Dozenal 22.3
1 2 3 1 5
12 12 6 4 11 7
DIVISORS TOTATIVES
=144 Py =78 co=6 o1 =28 O=4
144 /100 78 /55 6/12 17/12 4/12
144% 141.8% 50% 141.7% 33.3%
1”2/ 102 PM(,,)/ PM(I()) 00/7’ [Gl - (1‘+l )]/r O/r
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Table 1C * Summary of the Properties of Selected Integers * 14, 16, 20, 60

3 0

¥ > Tetradecimal 2.7
‘ } 1 2 1 3 5
¢ 4 14 14 7 13 11 9
9 5 DIVISORS TOTATIVES
8 5, 6
=196 Pu=105 o9=4 o1 =24 D=6
196/ 100 105/ 55 4/14 10/ 14 6/14
196% 190.9% 28.6% 71.4% 42.9%
/”2/ 102 I)M(,-)/ I)M“()) (5()//’ [(5[ - (1‘+1)]/r D/r
Hexadecimal 24
1 2 1 3 5 7
16 16 8 4 15 13 11 9
DIVISORS TOTATIVES
=256 Pu=136 o60=5 o1 =31 =38
256 /100 136/ 55 5/16 14/16 8/16
256% 247.3% 31.25% 87.5% 50%
1 10* Puey/ Pumaio) oo/r [o1- (r+1)]/r O/r
Vigesimal 22.5
1 2 4 1 3 7 9
20 20 10 5 19 17 13 11
DIVISORS TOTATIVES
=400 Pu=210 o60=6 o1 =42 =38
400/ 100 210/55 6/20 21/20 8/20
400% 381.8% 30% 105% 40%
r/ 10* Puey/ Pumaio) oo/r [o1- (r+1)]/r O/r
Sexagesimal 22.3.5
60 1 2 3 4 5 6 1 7 11 13 17 19 23 29
60 30 20 15 12 10 59 53 49 47 43 41 37 31
DIVISORS TOTATIVES
Pv=1830 oo=12 o; =168 d=16
3600/ 100 1830/ 55 12/ 60 107/ 60 16/ 60
3600% 3327% 20% 178% 26.7%
I‘z/ 102 PM(,-)/ PM(]()) G()/l’ [G[ - (r+l)]/r O/r
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1| 2
2 4
3 | 6
4 8
g | X
6 10
Z | 12
8 14
9 1o
X 18
£ 1X
10 20

10
13
16
15
20
23
26
29

30

10
14
18
20
24
28
30
34
38

40

1.3
18
21
26
2%
34
39
42
47

50

10
16
20
26
30
36
40
46
50
56

60

12
19
24
2%
36
41
48
a3
5X
65

70

14
20
28
34
40
48
54
60
68
74

80

16
23
30
39
46
33
60
69
76
83

90

18
26
34
42
50
S5X
68
76
84
92

X0

1X | 20
29 | .30
38 40
47 | 50
56 60
65 | 70
74 80
83 | 90
92 X0
X1 | 20

¢0 100

Figure 2. The dozenal multiplication table.
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Part 2 - The Multiplication Fact Table

Introduction

For each integer , we can assemble a matrix of values that can be memorized or referred
to in order to multiply in that base. The matrix consists of rows and columns that are
headed by the factors. The head cells run the full scale of the set of digits F, of base r.
The products p(f1, f2) of any two factors fiand f; appear at the cell in the matrix where the
line of products for factor f; intersects the line of products for factor f,. The elements of
the matrix represent every product p for each digit F, if base r. This is the familiar
multiplication table we learn in primary school.

Most people are familiar with the decimal multiplication table. Many observe how
products in the 9 column (or row) have unit digits that decrease while the group digits
(the tens, in the case of decimal) increase, and that the sum of these two digits is always a
multiple of nine (for products lesser than or equal to 9 - 10). Another observation that
may be somewhat apparent is how the fives “make ten” for every even factor. This is an
exhibition of the cyclical nature of a factor which is also a divisor of the base.

One of the most striking qualities of the dozenal multiplication table is its wonderful
rhythmic simplicity. Much of the table appears to “come out”. There is a certain rhythm
in the table that decimal largely lacks. It is this cyclical quality that we can capitalize on
to abbreviate the multiplication table.

For the purposes of analyzing the multiplication table, definitions are given below which
might facilitate the discussion of “rhythm” and the interrelatedness of the reciprocal
divisors of a base.

Reciprocal Divisor Pair. The set of divisors D, of base » can be arranged so that any
divisor d can be multiplied by another divisor d’ to yield the product .

r=d-d’; d=r/d;, d=rld
{d, d’} is a subset of D,

It is important to note that, for bases r whose square root is integral (that is, for r that is
the square of another integer) there exist divisors d which serve as their own reciprocal
divisor. Thus, if 7 is an integer, then there is a d = »” for which {d, d’} exists, and in this
case,d=d’.

Multiplication Table. The multiplication table M, of base r, for the purposes of this study,
is the matrix of all the products p of all the positive integer factors f which are lesser than
or equal to the base r, written in base 7.

Period. A period P, for base r is equal to the integer . The period is useful in analyzing
the rhythms present in a multiplication table; of particular interest is any p for which p/r
is an integer.

Cycle. A cycle refers to the set of unit digits of products that proceed from one multiple
of r to another multiple of 7, inclusive of the digit zero, which is the start of the cycle. For
5 in base 10, the cycle C(5, 10) = {0, 5}.
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Cycle Length. The cycle length A is the number of products in a cycle. The cycle length
for five in base ten is two.

Phase. A phase refers to the range determined by set of unit digits of products which
ascend or descend between points of inflexion as the co-factor f” increases. A phase is a
cycle when the points of inflexion falls on a period.

Mate. This term refers to the other divisor in a pair of reciprocal divisors. An example of
a “mate” for the dozenal divisor 3 is 4; this is the reciprocal divisor pair {3, 4}, a subset
of the divisors of the integer 12, {{1, 12}, {2, 6}, {3, 4} }.

O 6 4 30203%4%b9%01
Giﬁaalljlz“sz
62 a 6 8 %@12 1 16 18 | 1x
4 |3 6 913 16 1923 26 29
3 8! 14 18! 24 28’ 34 38
(T
2
(T

G318 202628343942 47

6 162 .364656

71219 242836414853 +5X" 65

3| 8 1ad 20 ) 28 34 @ 48 54 @ 68 74 @
sl 9 16 2 (30)39 46 53 @ 69 76 83 @
6/ | x 18 26 31 a2 50 68 76 84 92 @

1X2938475665.8'-8%2X1

00000000000T

Figure 2A. The dozenal multiplication table, one which features a number of cyclical patterns among
products of a given factor, attributable to the high divisibility of twelve. The patterns of both axes are
shown in this diagram. Totative phases are ignored.
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Rhythms in the Multiplication Table

The multiplication tables of any integer base r feature patterns which are both
symmetrical and linked to the divisors D, and factors F, of the base ». The patterns
present in a multiplication table can be used to help determine the ease of working
computationally within a base. Highly patterned multiplication tables can mitigate the
difficulty memorization may present. More importantly, these patterns are clues to how
the multiplication table might be abbreviated.

O 50%2%0%0 1 06 4302053%h%%®0

1 2 3 4 5 6 \7/8 9 | X

[\e

112 B 4 |5 \6 7 [\ 8

N
=

2 4 6 8 /X 12 14 16 18
3 6 13 16 19 23 26
4 . 14 /18 . 24 28 . 34

1=
N
O

(1)
512 68121416
(1)

3 /6//9 12 15 |18/ 21 24

w
[oe]

12 ‘24 28 32
Akt ¥io

Q|7 14 21 /28 35 42 49

5 X 13 18 21 26 22 34 39 42 47

7 12 19 24 /22 36 _41 48 53 |5X
8

~
N

8 14.28 34.48 54.6
X 18 26 34 425X 68 76 84

1X| 29 38 /47, 56 65 74 83 92

o
w

@@9@@9@9@ =

Sl 8 16 24 3248 56

@] 9 18 27 36 45 54 63

O
[\

1 Lo )20 {30 X 40 X 50 L 0 70 @ 20 (30 )(40 (50 )60 (70 (20 @@@@
Figure 2B. Patterns in the decimal (left) and dozenal (rvight) multiplication table. The color green

represents factors governed by the divisors {2, 5}, blue by {2, 6}, and red by {3, 4}. Periods are circled.

The totative factors are shown in gray. The totative divisor {1} is shown in solid gray, while the totative {r -

1} has a reciprocal cycle that is shown outlined in gray. Other totatives are simply indicated by a gray

stroke. Note the presence of “phases” within the cycles of the decimal factors 4 and 6, which are

completely absent from dozenal.

Multiples or First-Rank Digits

All integers r reach a multiple of » for every co-factor f” of the factor f. = ». This is
evident in Figure 2B. The products of “10”, regardless of which base is in play, yield
multiples of ten for each co-factor in the “10”-line. These multiples of » are called periods
P in the multiplication table. Periods indicate resonances between the factors F, and r
itself. Totative factors f; do not possess products pp which are periods until f/” = (f;- r).

Any instance of a period among the products of a factor f'is an indication that factor f'is
either a divisor d or a non totative non divisor. These factors are special, because periods
in their product lines hint at modularity which can be leveraged in the possible
abbreviation of the multiplication table.

It is interesting to observe that the arrangement of periods in the multiplication tables of
composite integer bases » is symmetrical. The symmetry seems to be organized about the
axes r / 2, or even about lines which join the squares. Some of this symmetry has to do
with the fact that the nonsquare products are stated twice in the traditional square table.
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Units or Zero-Rank Digits

Examination of Figure 2B reveals that the unit digits of those factors f lesser than 7/2
increase, while those greater than 7/2 decrease as the co-factor f” increases. This is true
for any integer r.

Phases.

All factors will generate a range of end digits of products which ascend or descend until
they reach a point of inflexion p;. A point of inflexion lies between the “jump” from the
local lowest and highest unit digits for a given factor. See the products 8 and 12 of the
factor 4 and the co-factors 2 and 3, respectively. This point lies at a fractional point
between the two adjacent products. Phases are not coincident with a period at one or both
inflexion points.

The total number of phases per » co-factors f” is equal to the factor f'itself.

When the factor f is greater than r / 2, the phases will appear to descend rather than
ascend. This is because the difference between f and r is now lesser than r / 2, and the
unit digits seem to “count down” rather than climb toward inflexion.

All factors f exhibit a total number of phases in the table equal to the factor f itself. Thus
all totative factors f; possess a number of phases equal to the totative factor f; itself.

The phases appear symmetrical about the factor » / 2 for even r, or a point at r / 2,
between two factors for odd r. The phases of the factors lesser than » / 2 will be seen to
progress as the co-factor f” increases. The phases of the factors greater than » / 2 will
seem to regress as the co-factor f” increases. In this way, the factors (r / 2) — f'have equal
but opposite phases to the factors (»/2) + 1.

Cycles.

Some factors have phases which terminate at a period or multiple of » at products less
than (- ). Such factors are not totatives of 7. Those factors which are divisors of the base
feature cycles that are exactly one period in length. Factors which are a multiple m of a
divisor have cycles which require m periods to complete. The totative factors return to a
multiple of a base » only when they are multiplied by r. These three facts are paramount
in the abbreviation of a multiplication table.

The cycles of some non totative non divisor factors f, include multiple phases. This
pattern happens in many bases but is curiously absent from the dozenal table. The
number of products in a cycle, the number of periods per cycle, and other patterns in the
multiplication table are clues to how the table might be abbreviated so that multiplication
and division can function within the larger bases.

The decimal table, like those of most other bases, feature non totatives non divisor factors
which exhibit phases within their cycles.

The dozenal multiplication table is rare in that every factor that is not totative is free of
phases within cycles. Only the dozenal totatives possess phases which terminate on a
period only when the co-factor is a multiple of the base r. This fact perhaps renders the
dozenal table that much easier to memorize.
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The presence or absence of phases within cycles does not affect the usefulness of non
totative non divisor factors, nor the possible abbreviation of the multiplication table.

Let’s examine the products of the factor 3 to examine a cycle in depth. After a cycle of 4
products, 3 returns to a multiple of twelve. There are three such cycles within the three
line; i.e. nc(3, 12) = 3. This is because 3 cycles of 4 products each equal twelve products.
Figure 2C illustrates the cycle as a band of red between two products which terminate
periods, which are circled. This shows that the cycle is coterminous with a period.

4 6 B8 ¥ | 10|12 |14 | 16| 18 | 1X | 20 14 16 18 1X 20

13 16 | 19 | 20 23 | 26 | 29 | 30 20 23 26 29 30

24 28 30 34 38 40

18 20 24 28 30 34 38 40
3 |21 | 26 | 28 | 34 -39 | 42 | 47 | 50 34 39 42 47 50
26 30 36 40 46 50 S& 60 40 46 50 56 60
22 | 36| 4L 48 | 53°|.SX |65 |70 48| 53 | 5X | 63 | 70

34 40 48 54 60 €8 74 80 54 60 €8 74 80

39 46 53 60 69 76 83 90 60 &9 76 83 90

18 26 34 42 50 5X 68 76 84 92 X0 68 76 84 92 X0

1X 29 38 47 56 65 74 B3 92 X1 £0 5 74 B3 92 X1 £0

20 30 40 S50 e0 70 8O 90 X0 £0 100 ) | 80 90 X0  £0 100

Figure 2C. An example of a cycle in the “three line” Figure 2D. Four factors feature cycles that run one
of the dozenal multiplication table which runs one period in length. These factors are the divisors of
period in length. Note that this analysis could twelve. The divisor pair {2, 6} is indicated in blue,
alternatively be conducted horizontally. while the pair {3, 4} is shown in red.

Classification of the Factors f of Any Integer Base r

There are three classes of factors f for all integer bases 7:
1.

Factors f; which are divisors d of the integer r. There is a pair of divisors {1, r},
called the “unity-identity” pair, which is a subset of the set of divisors D, of every
integer . The “unity-identity” subset of divisors feature simple multiplication
rules which do not require a multiplication table. The divisor 1 is also totative.
Composite bases have at least one more divisor than the “unity-identity” pair of
divisors.

Factors f; which are totatives ¢ of the integer r. There is a pair of totatives {1, -1}
which is a subset of the set of totatives T, of every positive integer r.

Factors f, which are neither divisors nor totatives of the integer . These factors f,
can be divided into two subgroups. These factors relate to base r in a ratio f, /
which when simplified yields a numerator m, and a denominator d’. The
denominator d’ is the reciprocal divisor of the related divisor d;. The factor f, is an
integer multiple of the related divisor ds, and may also be a multiple of other
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divisors. The relationship of the integer m, to the base r divides the factors f,
which are neither divisors or totatives of base .

a. If m, is also a divisor d of base r, or a multiple composed entirely of
divisors d of base r, the factor f, is termed an “effective factor £.”. The
effective factors f. are powerful tools for multiplication given an
abbreviated multiplication table.

b. If m, is also a totative ¢ of base 7, or a multiple that involves any totative ¢
(except the totative 1), the factor fp is a “deficient factor f,”. These factors
/b are treated in the same manner as the totative factors f;.

These kinds of factors will be examined in detail in the following subsections. The
factors are then placed in classes as shown in Table 2A, which relate to the Operation
Classes described in the next section. The point of classifying the factors found in the
multiplication table of base  is to help determine which “tool” or method will help solve
a given problem.

Table 24 « Classification of Factors

FACTOR
CLASS

(1, r} A

“UNITY-IDENTITY” DIVISOR FACTORS

FULL SET OF

DIVISOR FACTORS | Dr - {1, r } B

EFFECTIVE DIVISOR FACTORS

f :f ISWHOLLY —_—
FI" _ _ 5 J€ 71 WHERE 1L, o ubosen oF L C

FULL SET OF EFFECTIVE NON TOTATIVE

FACTORS NON DIVISOR FACTORS
FULL SET OF FACTORS
NEITHER DIVISOR f = f CONTAINS ANY
—_——
NOR TOTATIVE N D n WHERE mn TOTATIVE FACTOR

DEFICIENT NON TOTATIVE

NON DIVISOR FACTORS

__F,=T,

FULL SET OF
TOTATIVE FACTORS
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Factors which are Divisors of the Base (f,)

The factor 3 happens to be a divisor of 12. Further examination of the other factors f; that
are divisors of twelve leads to some useful observations.

Cyclical Unit Digits in Products of f,

These factors feature products with cyclical unit digits; the number of elements of a set
that consists of the range of unit digits observed for any product of the factor defines the
cycle length. The cycle length for the factor 3 is 4 elements. Drawing a line from the
product /0, for the factor 3 to the next multiple of one dozen is possible. Thus the cycle
of these factors which are divisors will span from one multiple of the base to the next.
This is true for the factor 3, as well as any other factor that is a divisor of 12. This means
the number of cycles per period for any factor that is also a divisor is always 1. If we
count the cycles in the 3 line, we see there are precisely 3 cycles. Checking the 4 line, we
see four cycles of three elements each. Thus the number of cycles present in the
multiplication table for the factor which is also a divisor equals that divisor itself.

Divisors exhibit cycles which span precisely one period in the multiplication table. This
is because the divisor d as factor f; eventually encounters the reciprocal divisor mate d’;
when that occurs, the product of d and d’ is r.

Complementary Relationships within Reciprocal Divisor Pairs

The divisors d of a base r, as shown previously, can be paired {d, d’} so that the pair,
when multiplied together, yields the base . These mated divisors that inhabit the same
reciprocal divisor pair exhibit complimentary cycles. Dozenal possesses two sets of
reciprocal divisors which are not unity-identity:

112,65, {3, 4}}

Figure 2D illustrates cycles and their lengths for the factors in the dozenal multiplication
table which are also divisors. The factors of twelve feature cycles that run one period in
length. Each divisor d features a cycle which repeats after d” products. The factor d is
indicated by the first number in each column. The reciprocal divisor d’ of those factors
which are divisors appears in color above d in the table. Base twelve has two effective
divisor pairs; divisor pair {2, 6} is indicated in blue, while the pair {3, 4} is shown in red.
The divisor pair {1, 12} is the “unity-identity” pair, which is special, and will be
discussed later.

The cycle length for the factor 3 shown in Figure 2C is 4; 4 happens to be the reciprocal
divisor “mate” for 3. Figure 2E shows that the cycle length of a factor which is also a
divisor of base equals that divisor’s reciprocal divisor mate.

Another quality associated with factors f; which are also divisors of the base is illustrated
in Figure 2F. Each factor which is also a divisor of the base exhibits unit digits in their
products which ascend as the co-factor increases, until the unit digit is reset when the
products reach a multiple of the base. Thus, the unit digits of all the products of factors
which are also divisors of the base within a given cycle vary directly with the co-factor.
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Table 2B summarizes values associated with factors f; for the dozenal multiplication
table. The inextricable relationship between reciprocal divisor mates should be evident.

Table 2B » Summary of the Properties of Dozenal Divisor Factors

Factor, f;=d

Cycle Length, A
Number of Cycles, nc
Reciprocal Divisor, d’

N oI
DD w
w D W
N o DN o

The “Unity-Identity” Divisors as Factors

Recall that the divisors of twelve include a pair of divisors {1, 12} which we did not
include in the set of “effective divisor pairs” because these were special. This is the
“unity-identity” pair of divisors. All integers possess the unity-identity pair of divisors.
This pair simply illustrates that, among the set of divisors of an integer r, a relationship
between one and the integer 7 itself exists.

Factors which are Unity (f;)

The factor 1 is a special case; 1 is both a divisor and relatively prime, thus a totative of all
integers. Because 1 is a divisor, it exhibits the five hallmarks of a divisor described in the
previous section. Its cycle repeats in exactly one period. The number of cycles present in
the table is equal to the factor 1. The cycle length of the factor 1 is equal to the reciprocal
divisor of 1, which is 12. The unit digits of the products of 1 increase in a cycle that is
precisely one period in length. The factor 1 is also totative, which means that the factor
reaches a multiple of the base only when the factor is multiplied by the base. Thus the
factor 1, though it is a divisor, is more importantly a totative, and is classified with the
factors which are totative. Totative factors will be covered later. In practical applications,
the “one” line is used as an index. Otherwise, the “one” line can be completely ignored,
because multiplication of any factor by one yields that factor.

Factors which are “Identity” (f;)

The factor £, which is equivalent to the base 7 is also a divisor. In the case of dozenal, the
factor f, equals 12. Like every divisor except 1, f, is not relatively prime. The factor f,
exhibits four of the five hallmarks of all factors f; which are divisors. The cycle of £, is
exactly one period in length, because one period P equals f,. The number of cycles
present in the table is equal to f.. The cycle length of the factor f,, which is also the
divisor d, is equal to the reciprocal divisor d’, which in the case of £, is 1.

The factor f. does not obey the fifth observation for factors f, which are divisors. The
products p of the factor f. do not have unit digits which ascend through the one-period-
long cycle. This is because the cycle length is 1; the cycles contain only multiples of 7,
and thus all unit digits are zero. This is what makes f, a special case of 1.

In practical applications, the products of factor f, are easily generated by shifting the
digits of any factor leftward, and writing a zero in the units place. This makes the
inclusion of the products of f, unnecessary.
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Factor Classes for all f4

The factors f; which are divisors d of base » can be divided into two types or classes. The
first class, Factor Class A, consists of the set of f; {f1, f;}, the “unity-identity” pair of
divisors, for which all products p can be intuitively computed. The second class, Factor
Class B, consists of the “effective divisors” of base r, which include the entire set of
divisors except {fi, f-}. These divisors can be leveraged to compute products beyond the
first period in the multiplication table, enabling the abbreviation of the table which will
be described in the next section. Factor classes will be discussed later as well.

Summary - Divisor Factors

Factors f; which are divisors d of the base r, having reciprocal divisors d’, exhibit the
following in a multiplication table M, of base r:

1. The unit digits v, of the products p of the factors f; that are also divisors d of base
r are cyclical. The cycle C of any factor is the set of unit digits of the all the
products p of that factor.

2. The number of periods per cycle or m, for any factor f; that is also a divisor is
always 1. The cycle C will span from one multiple of the base P, to the next
P+ ).

mg= (P/C)d =1

3. The number of cycles present in the multiplication table, nc, for the factor f;
which is also a divisor d of base r equals f; itself.

nc(fa) =fa=d

4. The cycle length A of a factor f which is also a divisor of base r equals that divisor
d’s reciprocal divisor mate, d’. The cycle length A is less than r, and r varies in
direct integral proportion to the cycle length A.

Kd=d’

5. The unit digits v, of all the products p in a given cycle C(f;) increase within a
cycle that is precisely one period in length. These unit digits v, increase as the
product p increases, until the product p is a multiple of the base . If the factor fis
equal to 7/2, the unit digits will be precisely 7/2 or 0 mod », which can be read as
neither increasing nor decreasing.

All v, (except for f; = r/2) o p within each C

6. The “unity-identity” reciprocal divisor pair {1, r} is special. The divisors 1 and r
are considered separately from all other divisors; the remaining divisors D, in the
set of divisors D, of base » comprise the “effective divisors” of base r.

D, =D, + {1, r}

7. The divisor 1, a divisor of every base r, is also always a totative of every positive
integer .
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8. The products p of the factor f. do not have unit digits which ascend through the
one-period-long cycle. This is because the cycle length is 1; the cycles contain
only multiples of 7, and thus all unit digits are zero.

9. Factor Class A contains the factors f; and f;, the “unity-identity” divisors {1, r}.
Products involving Factor Class A are computed easily and do not require a

multiplication table at all.

10. Factor Class B contains the set of factors f, which are “effective divisors” D..
Problems involving Factor Class B can employ the reciprocal divisor “mates” to
compute products beyond the range of an abbreviated multiplication table. This
process, along with the abbreviation of a multiplication table, will be described in

a later section.

Higher Rank Divisors

The reciprocal divisors used in this booklet are merely the first rank divisors of a given
base r. That is, they are the divisors of 7. As seen in Table 1C, the number of divisors in
higher ranks compounds. The Reciprocal Divisor Method can be applied using two or
more digits at once using higher rank divisor pairs. For example, the factors eight and
nine can use Operation Class B directly, recognizing their reciprocal divisors are 07;30:
and 06;40: respectively. Figures 2E and 2F show some of the higher rank sexagesimal
divisors, and their cycles. These higher rank divisors may aid the division process,
especially when the problem’s divisor is recognized as one of the resonances of a higher
rank divisor. These higher rank divisor pairs are beyond the scope of this booklet.

731000 223

N/ 489

82
343 C64
810 920
28 ev:
502 k39
30 00

200 1¢q ggp 80

Figure 2E. The sexagesimal third-rank divisor 27:
and its resonances. Ninths and thirds are
prominent.

Xe 1¢
N #0 30 46

F0 50
¥z | oz
£0

Figure 2F. The sexagesimal second rank divisor 40:
and its resonances. Halves, quarters, fifths, eights,
tenths, and twentieths are subcycles.
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Factors which are both Nondivisors and Nontotative (f.)

The factors which are divisors of the base account for only part of the rhythm seen in the
multiplication table. Using the factor 9 in the dozenal multiplication table as shown by
Figure 2H, we can see that its products exhibit a cyclical pattern. This is despite the fact 9
is not among the divisors of 12. Nine is a member of a set of factors which are neither
divisors nor totatives of the base, the elements of which we will call f,. Subtraction of the
union of the sets of the divisors and the totatives of twelve from the set of all factors in
the dozenal multiplication table yields, by definition, the set of the factors in this class:

Fv—(D,UT,)=F,
Fio—{1,2,3,4,6,12}U{1,5,7, 11} = {8,9, 10}

Thus, there are three such factors f, for the dozenal multiplication table: {8, 9, 10} (the
elements given in decimal notation.)

89| X |% |10 £ |10
14 16 18 1X 20 X |20
20 23 26 29 30 29 .30
1 28 30 34 38 40 38 40
34 39 42 47 50 47 50
40 46 50 56 60 56 60
48| 53 | 5X | 63 | 70 65 70
54 60 €8 74 80 74 80
60 &9 76 83 90 83 90
68 76 84 92 X0 92 X0
5 74 83 92 X1 20 X1 20
B0 90 X0 £0 100 £0 100

Figure 2G. All cycles for factors tqy which are also
divisors are shown. Each cycle for the divisor fy
repeats fy times before reaching (ty - 1) at the end of
the line. In this figure, the unit digits of the products
in a cycle increase, cycling once per period: this is
a hallmark of factors t4 which are also divisors.

Figure 2H. Factors f, which are both nondivisors
and not totatives feature cycles which repeat given
multiple periods. These factors f, are themselves
multiples of factors that are divisors f4. The factors
f, have cycles which include the number of products
equal to the reciprocal divisor mate of d, d’. The

cycles repeat every m periods. The number d’ / m is
written above the factor f,,.

There is an important difference between the cycles of factors which are divisors of the
base and factors which are neither divisors nor totatives of the base. The latter factors
have cycles that span multiple periods, rather than spanning precisely 1 period. So the
cycle for the 9 line spans 3 periods. If we look at the other factors f, in the multiplication
table to confirm from where the 3 originates. The factor 10 (X; in dozenal notation) has a
cycle that spans 5 periods. The factor 8 has a 2 period cycle. Nine has an integral
relationship to the dozenal divisor 3; it is 3 times the factor 3. This integral relationship
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can be represented by the multiplier m,. Thus, the number of periods in a cycle for all
factors f,, equal m,,.

Examining the factor 8 in the table, we see that a factor f, can be related to multiple
divisors; 8 is 4(2), and 2(4). The divisor to regard as the “significant divisor” d, can be
found using the following routine. Express the division of the factor f, by the base r as a
vulgar fraction: in the case of the factor 8 in base 12, this is 8/12. Simplify the fraction to
2/3. The denominator of the simplified fraction is the related divisor d;. The numerator of
the same simplified fraction 2/3 is the multiplier m,,.

SIMPLIFY[ f,, / | = m,, / d;
The factors £, fall into two camps.

Factor Class D. The factors f, for which only d; is a divisor of », with an m, that is
totative, require the use of the totative m, to compute products. This limits the efficacy of
any method of multiplication table abbreviation that relies on the leverage of the divisors
of the base to compute digits beyond the abbreviated table. An example of such a factor f,
in dozenal is the factor 10, for which m, / d; = 5/6. Here the totative 5 would be required
to reduce f, to d;. The multiplication or division by 5 would not be supported by an
abbreviated multiplication table, so the factor 10, despite the fact that it is neither a
divisor nor a totative of 12, must be regarded as part of the same class of factors as the
totatives. These factors f, belong to Factor Class D, which will be discussed later.

Factor Class C. Those factors f, for which both m, and d, are divisors of » offer the ability
to leverage two divisors in the computation of products. A dozenal example is the factor
8, for which m, / d; = 2/3, both factors of 12. Both 2 and 3 can be manipulated so that
products beyond the abbreviated table can be computed efficiently. Base twelve is too
concise to include a related set of factors f,, for which m,, is not a divisor, but a composite
factor that is the product of two or more divisors. An example of such a factor in base 60
is 32, for which m, / d;, = 8/15. The m, in this case is the product of 4 and 2, both of
which are divisors of 60. These comprise a class of factors known as Class C, which will
be discussed later.

The cycle length for the factor 9 is 4. The factor nine has a special relationship with the
divisor 3, and the reciprocal divisor mate of 3 in base twelve is 4. Note that the unit digits
of the products in each cycle decrease as the product increases; this is counter to what the
factors which are also divisors exhibit.

Table 2C summarizes values for the factors f, in the dozenal multiplication table. The
inextricable relationship between reciprocal divisor mates should be evident.

Table 2C * Summary of the Properties of Dozenal Non Totative Non Divisor Factors

Factor, f, 8
Cycle Length, A
Number of Cycles, nc
Periods per Cycle, m,
Related Divisor, d
Reciprocal Divisor, d’

W DN W
DWW w b o
N U N O
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Summary — Nontotative Nondivisor Factors

Factors f, that is neither a divisor nor a totative of base » exhibit the following in a
multiplication table M, of base r:

1.

10.

The unit digits v, of the products p of the factors f, that are neither divisors nor
totatives of base r are cyclical. The cycle C of any factor is the set of unit digits of
the all the products p of that factor.

Determine which divisor d;” of base r is related to the factor f, that is neither a
divisor nor a totative of base r. (There can be multiple relationships.) Simplify the
ratio of the factor f, divided by the base r, and use the resultant denominator.

SIMPLIFY[ f,, / ¥ 1 =m, / d;";  ds=my, - r/ SIMPLIFY[ f, /v ]: ds'=r/d;

The factor f, that is neither a divisor nor a totative of base » possesses an integral
relationship m, with a factor that is the reciprocal divisor d;’ of d;.

foomaeds’s  ma=fi/dss dy = f/m,

The number of cycles present in the multiplication table, nc, for the factor f, that
is neither a divisor nor a totative of base r is equal to the integral relationship m,,
between factor f, and the divisor d of base 7.

ne(fy) = my,  ne(fy) =fu/ ds

The cycle length A, of any factor f, that is neither a divisor nor a totative of base r
is equal to the reciprocal divisor d;’ of the divisor d; with which the factor f,
possesses an integral relationship m.

M=ds;  M=rldg AN=mur/f,

The number of periods per cycle or P/C for any factor f, that is neither a divisor
nor a totative of base r is equal to the integral relationship m between factor f, and
the divisor d of base 7.

m,=(P/C),;  (P/C),=f/ds; (C/P),=d/ [,

The unit digits v, of all the products p in a given cycle C(f,) may increase or
decrease within a cycle that spans multiple periods. These unit digits v, may
additionally have distinct phases where the trend is reset without reaching the end
of the cycle (i.e. the cycle exhibits phases.)

The period digits, which indicate the multiples p, of base » which will still yield a
positive number lesser than r if p, is subtracted from the product p, increase for
each element of the cycle C after the first element.

Factor Class C includes those factors f, which are neither divisors d, nor totatives
t, of base r, for which both m, and d; are divisors of . Problems involving Factor
Class C can use two factors to compute products beyond the range of the
abbreviated multiplication table.

Factor Class D includes those factors f, which are neither divisors d, nor totatives
t. of base r, for which only d, is a divisor of », with an m, that is totative.
Problems involving Factor Class D will require commutation to be solvable.
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Totative Factors (f,)

The factors f; which are also totatives ¢ of base » comprise the last set of factors to
consider. These factors exhibit cycles that require » products between each period. The
number of periods per cycle for the factors f; that are totatives is equal to the totative ¢.
The totative 1 is, as stated previously, easy to calculate because the number 1 multiplied
by any factor f'equals f'itself. Likewise, the number » — 1, a totative in any integral base 7,
can be computed via (f - ») — f. The other totatives in the table feature complicated
patterns that will not be analyzed here.

Factor Classes for the Totative Factors f;

All the totative factors f; of base r fall into Factor Class D. The only means of computing
products for totative factors is the commutation of the problem via addition or
subtraction, so that a divisor may be employed. This class includes the factors f, which
are not totative nor divisors of base r, for which only d; is a divisor of r, with an m,, that is
totative. These factors f, are considered “totative” for the purposes of the abbreviation of
the multiplication table. The factor classes will be discussed later.

Summary - Totative Factors

1. The number of phases ¢; of the totative factor f; within the period is equal to the
totative factor f; itself.

o= fi

2. The factors f; which are also totatives ¢ of base r exhibit cycle lengths A,
equivalent to 7.

MN=T

3. The number of periods per cycle m;, for the factors f; that are totatives is equal to
the totative z.

m;=(P/C), =t
4. All integral bases r possess totatives Ty at negative and positive 1 modulus r.
To==x1 modr
5. The products of the totative 1 equal the co-factor f.
f1r=r
6. The products of the totative ( — 1) equal the base » minus the co-factor f.

frr=n=(¢n-f
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Factor Classes

Four factor classes have been created out of the three types of factors described
previously. These factor classes sort the factors according to which methods can be used
to compute their products. These methods will be explained in a later section. Table 2D
summarizes these.

Table 2D « Summary of the Factor Classes for Any Integer Base r

Divisor Non Divisor Totative
Factors Non Totative Factors Factors
Ja Jn S
Factor Class A Unity-Identity Divisors ) )
{1,r}
Effective Divisors
Factor Class B D,=D,— {1, r} 0) 0}

Effective Non Divisor
Factor Class C (1) Non Totative Factors (1)
where m, € D,

Non Divisor All Totative
Factor Class D (1) Non Totative Factors Factors
where m, € T, Except {1}

Factor Class A: The Unity-ldentity Divisors

This class consists of the factors 1 and . The multiplicative identity property states that
multiplication of any factor f'by 1 yields the product /. Multiplication by 7 is
accomplished by shifting the digits of the factor fleftward one place, and writing a zero
in the vacated unit place. Thus these computations involving these factors do not require
a table to compute their products. For base twelve, this includes the factors {1, 12}

Factor Class B: The Effective Divisors

The set of divisors D, of base » which are neither 1 nor » comprise the set of effective
divisors D,. For base twelve, this includes the factors {2, 3, 4, 6}. The cycles of these
factors allows the abbreviation of the multiplication table to include only the first period.
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Factor Class C: The Effective Non Divisor Non Totatives

This class contains all those factors f, which are neither totative nor a divisor of the base
which are products of a “significant” divisor d, and a multiplier m, that is also a divisor
or composed itself entirely of divisors of base 7. In the case of dozenal, these are {8, 9}.
The sexagesimal factor 32: is also an effective non divisor non totative of base 60:

SIMPLIFY[ f,, / r | =m, / d;; SIMPLIFY[32/60]=m, /ds;  8/15=m,/ d;
m,=8;, 8=2-4; {2,4}€{1,2,3,4,5,6,10,12, 15,20, 30, 60}

Class C factors can use the associative property of multiplication to render the
multiplication problem one that involves a divisor. {10} is not included, because one
would need to use 5 to render 10 a divisor, and 5 is not a divisor of twelve.

Factor Class D: Totatives and Ineffective Nontotative Nondivisors

This set includes all totatives ¢, of the base r except 1, and those factors f, for which only
d 1s a divisor of r, with an m, that is totative. The factors of this class require the use of
totatives to compute products. Totatives do not have cycles shorter than r itself, by
definition. This means that abbreviation of the multiplication table is not possible for
totatives unless we use the distributive property of multiplication to involve a divisor of
base 7. In base twelve, this set includes {5, 7, 10, 11}.

The following tables summarize factor classes for dozenal and sexagesimal.

Table 2F - Classification of Dozenal Factors

f Class Totative? Divisor? Relation to Base

0 A - Yes (12) =1

1 A Yes Yes = 1/12, Relatively Prime

2 B - Yes =1/6

3 B - Yes =1/4

4 B - Yes =1/3

5 D Yes - Relatively Prime

6 B - Yes =1/2

7 D Yes - Relatively Prime

8 C - - = 2/3, both numerator and denominator are divisors
9 C - - = 3/4, both numerator and denominator are divisors
X D - - = 5/6, the numerator is not a divisor

g D Yes - Relatively Prime
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f Class Divisor? Totative? m, f Class Divisor? Totative? m,
0o 00 A Yes 60 - - g 30 B Yes - -
1 01 A Yes Yes - | 31 D - Yes -
2 02 B Yes - - 3 32 C - - D
3 03 B Yes - - z 33 D - - T
4 04 B Yes - - E 34 D - - T
5 05 B Yes - - 1a 35 D - - T
6 06 B Yes - -1 & 36 C - - D
7 07 D - Yes -y 37 D - Yes -
8 08 C - - D |z 38 D - - T
9 09 C - - D|s 39 D - - T
z 10 B Yes - - |9 40 C - - D
v 11 D - Yes - P41 D - Yes -
¥ 12 B Yes - - g 42 D - - T
o 13 D - Yes - | p 43 D - Yes -
e 14 D - - T | ® 44 D - - T
e 15 B Yes - - |8 45 C - - D
P16 C - - D | v 46 D - - T
E 17 D - Yes - z 47 D - Yes -
2 18 C - - D |5 48 C - - D
7z 19 D - Yes - 1 49 D - Yes -
2 20 B Yes - - e 50 C - - D
7 21 D - - T[]k 51 D - - T
¥ 22 D - - T |8 52 D - - T
v 23 D - Yes - | & 53 D - Yes -
¥ 24 C - - D |& 54 C - - D
G 25 C - - D |5 55 D - - T
g 26 D - - T |3 56 D - - T
3y 27 C - - D | % 57 D - - T
g 28 D - - T | x 58 D - - T
r 29 D - Yes - E 59 D - Yes -
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Summary

The patterns present in the dozenal multiplication table are summarized by Figure 2J. The
products which are multiples of 12, representing exact periods in the table, are circled.
Because twelve is highly composite, many combinations of factors will result in a
product that is divisible by twelve. Because twelve is so highly composite, we can
capitalize on the profound cyclical quality exhibited by the periods of twelve, and thereby
abbreviate the multiplication table.

There are three principal classes of factor for any base.

Divisors. These are the factors f; which are divisors d,, the factors f, which are totatives ¢,
and the factors f, which are neither divisors nor totatives of the base . Among the factors
fa, which are the divisors d,, there is a special pair of divisors {1, r} called the “unity-
identity” pair. The number 1 is a divisor of all bases. The divisor 1, along with the
totative » — 1, are totatives for every positive integer . Thus the divisor 1 is always
totative, and is the only totative divisor of any integral base ». The behavior of the divisor
1 in the multiplication table is totative and unlike the other divisors. The remaining f;
shall be considered the “effective divisors” of base . This means that prime bases r
possess no effective divisors.

Non Divisor Non Totatives. The factors f, which are at the same time not divisors d, nor
totatives #, of the base r possess an integral relationship m, to one or more divisors d. The
significant relationship is that divisor which is the denominator of the simplified fraction
which is the ratio f, / . The numerator of this same simplified fraction, m, represents the
number of periods P per cycle C which the products p of the factor f, exhibit in the
multiplication table. The factors f, can be divided into two kinds. The first kind include
factors f, which feature an m, which is totative; these f, are classified with the factors f;
which are totative. The second kind are “effective factors f,” which include those factors
f» for which both the numerator m, and the denominator d are divisors of base 7.

Totatives. The factors f; which are totatives #, of base r are by definition relatively prime
to . They feature cycles which repeat only after the entire span of » has passed. Because
of this, the problems involving totative factors must be commutated so that the divisors of
the base can be employed to solve the problem.

<

Factor Classes. There are four factor classes. Factor Class A consists of the “unity-
identity” divisors, that is, the pair of divisors {1, r}. Factor Class B includes all divisors
of r except {1, r}; this is the class which includes the “effective divisors” of base r.
Factor Class C includes the factors f, which are neither divisors d, nor totatives ¢, of base
r, for which both m, and d; are divisors of r. Factor Class D includes the totative factors f;
and the factors f, for which only d, is a divisor of », with an m, that is totative. These
factor classes will govern which techniques to use, given an abbreviated multiplication
table for base r. Factor classes and the abbreviation of the multiplication table will be
covered in ensuing sections.
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Figure 2J. This table illustrates all the patterns present in the dozenal multiplication fact table.

In Figure 2J above, effective divisor pairs {2, 6} and {3, 4} are indicated by blue and red,
respectively. The cycle lengths A are indicated by triangles which increase in width as the
terminal digits of the products of factors f; that are divisors increase, or decrease with the
terminal digits of products of factors f, which are nontotative nondivisors. The terminal
digit of any factor 7/2 (6, in the case of dozenal) is either O or 7/2. Periods are circled. The
reciprocal divisors d” appear above their corresponding divisor-factors f;. The ratio of the
reciprocal divisor mate d’ of the related divisor d to the number of periods per cycle m,
is written above those factors f, which are nontotative nondivisors. The four factor
columns which do not feature a pattern are the totatives ¢ of twelve; a T in a black circle
marks these. It is interesting to note that, of the divisors of 12, only the divisor 1 is
totative. This is in fact true for all integer bases. Also interesting is the fact that all integer
bases r possess totatives at £1 mod 7.
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Part 3 - Abbreviation of Multiplication Fact Tables

Introduction

We have demonstrated that the divisors of a base have products that repeat in cycles
within one period. We have also seen that the remaining factors which are not totatives
are cyclical in multiple periods. These demonstrations suggest that the entire
multiplication table does not need to be memorized, provided there is some way to use
the relationships between reciprocal divisors to generate the product. In the case of
decimal, dozenal, and perhaps hexadecimal, the abbreviation of the multiplication table is
unnecessary. These tables are concise enough to be entirely memorized. In the case of
sexagesimal, these observations, coupled with the greater number of reciprocal divisor
pairs, significantly abbreviates the multiplication table.

The Full Multiplication Table

The number of products that populate the traditional square layout of the multiplication
table of base  is given by *. The sexagesimal multiplication table includes 3600 values
when it is presented in the “square” manner which the decimal and dozenal tables were
presented. This traditional table represents factor combinations twice, where the factor
combinations involve unequal factors. The number of products of unique factor
combinations of the multiplication table M, of base r is given by adding r to the square of
r, then dividing that quantity by 2. When we limit the table to include products of unique
factor pairs, we arrive at 1830 figures (the “triangle” of 60). Both values lie beyond the
ability of most people to memorize and recall for general computations. Using reciprocal
divisor pairs, we are able to abbreviate the table to a manageable size. Let’s return to the
dozenal multiplication table to study how the method will work.

6 4 3 2 3% Y % 1

1 2 3 4 5 © 7 g8 9 X £ 10 1 2 3 4 5|6 7 8|9 % | 8|10
2 4 6 8 X 10 12 14 16 18 1X 20 612

6 9 10 13 16 19 20 23 26 29 30 4
4 8 0 14 18 20 2 28 30 34 38 40 3|4

X 13 18 21 26 28 34 39 42 47 S0

6 10 16 20 26 30 36 40 46 50 56 60 2|6
7 12 19 24 26 36 41 48 53 5¢ 65 70 7
8 14 20 28 34 40 48 54 60 €8 74 80 3,1 8
9 16 23 30 39 46 53 60 69 76 83 90 Y3| 9
X 18 26 34 42 50 5% 68 76 84 92 X0 S| x
$ 1X 29 38 47 56 65 74 83 92 N1 £0 g
10 20 30 40 50 &0 70 BO 90 X0 £0 100 1110

Figure 3A. The full, traditional form of the dozenal Figure 3B. The dozenal multiplication table
multiplication table. abbreviated to the first period.
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Truncation of the Table to the First Period

It is possible to cut the multiplication table to the first period for each of the factors in the
table. This is because we can use the reciprocal divisor pairs present within the set of
divisors of base r to compute products greater than ». The divisors as factors f; exhibit
cycles that repeat every period. Thus, we can find each instance of “10” in the table, and
ignore figures greater than this. We can leave the “1” line so that it serves as an index of
factors. This truncation is shown by Figure 3B, with the traditional dozenal multiplication
table appearing in Figure 3A. Since the “1” line serves as an index, we do not need to
write anything in the “1” line greater than or “south” of the point where the “2” line hits
its first period for even bases. (This is optional for odd bases.) This further truncation
appears in Figure 3C.

Figure 3C. Truncation of the “ones” column beyond Figure 3D. Further truncation beyond the products

the first period in the “twos” column. which are square. This fully abbreviated table
includes only unique facts. There are thirteen facts
in the abbreviated table. The full table included 78
unique facts.

Reduction to Eliminate Restatements

The Minimal Abbreviated Table

In order to pare down a large multiplication table to something more manageable, we can
ignore everything “northeast” of the diagonal line of squares. For dozenal, this step leads
to a table of thirteen values, which is the minimum required using the reciprocal divisor
method. This reduced table is ¥ of the minimum triangular table of 78 values, and is
illustrated by Figure 3D.
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The Crossing Abbreviated Table

Perhaps for ease of use, we might restate some products “northeast” of the square line, at
that square that is the largest square that is smaller than the integer that is the radix. This
second suggestion restates three products so that one can use the table as a matrix. In this
second case, the 144-value square table was pared down to 1/9 its size. The resultant
abbreviated table shown in Figure 3E is all we need in order to employ the reciprocal
divisor method.

The “crossing” table situates the smaller half of the set of effective reciprocal divisors to
the left, and the larger half at the top. The products that lie at the crossing of the rows
bearing the smaller reciprocal divisors and the columns bearing the larger reciprocal
divisors equal ». This placement of reciprocal divisors accentuates the location of the
factors f; in the abbreviated table which are also divisors of base 7, while reminding the
user of the abbreviated table of the reciprocal divisors d” of these factors f;.

The abbreviated table thus facilitates the multiplication in base » using the reciprocal
divisor method that will be described in the next section.

6
1 2 1 2 i 4 5 6 8 9 X £ 0
2 4 2 4 6 8 X 10 12 14 16 18 1X 20
3 [ 3 6 9 0 13 16 19 20 23 26 29 30
3| 4 8 4 8 0 14 18 20 24 28 30 34 g 40
5 X 5 X 13 18 21 26 28 34 39 42 47 50
216 10 6 10 16 20 26 30 36 40 46 50 56 o0

7 |12 |19 |24 | 22| 36|41 |48 |53 |5X |63 |70
8 14 20 28 34 40 48 54 60 e8 74 80

16 | 23 30 39 46 53 60 69 76 83 90

10 20 30 40 S0 60 70 BO 90 X0 £0 100

Figure 3E. An abbreviated table which includes full columns from one through the period or whichever
number is lesser than a full period is perhaps more handy. The divisors of the base then can be split evenly,
with the greater half on the short axis, and the lesser half on the long axis. This arrangement then allows
the reciprocal divisor pairs to meet at the full periods. Note above that the 2 and 6 written outside of the
table cross at “10”; the 3 and 4 written outside the table does the same thing in a different location.
All Class A operations take place within the limits of the abbreviated table.
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Abbreviated Tables

The objective of the abbreviation of the multiplication table is to minimize memorization
required to multiply and divide using a given base. The reduction of the number of
products in the table is helpful, but does not eliminate the need to memorize. Some
memorization is still required if fluency in computation in the base is desired. This
booklet features a sexagesimal table where the digits have been expressed in one of two
fashions. One method is traditional, while the other attempts to completely eliminate
decimal thinking from computation in higher bases, at least as far as multiplication and
the identity of integers are concerned.

Traditional Sexagesimal Notation

The traditional method of expressing a sexagesimal place with a decimal number is found
in the expression of time. The version of this notation used in this booklet writes a pair of
digits for each sexagesimal place. Technically speaking, the first of these two digits is
base-6, the second base-10. This expression of sexagesimal by two digits renders
sexagesimal a mixed radix, where every other digit is written in the same sub-base. Most
people consider this technicality unimportant.

Pairs of digits which express the value of a sexagesimal place are separated by another
character to demarcate the sexagesimal place. In this booklet, a semicolon (;) separates
places above or below the radix point. The radix point, akin to the decimal point in
decimal notation, is represented by the colon (:). Thus, the quantity 96 is represented by
this system as 01;36:. Examples of this notation appear in table 3A.

Table 34 * Sexagesimal Mixed Radix versus Pure Radix Notation

Traditional Argam Traditional Argam
Decimal Sexagesimal Sexagesimal Decimal Sexagesimal Sexagesimal
15 15: e 2.71818 02:43;05;49 2.054
40 40: g 3.14159 03:08;29;44 3.84%
75 01;15: 1€ 1/2 00:30; 0.6
81 01;21: 17 1/3 00:20; 0.%
96 01;36: 1R 3/4 00:45; 0.8
100 01:40: 19 2/5 00:24; 0.%
144 02;24: 2% 5/6 00:50; 0.¢
225 03:45: 34 0.3 00:20; 0.2
360 06;00: 60 5/12 00:25; 0.6
441 07;21: 77 13/16 00:48;45; 0.3%
576 09;36: 98 1/27 00:02;13;20; 0.202
729 12;09: 59 2% 00:01;12; 0.1%
1728 28;48: £¥ 1/144 00:00;25; 0.0G
2007 33;27: 23 1/1728 00:00;02;05; 0.025
2520 42;00: 80 99.44% 00:59;39;50;24 0.BSC¥
100,000 27;46;40: 38 T¥4% 00:04;39 0.49%
1,000,000  04;37;46;40: 4anes 1 ppm :00;00;00;12;57;36  0.000%%&
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Argam Notation

A second method of notation designed for bases greater than ten is the Argam notation.
The Argam system of numerals is an extension of the Hindu Arabic numerals. The
Argam numerals, individually called “ragam” or “argam” plural, build on the identities of
the ten established integer symbols to produce a vast array of new numeral characters.
Composite argam take on the graphic and nominal qualities of their progenitor argam.
The identity of an integer in the Argam system is derived from the integer’s divisors or
prime factorization, and not by addition or any decimal reference. The goal of Argam is
to furnish an explorer of the higher bases a tool through which a purer expression of
quantities in a higher base can be attained. References to decimal or any other system of
numeration are minimized.

30: 20: 15: 12: 10:
01: 02: 03: 04: 05: 06: 07:
02: 04: 06: 08: 10: 12: 14:
03: 06: 09: 12: 15: 18: 21:
04: 08: 12: 16: 20: 24: 28:
05: 10: 15: 20: 25: 30: 35:
06: 12: 18: 24: 30: 36: 42
07: 14: 21: 28: 35: 42 49;
08: 16: 24: 32: 40: 48: 56:
09: 18: 27 : 36: é 45: 54:
06: 10: 20: 30: 40: 50: 01;00:
11: | 22: | 33: | 44: | 55:
05: 12: 24: 36: 48: 01;00:
13: 26: 39: 52:
14: 28: 42 : 56:
04: 15: 30: 45: 01;00:
16: 32: 48:
17: 34: 51:
18: 36: 54:
19: 38: 57:
03: 20: | 40: 01;00:
21: 42 :
22: 44
23: 46:
24: 48:
25: 50:
26: 52: 2 < 30
27 54: 3 o 20
28: 56: 4 « 15
29: 58: 5 & 12
02: 30: 01;00: 6 < 10

Figure 3F. The abbreviated table for sexagesimal, written with 6-on-10 notation, or decimal as a sub-base.
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g 2 e ¥ T
1 2.3 4 5 6 7
2 4 6 8 T ¥ ¢
3 .69 ¥ e g 7
4 8 ¥ P 2 ¥ ¢
s5lezlelalclela
o lx|lals|le|lo]|s
7 € .7 €& a 8 4
sl Pl 2|93 l3
......... 9 R 3 & & 8
o 2 8 & F R 6lc 2 & 9 e 10
+ + + + + + T it 2z /g
0|0 T 2 & 9 ¢ 5(v ¥ & ¥ 10
1|l1 T 7 r P E o 6 3 8
212 vt 2 5 8 E1&183
313 8 v 2 v & 4§§§=§510
414 € ¥ kB R 2 .
515:@:¢:8a:4¢:§8 e 2 9
6|loc | P | 8| R | %] 3 7 7 g
717 ki3 ®w oz & 312 % 10
8|8 % ¢ % ¥ X 7|8
99 # 14+ § 49 B t 8
oy 4 %
¥ | 3
e
g | & 2 © ¢
3 08 3 o 2
£ |3 4 © @
1 X 5 o ¥
2 6 10 6 <

Figure 3G. The abbreviated table for sexagesimal, using a purely sexagesimal notation. This notation
represents each digit within one place, and features a unique symbol for each of the sixty digits.

The Argam tables and notation is used in this booklet for two reasons. The first reason is
Argam furnishes a purer representation of digits in a base higher than decimal, especially
those higher than the Latin alphabet mounted on the Hindu Arabic numerals. Secondly,
the expression of numbers written in sexagesimal and higher bases is needlessly
complicated by the use of decimal sub-bases. These higher-base numbers appear more
complex than they really are because two or more decimal digits are spent on each place
in the higher-base number. At the expense of appearing alien, the Argam digits are a
toolset to simply express numbers written in bases significantly higher than ten.

The names of the first 120 argam are included in the appendix. The Argam system is
employed by all of the author’s explorations into transdecimal bases. The argam which
appear in this booklet are provided in the spirit of facilitating your own forays “into the
mountains” of the higher bases.
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Summary

The abbreviated multiplication table is intended to reduce the number of products which
need memorizing. For maximum fluency, the user of a large base should be well
acquainted with the products in the abbreviated multiplication table. Any integer below
the base » should be keenly known. All the reciprocal divisor pairs should be familiar.
Recognition of effective factors and totatives is useful. With usage and time, perhaps a
larger portion of the full table can be used directly in class A operations.

I.

The traditional full multiplication table M, of base r is square; the number of
products Py in the full tables is equal to the square of 7.
Py =7

The multiplication table M, which displays only the products p of unique
combinations of the set of factors F of base r is triangular; the number of products
Py in these tables is equal to the quantity of 7 plus the square of r, the quantity
divided by two.

Pu=r(r+1)/2
The first truncation involves the elimination of all products p greater than the
radix r.
The second truncation, more applicable to even bases, involves ignoring all unity
products greater than the first period of the products of the factor 2. This is
optional in the case of odd radixes.
The final truncation involves ignoring products which are repeated on one side of
the diagonal line of square products. The elimination of either side is acceptable.
The “Crossing” Abbreviated Table. The abbreviated table may be more legible if
products in the lines of products whose square p is less than the radix r are
allowed to appear on the side of the line of squares where the products were
eliminated in 5 above.
Notation. Reciprocal divisors d’ can be written next to factors f; which are
divisors. The reciprocal divisors which are greater than 7* can be written above
the corresponding factors f; of the shorter axis of the table, while the balance can
be written next to the factors f; of the long axis of the table.
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Part 4 - Operation Classes

When we multiply or divide in decimal or dozenal, we mentally refer to the memorized
multiplication table; this is second nature to everyone out of primary school. These
operations have analogs in bases for which abbreviated tables provide a means to
multiply and divide. Obviously, for larger multiplication tables which lie beyond the
human ability or desire for memorization, the number of products we need to memorize
should be reduced. This section describes the four operation classes which apply to an
abbreviated multiplication table. The section also studies the range of these operation
classes. The dozenal system (base 12) will be used as an example. The operation classes
will then be applied to sexagesimal numbers (those in base 60).

Know Thy Base’s Divisor Pairs

Abbreviation of the multiplication tables of large bases depends crucially upon the use of
effective reciprocal divisor pairs of a given base. The abbreviated multiplication table and
a short table of effective reciprocal divisor pairs go hand in hand.

Since the abbreviated multiplication table is a resource for study, noting the reciprocal
divisors d’ next to the factors f; which are divisors d helps to remind the user of the
reciprocal divisors of the base. Absent of this notation, the reciprocal divisors of any base
can be determined by finding every occurrence of products which equal 7, then noting the
factors that occur in the index (1 line) above and to the left of each product. Every
occurrence of “10” will mark a pair of reciprocal divisors. However, before conducting
any operations, one should know keenly the effective divisor pairs for the base in use.

The dozenal effective divisors are: {{2, 6}, {3, 4}}.

Operation Class A: Products within the Abbreviated Table

This class includes Factor Class A, along with any product in the abbreviated table. The
unity-identity divisors {1, r}, as stated previously, have simple rules by which a product
can be computed, eliminating the need for these to populate a multiplication table. The
abbreviated multiplication table contains all products p which are lesser than or equal to
the radix . This is a vastly reduced table of factors, when compared to the full
multiplication table. A limit imposed by the human capacity to memorize the table is
reached perhaps when the table reaches a size comparable to the full multiplication tables
of the “human scale bases”, somewhere between 55 to maybe 220 figures. This
interesting limit is not very distinctly defined, and has not been tested for this study.
These figures correspond to minimal abbreviated tables for base 30 or 32 on the low end
to that of base 120 on the high end. The sexagesimal minimal abbreviated table includes
104 unique values, with the “crossing” abbreviated table containing 125 values.

In order to employ Class A, one simply recalls the memorized product given two factors.
For problems involving the factor 1, the multiplicative identity rule can be applied. This
rule states that any co-factor /" multiplied by 1 equals that co-factor f/°. For problems
involving the factor r, the co-factor’s digits can be shifted leftward one place, and a zero
can be written in the vacated unit place. Class A operations exist for all bases; as the
bases increase in size, multiplication table abbreviation becomes handy and makes
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practical bases that have tables beyond most people’s abilities to perform Class A
operations for every product.

The dozenal abbreviated table at right

presents 13 of 78 products of unique 6 4
factor combinations that populate the full

table. The other 65 must be computed in 1 2 3
other ways. A significant number of the

products that do not lie within the table 2 4 6
involve the factors 1 and », which in this

case is one dozen. These products are easy 3 6 9
to compute, and no memorization is

necessary. 31| 4 8 10
Bear in mind that the dozenal abbreviated

table is presented only as an example. The S X
application of the abbreviated table to

dozenal  multiplication is  actually 2] 6 10

inefficient because dozenal is a human
scale radix. This means that all dozenal
multiplication can be more easily Figure 4A. The dozenal “crossing” abbreviated

accommodated by memorization of its full multiplication table, showing reciprocal divisors next
multiplication table to their corresponding factors in the table.

Computation Process

In order to compute a Class A product, follow these steps:

1. For problems involving the factor 1: use the multiplicative identity rule: any co-

factor f” multiplied by 1 equals that co-factor /.
L-f=r

2. For problems involving the factor 7: the product of any co-factor /” multiplied by
the factor » can be generated by shifting the digits of the product leftward one
place, and writing a zero in the unit digit place.

3. The abbreviated multiplication table will yield products lesser than r for some
factors lesser than 7/2. If the abbreviated table has been memorized, intuition may
reveal whether a product lies within or outside the abbreviated table.

4. If the product is determined to lie outside the table, use another operation class.

Dozenal Examples

Examples for Operation Class A are relatively straightforward. These examples are
sufficient to illustrate Operation Class A for whichever base r is used.

Table 44 * Operation Class B * Dozenal Examples

2 5=X¢ Per Step 3 above. The product lies within the abbreviated table.
828¢ - 10 =828%0 Per Step 2 above. The problem involves r.

g - 1=g Per Step 1 above. The problem involves 1.

4 - 8=7 We need to use another operation class.

7 - 8=7 We need to use another operation class.
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Operation Class B: Effective Divisor Factors

This operation class includes problems where at least one of the factors is member of
Factor Class B, that is, a factor f; which is a divisor d of the base r. The reciprocal divisor
d’ of the factor f; can be used to yield any product p which lies outside the abbreviated
multiplication table. Figure 4B illustrates a class B operation. Operation Class B is
available to all integer bases » which have more than 2 divisors; that is, to all composite
bases. Use the following procedure to determine products off the abbreviated table.

1. Determine the reciprocal divisor d’ for the divisor d which is a factor f; in the
problem. The co-factor can be any factor /.

d'=rif;

2. Divide the co-factor f” by the reciprocal divisor d’. Keep the integer quotient g
and the remainder ¢, separate.

flrd =(qitq)

3. Take the integer part of the quotient which is the result of the division in step 2.
This quotient will be carried to the place or digit one order of magnitude greater
than the factor f.

4. Multiply the remainder of division g, by the original f;. This product will occupy
the digit of the product which corresponds to the place in operation.

5. The full formula for the computation of a product p involving one factor f; which
is a divisor d of base r appears below:

p=(qi-r)+q; p=(NTEGER[f /d’]-r)+ REMAINDER[ /" /d’]

Figure 4B. An example of a Class B operation, where
a product which involves at least one factor that is a
divisor occurs beyond the limits of the abbreviated
table.
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Operation Class B « Dozenal Examples

1. Multiply 4 by 8. The divisor involved in
this problem is 4. The reciprocal divisor
mate of 4 is 3. Dividing the co-factor 8 by
the reciprocal divisor 3, we obtain 2
remainder 2. The integer 2 will be carried.
The remainder 2 times the original factor 4
equals 8. Thus the product is 2 dozen 8.

2. Multiply 3 by ¢. The divisor involved in
this problem is 3. The reciprocal divisor
mate of 3 is 4. Dividing the co-factor ¢ by
the reciprocal divisor 4, we obtain 2
remainder 3. The integer 2 will be carried.
The remainder 3 times the original factor 3
equals 9. Thus the product is 2 dozen 9.

3. Multiply 27; by 3. The divisor involved
in the problem is 3. The reciprocal divisor
mate of 3 is 4. Dividing the co-factor 7 by
the reciprocal divisor 4 yields 1 remainder
3. The integer 1 is carried. The remainder 3
multiplied by the original factor 3 is 9. The
unit digit for the product is 9. Look at the
next digit in the co-factor, 2. The product
of 2 and 3 appears in the abbreviated table;
itis 6. Add the 1 which we carried from the
last operation to the 6 to yield 7 for the
“dozens” or 12" place. Thus the product of
3and 27;1s 79;.

Operation Class B « Sexagesimal Examples

The images that accompany the following examples use a set of sexagesimal digits. A
table that describes the digits appears in the Appendix. In the description, the 6-on-10 or
decimal sub-base digits are used. The sexagesimal digits are employed here to illustrate
the method does not depend on a decimal operation. In the decimal sub-base
representation, each sexagesimal digit is represented by two sub-base digits. These digits
are separated by the character “;”. The radix point used here in a sub-base notation is “:”.



1. Multiply 06: by 38: The divisor involved
in this problem is 06:. The reciprocal
divisor mate of 06: is 10:. Dividing the co-
factor 38: by the reciprocal divisor 10:, we
obtain 03: remainder 08:. The integer 03: is
carried to the next place. The remainder 08:
times the original factor 06: equals 48:.
Thus the product is 03;48:.

it s é—..e\?
Y

o D=, @
X 8 @O%-C= 35’8

O— X 6
FQ/X;"

3%
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2. Multiply 15: by 41: The divisor involved
in this problem is 15:. The reciprocal
divisor mate of 15: is 04:. Dividing the co-
factor 41: by the reciprocal divisor 04:, we
obtain 10: remainder 01:. The integer 10: is
carried. The remainder 01: times the
original factor 15: equals 15:. Thus the
product is 10;15:.

X F-@F+4=7 rl )
e

3. Multiply 20: by 35: The divisor involved
in this problem is 20:. The reciprocal
divisor mate of 20: is 03:. Dividing the co-
factor 35: by the reciprocal divisor 03:, we
obtain 11: remainder 02:. The integer 11: is
carried. The remainder 02: times the
original factor 20: equals 40:. Thus the
product is 11;40:.

T"i*/@/

4. Multiply 51: by 02: The divisor involved
in this problem is 02:. The reciprocal
divisor mate of 02: is 30:. Dividing the co-
factor 51: by the reciprocal divisor 30:, we
obtain 01: remainder 21:. The integer 01: is
carried. The remainder 21: times the
original factor 02: equals 42:. Thus the
product is 01;42:.

A == 6:;{—“%\%
X k@OR+-G=1 R/

FQ—J Qé«w

5. Multiply 27: by 10: The divisor involved
in this problem is 10:. The reciprocal
divisor mate of 10: is 06:. Dividing the co-
factor 27: by the reciprocal divisor 06:, we
obtain 04: remainder 03:. The integer 04: is
carried. The remainder 03: times the
original factor 10: equals 30:. Thus the
product is 04;30:.

6
164-/@/

=

)(3_.03J 6=4 R3 }p&
L/

P
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Operation Class C: Effective Non Divisor Non Totative Factors

This operation class includes problems where at least one of the factors is member of
Factor Class C. This factor class includes all those factors £, which are neither totative nor
a divisor of the base » which are products of a “significant” divisor d; and a multiplier m,
that is also a divisor or composed itself entirely of divisors of base . Solution of the
problem involving the effective f, begins by extracting m, from f, to yield d;. Once d; is
known, we can use the reciprocal divisor pair { d; , d;’ } in a class B operation as
described above. The factor m, must be recorded and applied at the end of the Operation
Class B process. When the m,, is itself a divisor, the application of m, becomes simply a
second Operation Class B process. In cases where m, is a composite of divisors, the m,
may be broken down in an Operation Class C.

Operation Class C can be regarded as an extraction of the m, multiplier so that Operation
Class B can be applied to the co-factor f”. This class of operation is available to all bases
r which have 5 or more divisors and many which have 4 or more divisors. Bases which
have a diverse set of prime factors may feature many avenues open to Operation Class C.
Prime bases can not use Operation Class C. Figure 4C illustrates an Operation Class C
problem. Use the following procedure to determine Operation Class C products which lie
beyond the abbreviated table.

1. Obtain both m, and d; from the simplified ratio f, / . The numerator of the
simplified ratio is m, while the denominator is equal to r / d.

2. Divide the factor f, by m, to obtain d;; make a note of m, (this is equivalent to
replacing the factor £, in the problem with d; and noting m, elsewhere).

3. Carry out a class B operation.

4. Examine m, to see if it is itself a

divisor of 7. Proceed with the next ? -2
step if this is true. If m, is 114 ' O
composed entirely of divisors, 24
begin a new second application of i
a class C operation, with a divisor 3|4 8
that comprises m, serving as “d” S
in Step 2, and the remaining ~ 2[° *°
portion of m, as “m,” which is to 4

v
[~]

be noted. Operation Class C will 3-"20
need repetition until all the
divisors except one which
compose the original m, have

been exhausted.

5. Obtain the final product p by
multiplying the product obtained

in Step 3 (the class B operation) Figure 4C. An example of a Class C operation which
by (the original) m,. involves a nontotative nondivisor.
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Operation Class C « Dozenal Examples

1. Multiply 7 by 8. The factor 8 has a ratio
with the base 12 that simplifies to 2/3.
Thus, 2 is the multiplier m, and 3 is the
related divisor’s reciprocal mate d;’. The
related divisor itself, d;, is 4. The problem
is split into two stages. The first stage is a
class B operation. Thus, the co-factor f” =
7 is divided by d;° = 3, yielding 2
remainder 1. The integer 2 is carried. The
remainder 1 is multiplied by d; = 4,
yielding 4. Thus Operation Class B yields
the result 24;. This result requires
multiplication by m, = 2, yielding the
answer, 4 dozen 8.

2. Multiply 9 by 5. The factor 9 has a ratio
with the base 12 that simplifies to 3/4.
Thus, 3 is the multiplier m, and 4 is the
related divisor’s reciprocal mate d;’. The
related divisor itself, d;, is 3. The problem
is split into two stages. The first stage is a
class B operation. Thus, the co-factor f” =
5 is divided by d;° = 4, yielding 1
remainder 1. The integer 1 is carried. The
remainder 1 is multiplied by d; = 3,
yielding 3. Thus Operation Class B yields
the result 13;. This result requires
multiplication by m, = 3, yielding the
answer, 3 dozen 9.

3. Multiply 9 by X. The factor 9 has a ratio
with the base 12 that simplifies to 3/4.
Thus, 3 is the multiplier m, and 4 is the
related divisor’s reciprocal mate d;’. The
related divisor itself, d;, is 3. The problem
is split into two stages. The first stage is a
class B operation. Thus, the co-factor f” =
X is divided by d;° = 4, yielding 2
remainder 2. The integer 2 is carried. The
remainder 2 is multiplied by d; = 3,
yielding 6. Thus Operation Class B yields
the result 26;. This result requires
multiplication by m, = 3, yielding the
answer, 7 dozen 6.

gﬁﬁg6@3.m
X X@X-4=2 r2 )
00— %30 L
26 <—o—- -6 3
X 3

76

R,
W
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Operation Class C « Sexagesimal Examples

1. Multiply 22: by 08:. The factor 08: has a
ratio with the base 60 that simplifies to
02:/15:. Thus, 02: is the multiplier m, and
15: is the related divisor’s reciprocal mate
d,’. The related divisor itself, d;, is 04:. The
problem is split into two stages. The first
stage is a class B operation. Thus, the co-
factor /7 = 22: is divided by d,” = 15,
yielding 01: remainder 07:. The integer O1:
is carried. The remainder 07: is multiplied
by d, = 04:, yielding 28:. Thus Operation
Class B yields the result 01;28:. This result
requires multiplication by m, = 02:,

yielding the answer, 02;56:.

2. Multiply 40: by 18:. The factor 40: has a
ratio with the base 60 that simplifies to
02:/03:. Thus, 02: is the multiplier m, and
03: is the related divisor’s reciprocal mate
d,’. The related divisor itself, d;, is 20:. The
problem is split into two stages. The first
stage is a class B operation. Thus, the co-
factor f° = 18: is divided by d,” = 03,
yielding 06: without remainder. Thus
Operation Class B yields the result 06;00.
This result requires multiplication by m, =
02:, yielding the answer, 12;00:. Note that
this problem might have employed 18: via
the divisors {2, 3, 3}. This would require

. @@a
x2023ﬁ

£ i
X 28
%0

three rather than two phases for 40: = {2,
20}. Thus 40: presents a more efficient
process than 18:, so 40: is preferable.

3. Multiply 37: by 36:. The factor 36: has a
ratio with the base 60 that simplifies to
06:/10:. Thus, 06: is the multiplier m, and
10: is the related divisor’s reciprocal mate
d,’. The related divisor itself, dj, is 06:. The
problem is split into two stages. The first
stage is a class B operation. Thus, the co-
factor f° = 37: is divided by d,” = 10:,
yielding 03: remainder 07:. The integer 01:
is carried. The remainder 07: is multiplied
by d; = 06:, yielding 42:. Thus Operation
Class B yields the result 03;42:. This result
requires multiplication by m, = 06:, via
another full class C operation, ultimately
yielding the answer, 22;12:.

i a—

RO g

xnemz_3w
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Method for Determining Effective Factors f.

The effective factor f, is the basic tool of Operation Class C. In order to reduce the
problem to one which can be resolved using reciprocal divisors, a multiple m, can be
extracted from the non totative non divisor factor f,. This multiple is effective if it is the
product of divisors or itself a divisor of the base. If the multiple involves a totative, the
factor f, is technically unusable in a class C operation, because this particular factor f,
would require multiplication by a totative. It is possible to transact on an “ineffective
factor” f,. The dozenal digit X can be broken into (5 - 2); the 5 could use a class D
operation (yet to be described). This is more involved than necessary because the dozenal
digit X itself warrants a class D operation.

The determination of a base’s effective factors is important because these factors enable
Operation Class C. Table 4B illustrates one method of determining the factors f, which
are non totative non divisors of base r that have an m, which is entirely composed of
divisors. In effect, the table is simply a miniature multiplication table of divisors. We are
only interested in single-digit results.

1. Construct the table by multiplying all the effective divisors. Use the base’s
notation rather than decimal. In the case of 6-on-10 notation in sexagesimal,
decimal can be used, but care should be taken in recognizing that the products are
not decimal products, but sexagesimal digits. Results written in decimal figures
greater than 59 are mistakes.

2. Ignore any product which is already accounted for in the set of effective divisors.
3. Any product not among the set of effective divisors is an effective factor f..
Thus, using the dozenal table, the factors 8 and 9 are “new”, so these are effective factors.

Table 4B » Effective Factor Tables for Several Bases

2 3 4 [ 8 8
2 3 4 6 214 6 8 ¥ P 10
2 5 24 6 8 10 3le 9 ¥ & 10
214 [10] 36 9 10 418 ¥ P 10
5 |10 4|8 10 6| v & 10
Decimal 6 |10 8 | £ 10
Dozenal ¥ |10 .
Quadrovigesimal (Base 24)
2 3 4 5 6 4 ¥ e 2 30
2 4 6 8 C ¥ -2 % & 9 10:
3 6 9 ¥ e % -6 . kB & 10
4 8 8 P ) 8 9 § 10
5 4 e 2 G G ¢ 110
o 8 R i G g 110
4 2 G hl ¢ 10
8 i 2 ¥ 110
e el e l10]
2 g 10
¢ 110

Sexagesimal (Base 60)
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Operation Class D: Totatives and f,Involving Totatives

This class of operations includes all remaining problems. This ends up meaning all
problems which involve a factor belonging to Factor Class D. This factor class includes
all totatives except the totative {1}, and all the factors f, for which only d; is a divisor of
r, with an m, that is totative. In short, if both factors are either totative or involve a
totative as the numerator of the simplified ratio f, / r, and neither factor is 1, then the
problem is governed by Operation Class D.

The class D operation renders the most difficult problems amenable by selecting one of
the Factor Class D factors fp, adding or subtracting a small integer n from them, splitting
the problem into two problems. The problem, originally of the form fp; - fp2, becomes
(fmodified * fp2 ) + (1 * fp2 ). The objective of this dissociation of one of the class D factors is
to create one, preferably two class A or B factors, in order to minimize operations. In
bases abundant with divisors, this is not so difficult. For factors greater than r / 2 or those
less than 7/ 2 at an inconvenient distance from these factor classes, transferal to a class C
factor is helpful. Base 60 class D operations are all the more facilitated by the unbroken
wall of divisors covering 1 through 6; any totative can be brought down if they are within
6 units from any class C factor. Bases that are not so well entrained at times may not be
able to transfer the problem to class C without dividing the number into three or four
parts, thereby rendering the method far less efficacious. This is why the reciprocal divisor
methods are suitable for highly divisible bases, and fail to support diprimes or squares
that may be far smaller than some of these highly composite bases.

Like Operation Class C, Operation Class D is simply a preparation applied to a problem
that commutes the problem to one that involves a higher grade operation class. Ideally,
the application of Operation Class D shifts the problem to class A or B, reducing the
number of steps in the solution of the problem. There are reasons why a class B operation
is not available from a class D problem. Certain bases aren’t as well-entrained as others;
these tend to be the less highly divisible bases. Bases which are diprimes are initially
adequate candidates for the reciprocal divisor method. As » becomes greater, diprimes
offer relatively few avenues for Operation Class B, so many class D problems lie far from
this tool.
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Figure 4D. An example of a Class D operation, this Figure 4E. An illustration of the method by which a
example involving two totative factors. product that involves two totative factors can be

commuted so that the user can employ the divisors
of the base to solve the problem.

Figure 4D illustrates an Operation Class C problem. Use the following procedure to
determine Operation Class C products which lie beyond the abbreviated table.

1.

Attempt to divide the problem fp; - fp2 involving two class D factors into two
problems using the associative property of addition. Split one factor fp into a
factor fmodiiea Of @ higher factor class and a small integer n, preferably within
Factor Class B. Several integers n, may be required for bases » having relatively
few divisors; this will require a term (n, - fpy) for each n,. The “split” can either be
an addition of a positive or negative n. There may be no “right answer” as to
which factor of a higher class is the one to use. The resultant problem is now of
the form:

Jo1 * fp2 = (fmodified * fD2 ) + (1 - fp2)

There is a special form of Operation Class D which applies to problems featuring
a factor fp which is of the form (» - d). This problem can be divided into (» - f”) —
(d - ') = p. The first term is class A, and the second is class B.

(r-d)y-f=0-f)-@d f=p

Use Operation Classes A, B, or C as necessary to resolve both (fiodified * fD2 ) and

(n* f2)-

4. Reunite the problem using addition of all the terms to determine the final product.
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Operation Class D » Dozenal Examples

1. Multiply 7 by 7. The problem can be
divided into (6 + 1) - 7=(6-7) + (1 - 7).
()()()@Q67@0+1

Solving the first term, a class B operation,

the factor 6 is a divisor of 12, possessing a 2 ) 7% ‘ X 70 0X_7

reciprocal divisor mate d’ = 2. The co- 3R 7 ;f +7
factor f” = 7 is divided by d’, yielding 3 36
. . 4 YK X60

remainder 1. The integer 3 is carried. The — +7
remainder 1 is multiplied by 6, yielding 6. 6 —_—
Thus Operation Class B yields the result / 41
36;. The second term (1 - 7) has a simple 36

solution, 7. The sum of 36; and 7 is 41;.

2. Multiply 5 by X. The problem can be
divided into (6 - 1) - X = (6 - X) + (-1 - X). @6 56
Solving the first term, a class B operation, @ \

the factor 6 is a divisor of 12, possessing a 2
reciprocal divisor mate d’ = 2. The co- 5
factor /7 = X is divided by d’, yielding 5,
which 1s carried to the next place,
generating a class B operation result of 50;.
The second term (-1 - X) has a simple
solution, -X. The sum of 50; and -X is 42;.

U
&

3. Multiply 5 by X. The problem can be

alternatively divided into 3 +2) - x = (3 - Q 3 56 9
X) + (2 - X). Solving the first term using a @ ©

class B operation yields the result 26;. The 4 ) X® % X X@ GX_X

second term (2 - X) yields 18;. The sum of 2R 2\‘r
26; and 18; is 42;. Operation Class D X3° 26

problems may present several viable = +1 8 */
solution options. Some options are more /6 4 2
26

efficacious than others.

4. Multiply ¢ by X. The problem can be
divided into (9 +2) - X =9 - X) + (2 - X).
o 20 &0 94

Solving the first term using a class C

operation yields a result of 76;. The second 4 J X® k X X@ QXX
term (2 - X) yields 18;. The sum of 76; and 2R 2‘*

18; is 92;. This problem could have used ¢ X 3 @
=3 + 4+ 4), [3 + 2(4)], etc. Another
viable process would involve ¢ - X = (¢ - 4)

+ (¢ - 6). The problem could have used the
factors » and d: X = (10 - 2).




Operation Class D « Sexagesimal Examples

1. Multiply 34: by 13:. The problem can be
divided into (30: + 04:) - 13: = (30: - 13:) +
(04: - 13:). Solving the first term, a class B
operation, the factor 30: is a divisor of 60,
possessing a reciprocal divisor mate d’ =
02:. The co-factor /= 13: is divided by d’,
yielding 06: remainder 01:. The integer 06:
is carried. The remainder 01: is multiplied
by 30:, yielding 30:. Thus Operation Class
B yields the result 06;30:. The second term
(04: - 13:) has a class A solution, 52:. The
sum of 06;30: and 52: is 07;22:.
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2. Multiply 41: by 43:. The problem can be
divided into (40: + 01:) - 43: = (40: - 43:) +
(43:). Solving the first term, a class C
operation, results in the product 28;40:.
Adding 43: to 28;40: yields the end product
29;23:. This problem could have used 41: =
(45: - 04:), which would have necessitated
a class B operation on the second term (04:
- 43:). The use of 41: = (40: + 01:) is more
efficient.

o Q G jid/ ]
2) 00\ %50
6~ 1\
X:@ oG
g t8
‘ @/ 7%
o 0 | F®

A |

X5 @ X, £

—2 ><2/+}9
£

— b

Qo +1
Oxy

3. Multiply 23: by 46:. The problem can be
divided into (24: - 01:) - 46: = (24: - 46:) +
(-46:). Solving the first term, a class C
operation, results in the product 18;24:.
Adding 46: to -18;24: yields the end
product 17;38:. This problem could have
used 46: = (45: + 01:), 23: = (20: + 03:),
46: = (40: + 06:). Operation Class D
processes involving n = 1 or -1 usually are
most efficient.

o’ 95 1O
5)_0- X80
9~ 1Y

E
‘xzs@; /_ﬂE
k%

Q-1
Ox

4. Multiply 57: by 51:. The problem can be
divided into (-03: + 01;00:) - 51: = (-03: -
51:) + (01;00:). Solving the first term, a
class C operation with an m, = -1, yields a
result -02;33:. The second term is a simple
Operation Class A problem yielding 51;00:
as its result. The sum of these terms is
48;27:. The factor r can be a powerful ally
in the solution of problems involving a

factor f= (r — d).

®-3 %0
a)_m X @
2R CY

22
‘x3@; ﬁf&O
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Multiplication Processes

Thus far multiplication has been covered. There are four operation classes. Operation
Class A resolves problems involving 1 or » or any product on the abbreviated table.
Operation Class B involves a divisor of the base; the reciprocal divisor is leveraged to
yield a product beyond the abbreviated table. Operation Class C simply extracts a
multiplier which is a divisor or wholly composed of divisors so that Operation Class B
can work. The multiplier is applied to the result of the class B operation to obtain the
product of the class C operation. Operation Class D splits the problem into two separate
problems, preferably both of class A or B, but C is also possible. The results of these two
separate sub-problems are added, yielding the product of the class D operation. Figure 4F
is a flow chart appropriate for multiplication.

Several items should be handy or present in mind when operating in base ». The purpose
of constructing an abbreviated multiplication table is to facilitate its memorization. The
abbreviated table is intended to be concise enough to be kept in mind. It is your judgment
how large a table can be handled. Since the Reciprocal Divisor Method leverages the
reciprocal divisor pairs of base r, it is essential to know these keenly. The set of totatives
for base r is also handy but not essential. Knowing the list of effective factors decreases
guesswork using class C. The class C and D operations normally have several avenues
toward solution, so precise knowledge of totatives and effective factors is not necessary.
Memorization is the key to computational fluency.

There are certain factors which, despite their status as Class C, may be easily resolved
using a class D operation. An example of this is the sexagesimal digit 16:. This is very
easily (15f” + /7). The class C interpretation uses 4(4/”). Thus, Operation Classes C and D
involve some measure of creativity. In a well-entrained base, this “wiggle room” is
tremendously advantageous, because precise knowledge of which factors are totative or
effective, etc. is unnecessary.

)
ff=p m, ISAD IVISOR
IS THE PRODUC T ) "
i p 1S /A IS fA SIMPLIFY THE OR WHOLLY
MULTIP LICATION DETERMINE Isf= _NO_ OF (/- NTHE__NO NO - NO
UPR osﬁzm N FACTOR £ IN PLAY 150/R ) _)OAB(/Bﬁ/E\)II(:\TED — DIVISOR TOTATIVE RATIO f/  TO ==3>COMP OSE D 0F——
! TABLE? OF THE BASE ? OF THE BASE ? OBTAIN 2, DIVISORS OF
IS LARGER THAN THE BASE
“HUMAN SCALE”
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HAS AN ABBREVIATED m, CONTAIN § 3
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Figure 4F. The multiplication process.
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Division Processes

Division using the Reciprocal Divisor Method involves the same processes used to
maneuver the multiplication problem to one which can be solved using the reciprocal
divisor pairs of a highly divisible integer. The problem-divisor (referred to as such to
avoid confusion with a divisor of the base) is assessed, and the appropriate operation
class is selected.

Division is the reversal of a multiplication process; thus the divisor (denominator) is a
former factor f'and the dividend (numerator) a former product p. The quotient to be found
is another factor f”.

plf=r
The factor classes by which each digit of figures involved in a multiplication problem are
classified do apply to the numerator and denominator of a division problem. Operations
involving totatives are notably more difficult under division. This is because the process

of dividing by totatives involves an empirical and iterative process. The following
subsections describe division processes.

Operation Class A: Dividends within the Abbreviated Table

Like the multiplicative class A operation, the division operation of the same class is
easiest. There are two principal applications of Operation Class A on division problems.
The first involves problems where the problem-divisor f is either 1 or » or an integer
power of r. This simply involves doing nothing, or shifting the radix point right 1 or more
places in the dividend. The second application involves a dividend p and problem-divisor
f which are both lesser than r. For dividends that are directly represented on the
abbreviated table, the answer is given by finding the problem divisor on the table and
locating the quotient on the other axis. It goes without saying that division by 0 is not
defined. If the resonances of higher rank divisors of base » are known, these may also be
leveraged: these resonances are not covered in this booklet.

Computation Process
In order to compute a Class A quotient, follow these steps:

1. Problems involving a problem-divisor or denominator of 0 are undefined.

2. For problems involving the problem divisor 1: the quotient f* is equal to the
dividend p.
p/1=p
3. For problems involving the problem divisor or denominator which is an integer

power of r: the quotient of any dividend f divided by /" can be generated by
shifting the digits of the dividend rightward » places.

4. The abbreviated multiplication table will feature composite dividends lesser than r
for some problem divisors.

5. If the product is determined to lie outside the table, use another operation class.
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Operation Class B: Effective Divisor Problem-Divisors

This operation class includes division problems where the problem divisor f; is a member
of Factor Class B, that is, a factor f; which is a divisor d of the base . The reciprocal
divisor d’ of the factor f; can be used to yield any product p which lies outside the
abbreviated multiplication table. Figure 4B illustrates a class B operation. Operation
Class B is available to all integer bases » which have more than 2 divisors; that is, to all
composite bases. Use the following procedure to determine products off the abbreviated

table.

1. Verify that the entire denominator (problem divisor) f'is an element in the set of

divisors D, of base r.

In the problem p / f=f", fe D, istrue; fis a divisor factor f;

2. Begin with the highest rank digit of the dividend p, and iterate for each digit in the
dividend p. The digits of the dividend p are referred to in the steps below as { xy,
Xy, ... } Where xy is the most significant digit of the dividend p.

a. Divide the digit xy by the problem-divisor f; which is a divisor d of base r.

b. Take the integer part of the result and retain this as a digit of the problem’s
quotient f”. These integer parts will accumulate, assembling the problem’s
quotient /” from most to least significant digit.

Multiply the remainder of the result by the reciprocal divisor d’ of 1.

d. If there is a digit in the dividend p which is lesser in significance (i.e. to
the right of the digit just played), add the result of the remainder operation
to the integer part of the next digit xy’s step 2a result. The sum of these
will be retained as the next digit in the problem quotient f”.

3. Continue process until no further digits x, are available. The accumulated integers
are the digits of the problem’s quotient /.

Operation Class B « Dozenal Examples

1. Divide 23; by 3. Starting with the
highest-rank digit of 23;, divide the digit 2
by the problem-divisor f;, which is 3. The
result is O remainder 2. Multiply the
remainder 2 by the reciprocal divisor 4 to
yield 8. Using the digit 3 of 23;, divide by
3 again. The result is 1, which will be
added to the result of the remainder
operation from the last step to get 9. There
is no remainder for this step. Collect the
integer part from the initial step, and the
sums of the integer parts and remainder
operation results of the ensuing steps.

The answer to the problem is 09.0 or simply
the number 9; 2 dozen 3 divided by 3 is 9.



2. Divide 28; by 4. Beginning with the
highest-rank digit of 28;, divide the digit 2
by the problem-divisor f;, which is 4. The
result is 0 remainder 2. Multiply the
remainder 2 by the reciprocal divisor 3
yielding 6. Using the digit 8 from 28;,
divide by 4 again. The result is 2, with no
remainder. Add the 6 from the previous
step to the integer 2 from this step to
obtain 8. Collect the results of all steps to
obtain the quotient: 2 dozen 8 divided by 4
yields a quotient of 8

61

3. Divide 5 dozen 9 by 4. Dividing the first
digit of the dividend by the problem
divisor 4 vyields 1 remainder 1. The
remainder 1 times the reciprocal divisor 3
yields 3. Dividing the next digit 9 by 4
yields 2 remainder 1. Adding the
remainder operation result from the last
step, 3, to this integer part 2 sums to 5. The
remainder 1 times the reciprocal divisor 3
yields 3. Thus 5 dozen 9 divided by 4
equals 1 dozen 5 and one quarter.

4. Divide 9 dozen ten by 6. Nine divided
by 6 yields 1 remainder 3. Multiplying the
remainder by the reciprocal divisor 2
yields 6. The next digit in the dividend,
ten, divided by 6 yields 1 remainder 4.
Adding 6 and 1 totals 7. The remainder 4
times the reciprocal divisor 2 yields 8.
Thus, nine dozen ten divided by six equals
one dozen seven and two thirds.

+ 1 RAX2=8
7

X - 1758
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Operation Class B « Sexagesimal Examples

1. Divide 02;24: by 12:. Divide the digits
of the dividend by the problem-divisor 12:,
then multiply the remainders of these
operations by the reciprocal divisor 05:.
Sum the products of the remainder
operation and the integer part of the digit
greater than the current digit in play.
Collect the sums to build the quotient 12;.
(144 /12 =12).

2. Divide 45;49: by 06:. Divide the digits
of the dividend by the problem-divisor 06:,
then multiply the remainders of these
operations by the reciprocal divisor 10:.
Sum the products of the remainder
operation and the integer part of the digit
greater than the current digit in play.
Collect the sums to build the quotient
07;38:10;. (2,749 / 6 = 458+1/6).

3. Divide 31;28: by 20:. Divide the digits
of the dividend by the problem-divisor 20:,
then multiply the remainders of these
operations by the reciprocal divisor 03:.
Sum the products of the remainder
operation and the integer part of the digit
greater than the current digit in play.
Collect the sums to build the quotient
01;34:24;. (1888 /20 =94.4).

3. Divide 46;16: by 04:. Divide the digits
of the dividend by the problem-divisor 04:,
then multiply the remainders of these
operations by the reciprocal divisor 15:.
Sum the products of the remainder
operation and the integer part of the digit
greater than the current digit in play.
Collect the sums to build the quotient
11;34:. (2776 / 4 = 694).




63

Operation Class C: Non Totative Non Divisor Problem-Divisors

The class C operation involves division problems where the problem-divisor f, is member
of Factor Class C. This factor class includes all those factors f, which are neither totative
nor a divisor of the base » which are products of a “significant” divisor dy; and a multiplier
m, that is also a divisor or composed itself entirely of divisors of base 7.

Solution of the problem involving the effective f, begins by extracting m, from f, to yield
ds. Once d; is known, we can use the reciprocal divisor pair { dy , d;’ } in a class B
operation as described above. The factor m, must be recorded and applied at the end of
the Operation Class B process. When the m, is itself a divisor, the application of m,
becomes simply a second Operation Class B process. In cases where m,, is a composite of
divisors, the m, may be broken down in an Operation Class C.

Operation Class C can be regarded as an extraction of the m, multiplier so that Operation
Class B can be applied to the co-factor f”. This class of operation is available to all bases
r which have 5 or more divisors and many which have 4 or more divisors. Bases which
have a diverse set of prime factors may feature many avenues open to Operation Class C.
Prime bases can not use Operation Class C. Figure 4C illustrates an Operation Class C
problem for multiplication: in division, the product “?” is known, but one or the other
factors is unknown. Use the following procedure given a dividend p beyond the
abbreviated table, and a class C factor as problem-divisor f.

1. Verify that the entire denominator (problem divisor) f is neither a totative ¢ nor
divisor d of base r. Further, simplify the ratio f/ r to obtain m, / d,’. The
numerator m, must be fully composed of divisors d of base r, thus no totative ¢ is
a part of m,. Since d;’ is known, the related divisor d; can be identified.

2. For each digit of the dividend p, beginning with the highest rank digit x, divide u
by the related divisor d; to obtain an integer part and a remainder.

3. Multiply each remainder by the reciprocal divisor d;’, and add the product to the
integer part from the digit immediately to the left or of immediately greater rank.
Each of these sums will serve as a digit in the subquotient.

4. Collect the sums to build the subquotient, and divide the subquotient by m,,.
Division by m, may necessitate another class C or higher (A or B) operation. This
is the final quotient of the problem
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Operation Class C » Dozenal Examples

1. Divide 68; by 8. The simplified ratio
8/12 supplies m, = 2, d,” = 3, and d; = 4.
Divide the digits of the dividend by the
related divisor 4. Multiply the remainders
of these quotients by the reciprocal divisor
3. Collect the results from each step to
assemble the sub-quotient 18;. Divide the
subquotient by the m, 2 to yield the final
quotient, ten (dek). (Six dozen eight is
decimal 80).

@

O d=1 3
‘ 8- 4—%%3 0
o0

2% 68 _18 _y
30 <4080 2%

2. Divide ten dozen one by nine. The
simplified ratio 9/12 supplies m, =3, d;” =
4, and d; = 3. Divide the digits of the
dividend by the related divisor 3. Multiply
the remainders of these quotients by the
reciprocal divisor 4. Collect the digits of
the subquotient to obtain 34;3. Reapply m,
by dividing 34;3 by 3. The quotient 11;54
is the result of dividing ten dozen one by
nine. (121 /9 = 13+4/9).

3@® X1 344 —11.54

4@0<30<90 3T

3. Divide 55; by 8. Dividing the digits of
the dividend by the related divisor 4, then
multiplying the remainders of these
operations by the reciprocal divisor 3
yields the subquotient 14;3. Dividing the
subquotient 14;3 by the m,, 2 yields 8;16.
Thus five dozen five divided by 8 yields
the quotient 8;16 or eight and one eighth.
(Decimal 65/ 8 = 8.125).

30<40<80 20

4. Divide 47; by 9. Dividing the digits of
the dividend by the related divisor 3, then
multiplying the remainders of these
operations by the reciprocal divisor 4
yields the subquotient 16;4. Dividing the
subquotient 16;4 by the m,, 3 yields 6;14.
Thus four dozen seven divided by nine
yields the quotient 6;14 or six and one
ninth. (Decimal 55/ 9 = 6+1/9).

Q00 )
4+3=1R1X4=4

/+3= 2R1X4 4
(. Y7

3@ 47 164

30<90 3@*6 14

410



Operation Class C « Sexagesimal Examples

1. Divide 28;48: by 24:. The simplified
ratio 24/60 supplies m, = 02:, d;,” = 05:,
and d; = 12:. Divide the digits of the
dividend by the related divisor 12:.
Multiply the remainders of these quotients
by the reciprocal divisor 05:. Collect the
digits of the subquotient to obtain 02;24:.
Reapply m, by dividing 02;24: by 02:. The
quotient is 01;12:. (1728 / 24 =72).

2. Divide 53: by 54:. The simplified ratio
54/60 supplies m, = 09:, d;" = 10:, and d; =
06:. Divide the digits of the dividend by
the related divisor 06:. Multiply the
remainders of these quotients by the

reciprocal divisor 10:. Collect the digits of

the subquotient to obtain 08:25. Reapply 0@ II! =8 .G . xlha
m, by dividing 08:25; by 09:. The quotient 7 @ @ < 2@ IZH

is 00:58;53;20;. (53 / 54 =0.9814814...).

3. Divide 19;13: by 45:. The simplified QO (')

ratio 45/60 supplies m, = 03:, d,’ = 04,

and d; = 15:. Divide the digits of the 7TQ=1 RaAX4=F

dividf:nd by thg related divisor _15:. +eo= O Rax4 8
Multiply the remainders of these quotients o O

by the reciprocal divisor 04:. Collect the

digits of the subquotient to obtain

01;16:52;. Reapply m, by dividing

01;16:52; by 03:. The quotient is 3% ?a 1P @ G o na
25:37;20;. (1153 /45 =25.6222...). 1@ <C@ '20 3@

4. Divide 48;17: by 18:. The simplified QO (')

ratio 18/60 supplies m, = 06:, d;" = 20, oy —

and d; = 03:. Divide the digits of the §+3=P ROX2=0 o

dividend by the related divisor 03:.
Multiply the remainders of these quotients
by the reciprocal divisor 20:. Collect the

digits of the subquotient to obtain
16;05:40;. Reapply m, by dividing
16;05:40; by 06:. The quotient is

02;40:56;40;. (2897 / 18 =160.9444...).

\ + 5 R2X9 =9
o

6m 8R _P5.9 nes
e<0 & 2V

0@
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Operation Class D: Totative Problem-Divisors

Division problems which involve a problem-divisor that is a member of Factor Class D
may use the class D operation. This factor class includes all totatives except the totative
{1}, and all the factors f, for which only d; is a divisor of r, with an m,, that is totative. In
short, if both factors are either totative or involve a totative as the numerator of the
simplified ratio f, / r, and neither factor is 1, then the problem is governed by Operation
Class D.

The Operation Class D for division is similar to decimal long division. It employs an
empirical and iterative process to produce the quotient. The class D operation requires an
estimation of which multiple of the problem divisor might be subtracted from a set of
digits of the dividend. Because the abbreviated multiplication table does not contain
every product for the totatives by definition, this estimation process is more involved. It
is noticeably more tedious than the other division operation methods described in this
booklet.

Figure 4G summarizes the process of division under the Reciprocal Divisor Method.

Operation Class D « Examples

1. Divide dozenal 8x2X; by ¢5; to 3
significant digits. Dividing the dividend
8X2X; by a surrogate divisor 100; obtains
an estimated quotient of 8X;2X. A trial
multiplication of the problem divisor £5;
and the first digit of this surrogate, 8; ,
yields 774;. When 774; is subtracted from
8X2; it is too low. Using 9; instead of §;
proves better. The difference, 35X;, divided
by the surrogate suggests 3; as the next
quotient digit. This proves correct. The

v %)
e @=ax
@

USE

93.7 2. 8_,74 %
S5IBX2X 0 o

809 (234~ 3.5x
33X @

difference, 770;, divided by the surrogate
suggests 7; as the final digit to compute.
The difference, ¢1; is relatively high and
certainly more than half of the problem
divisor, so the quotient is rounded up to
nine dozen three and two thirds.

-2X3 @ o -
770 £5%X3=2X3 3

672 @ o)
1 GP= 7.7
o

2 3
@®=93.8 5X7=67% 7



2. Divide sexagesimal 57: by 13: to two
significant digits. Division of the dividend
57: by a surrogate divisor 12: suggests 04:
as a possible quotient digit. The
multiplication of 13: and 04: is a class A
operation. The difference of 50: divided by
the surrogate 12: suggests 25:, but
multiplication of 13: by 25: proves too
large. Subtracting 50: from the product of
13: and 25:, which is 05;25: suggests the
number 23: is the correct quotient digit. A
remainder of 11: suggests the two-place
figure be rounded up to 04;24:.
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3. Divide sexagesimal 02;06: by 17:.
Division of the dividend 02;06: by a non
divisor non totative 16: suggests 08:. This
proves too high, so 07: is used as the
quotient digit, and proves correct. The
difference, 07;00:, is divided by the
surrogate 16: to yield 26:. This figure is
likewise too large, and 24; is indicated.
The difference 12;00: divided by the
surrogate 16: suggests 45:. This is too
large, so 42: is used. The three-place
answer is 07:24;42;

E o
/.86 ?x?:(?x?H?
k)26 -
1k 9 ¢
70 Up)=EE
: o
6_§O o 6 USE
0g EXB=7% %
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4. Divide sexagesimal 07;08;01;14: by
41;02:. Applying the surrogate 40;00: to
the dividend suggests 10: as the first digit
of the quotient. This proves correct. The
difference 17;41;14: divided by the
surrogate suggests 26:, which proves too
large. The figure 25: proves to be the next
digit in the quotient. Division of the
difference 35;24;00: by the surrogate
suggests that the last digit is 53:. This
proves too large. The digit that proves to

92 AP

—~—

50
®
o G

]
6.6

be correct is 51:. Thus the quotient is N USE
10;25:52; via rounding up. a'?fo E2X¥=FP¥T G
5. Divide 46;40;00: by 02;13;20:. This is R N0 ) ‘
perhaps a trick problem. If the third rank ?
divisors are familiar, the fact that 02;13;20: Qo G USE
is the reciprocal divisor to 27;, and the @ = ZG.G BE2XE=EUY Ek
figure 46;40;00: is 21; / 27; may be more
evident. This particular problem can be
resolved  entirely  with  fraction 'qu Qo 7
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Figure 4G. The division process.
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Range of Effectiveness for the RDM

Let’s examine the range of bases for which the Reciprocal Divisor Method might be a
useful toolset.

Range Limited by Human Ability

The two principal factors which govern the usefulness of a base r for general human
computation are the properties of integers and the capacity of the human mind. These two
principal factors thus generate a spectrum of integral bases which run from the simple
bases, which are generally less than about 6 or 7. This is the range where human
perception of the quantity of objects present in a group nearly never fails to be accurate.
The “human scale” bases include integers larger than the simple bases but smaller than a
size where the human memory has difficulty learning and practicing the full
multiplication table within a period of training time comparable to today’s decimal
training time. These integers perhaps range between approximately 6 or 7 through
approximately 12 through 16, possibly including the two integers 18 and 20, which
possess the same number of divisors as twelve, and therefore should be aided by rhythms
in their tables. Bases greater than the human scale bases, running up to 36 are the inner
large bases, which are representable using the numerals and the letters of the Latin
alphabet. Bases greater than the inner large bases to around 60 or 64 comprise the middle
large bases. All bases greater than these are simply the large bases. This is neither a
scientifically studied nor defined scale.

Human Middle
NS | =

Simple Inner Large

2 12 60 120 360 2520

2 ¥ % ¥ % X
Human

VL T4 TN DS o S

Simple Mid-Scale Large

2 12 60 120 360 2520

Figure 4H. Perhaps the RDM facilitates “exploration” of certain “mid-scale” bases. The most significant
of these “mid-scale” bases is sexagesimal.
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Range Determined by Mathematical Properties of Integers

The RDM yields useful abbreviations for composite bases that range between
hexadecimal through sexagesimal. Above sexagesimal, the RDM yields useful
abbreviations for bases having more than 5 divisors perhaps through base 120. The size
of the abbreviated multiplication table for base 120 includes 246 products of unique
factor combinations, with the “crossing” table including 301 elements. Thus the
abbreviated table for » = 120 is comparable to the full traditional hexadecimal
multiplication table, which is perhaps the upper limit of the “human scale bases”. No
empirical testing for these ranges has been conducted to date, to the knowledge of the
author.

Entrainment

The operation classes function fully for all bases which have more than 5 divisors. Such
bases can be called “entrained”. This means that the following operations are possible:

e The Class A operations among the factors on the abbreviated multiplication table
and those which involve 1 and r,

e The Class B operations which extend the factors £z,

e The Class C operations between any factor f and a factor f;, via commutation of m
which is a divisor d of the base 7, and

e The Class D technique that commutes one of two totative or ineffective
nontotative nondivisor factors to a factor f; so Class B can be applied.

Table 4C « Effectiveness of Operation Classes versus Number of Divisors of Base t

Class A Class B Class C Class D
2 divisors °
3 divisors ° ° °
4 divisors ° U limited J
> 5 divisors ° ) ° °

All the operations classes function for these entrained bases because two or more
reciprocal divisor pairs can cross-interact. For instance, the dozenal nontotative
nondivisor factors f, include two factors {8, 9} which are multiples m of the divisors {4,
3} that are themselves divisors of twelve {2, 3}. The dozenal nontotative nondivisor
factor 10 cannot technically employ the Class C because the multiplier m is 5, which is a
totative of twelve. At the scale of the dozenal system, the fact that 10 is the product of a
divisor and a totative is perhaps not insurmountable. But at scales on the par of bases 60,
72, or 120, using a factor that is the product of a divisor and a totative is prohibitively
impractical. Figure 4J illustrates the entrainment of decimal and dozenal, which are too
small for RDM to be effective. The range of integers between 20 and 25 better illustrate
entrainment. The highly entrained sexagesimal table appears at the end of the study.
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Base 24,D,={1,2,3,4,6,8, 12, 24} Base 25, D, = {1, 5, 25}
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Conclusion

This booklet illustrates how the reciprocal divisor pairs of bases with 3 or more divisors
can be used to abbreviate a large multiplication table, thereby facilitating computation in
that base. The patterns present in the multiplication table of every integer base indicate
that abbreviation to the first period is possible, dramatically reducing the quantity of
products that must be memorized. The reciprocal divisors can be used in multiplication
and division to compute products beyond the abbreviated table, or to find quotients that
involve elements not found in the table. The computations are more circuitous than direct
computation for “human scale” or simple bases whose multiplication tables are easily
memorized. However, the methods do render computation possible in bases between
“human scale” and the range where the abbreviated table rivals the size of the largest
“human scale” bases.

The three types of factors found in a multiplication table have been described and
classified into four “factor classes”. Four kinds of “operation classes” have been
developed to handle each of these classes of factors. The first class handles problems
where one factor or dividend or problem-divisor follows simple rules, or is represented
on the abbreviated table. The second class leverages the reciprocal divisor of a factor or
problem-divisor which is also a divisor of the base. Two of the four classes merely adjust
the problem so that reciprocal divisors can be used to solve the problem. The third splits
the problem into one which can be resolved by a reciprocal divisor (i.e. class B), and a
multiplier operation. The fourth splits the problem into the sum of a class B operation and
a smaller operation. Examples of the multiplication and division under bases twelve and
sixty are given.

The Reciprocal Divisor Method functions more efficiently for bases with more than 5
divisors. Bases which possess relatively many divisors are said to have “entrained”
multiplication tables. There are many avenues toward solution under such bases.

The intent of this booklet is to share “climbing equipment and techniques” with others
who enjoy “climbing the mountains” of the higher bases. The equipment and techniques
are perhaps imperfect, but they are complete enough and do work, allowing our safe
ascent. There are those that would debate the equipment and techniques, but in my mind,
the climb and the views are far more important than these. If enough of us ascend these
heights, an “industry” might arise, and provide proper standards. This is perhaps only the
beginning, and there is a lot to see up here.

I believe that dozenal is the optimum base for general human computation. I do recognize
that sexagesimal and the other superabundant bases 120, 360, 2520, etc. offer even more
powerful opportunities to resolve nature’s order.

This booklet and a second describing the Argam transdecimal numerals represent the
culmination of twenty five years of preoccupation with transdecimal number bases. The
effort that has been invested in this booklet is an attempt to ascend to these summits and
survey the universe. The patterns from these heights are as beautiful as the Colorado
vistas. I do invite fellow climbers to see the land and sky from these mountains, even
though we may not inhabit them. We can still enjoy the climb and the view. Perhaps
someone might even build an observatory up here. Happy climbing!
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Numbers Versatile Economics, [Electronic version] from http://www.earth360.com/
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of conversation. The Argam symbol for ten, Z, happens to be the same symbol the British



75

society employs. Shaun introduced me to the work of the Dozenal Societies of America
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was then exposed to a vast amount of work in base twelve. Chief among these are listed
below:

Manual of the Dozen System, Duodecimal Society of America, Inc., Garden City, New
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The contributions by Bryan Parry, “ruthe”, “dan”, “Listerine”/”leopold plumtree”, and
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Rogers, et al., from http://www.intuitor.com/hex/ also played an important role in the

creation of a case for dozenal.

I visited Long Island for the Dozenal Society of America’s general meeting in October
2006, meeting Professors Gene Zirkel, Jay Schiffman, Alice Berridge, and Christina
D’Aiello. At this meeting I was given most of the back issues of the Dozenal Bulletin.
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The Duodecimal Bulletin, Volume 3, Number 4, December 1947; p. 19, Lecture Chart,
Paul Van Buskirk. This is a good concise presentation board which perhaps is the
forerunner of some of this work.

The Duodecimal Bulletin, Volume 3, Number 4, December 1947; p. 5, “What is the Best
Base?” in “A Plea for the Duodecimal System”, H. G. G. Robertson. A short description
of the “ingredients” of a good base, which serves as part of the case for dozenal.

The Duodecimal Bulletin, Volume 1, Number 1, January — March 1945; p. X, On
Multiplication Tables, Kingsland Camp. Mr. Camp analyzed the dozenal multiplication
table; it was this analysis that led to my own analyses of several multiplication tables to
establish trends. His analysis was perhaps more aesthetic, noting symmetry.

The Duodecimal Bulletin, Volume 6, Number 2, January 1950; p. 35, Cyclic Sequences,
George S.Terry. The current integer graphs I produce were created in early 2001 and
2002, a study of resonances within an integer. There are plenty of similar plays on the
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geometry associated with the dozen. This is one set of studies that strengthened my own
graphs. The other resources were the logos of the Dozenal Societies and geometric
graphics in the most current Bulletins.

The Duodecimal Bulletin, Volume 7, Number 1, October 1951; p. 1¢£-20, The Man with
Twelve Fingers, F. H. Ames, Jr.

In January 2007, the applications Font Studio 5 and Wolfram Mathematica 5.1 were
acquired. The Argam was expanded into the hundreds. The digits necessary to represent
sexagesimal directly were created in Adobe Illustrator, modeled on Courier from scratch.
A sexagesimal multiplication table was assembled in Microsoft Excel and passed via
PDF format to Illustrator for additional graphic treatments. Meanwhile 1 studied the
properties of sexagesimal on scrap paper during evenings at home and mornings in the
coffee shop. These were synthesized in a leather book bought in Gubbio, Italy back in
2005. This leather book became the synopsis of all my work relating to bases.

February through August 2007 was an intense period in the office, with more business
than ever before. The sketches in sexagesimal were a respite from the all-nighters and
solid weeks of production. In March 2007 I visited a few websites that helped me see the
light. These were aids in understanding how the Sumerians and Babylonians used
sexagesimal on a daily basis.

Duncan J. Melville. Reciprocals and Reciprocal Algorithms in Mesopotamian
Mathematics, [Electronic version]. Retrieved 21  September 2007, from
http://it.stlawu.edu/~dmelvill/mesomath/Recip.pdf. This work suggested the notion of
leveraging reciprocal divisors to compute. It seems the forefathers maintained a set of
multiplication tables for reference, but actually computed by doubling or halving.

Duncan J. Melville. Old Babylonian Multiplication Tables, [Electronic version].
Retrieved February 2007, http://it.stlawu.edu/~dmelvill/mesomath/multiply.html.

Duncan J. Melville. Mock Reciprocal Table, [Electronic version]. Retrieved February
2007, http://it.stlawu.edu/~dmelvill/mesomath/reciprocal.html.

David E. Joyce. Sexagesimal Reciprocals, [Electronic version]. Retrieved June 2004 from
http://aleph0.clarku.edu/~djoyce/mal05/reciprocals3600.html.

John Harris. Time and Tide; Babylonian Mathematics and Sexagesimal Notation,
[Electronic version]. Retrieved October 2003, from http://www.spirasolaris.ca/
sbblsupl.html.

In late April 2007, The idea of abbreviating the full sexagesimal multiplication table
came across at the Starbucks at Kingshighway and Chippewa in St. Louis on an early
morning. If the first “module” of the divisors was included, and the other factors
truncated where they were just under sixty, the reciprocals allowed computation beyond
that first “module”. Exercising this between April and May proved successful, so that any
application which required multiplication and division was possible. I began computing
time spent on projects fully in sexagesimal, tallying my work and that of my intern. Fees
and project estimates could be calculated more reliably.

The result of these studies is this summary of what was learned. This work came together
in the shadow of a cancelled project in September 2007.
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Index of Plates in the Appendices

Appendix Al « Properties of Integers

Table of the Properties of Integers: Divisor and Totient Functions

Appendix A2 « Multiplication Tables

Octal — Base 8
Hexadecimal — Base 16
Dozenal — Base 12
Decimal — Base 10
Sexagesimal — Base 60

Appendix B ¢ Analysis of Multiplication Tables

Octal — Base 8
Hexadecimal — Base 16
Dozenal — Base 12
Decimal — Base 10
Sexagesimal — Base 60

Appendix C1 ¢ Abbreviated Multiplication Tables

Sexagesimal Mixed Radix Notation
Sexagesimal Pure Radix Notation (Argam)
Bases 16, 18, 20, 24, and 30 (Argam)
Bases 36, 48, and 60 (Argam)

Bases 72 and 84 (Argam)

Bases 90 and 96 (Argam)

Bases 108 and 120 (Argam)

Appendix D ¢« Argam Symbology and Nomenclature

Presenting the First 120 Argam
Argam Sorted by Superabundant Numbers, presently digitized
Argam Arranged in an Infinite Multiplication Table

Appendix E ¢ Sample Studies written in Argam notation.

Study of the Sexagesimal Powers of Popular Integer Bases

Study of the Third Rank Divisors versus Prime Factorization Shape
Study of the Factorization of Integers Which Set or Tie Records for o
Study of the Divisors of Integers Which Set or Tie Records for o

The booklet “Argam: a Transdecimal Numeral System” by Michael De Vlieger, will be
finalized in 2008.
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107 107 0_319 11_(?0% 01_9961 L, 131 131 0_(%15 11.(?(% 01.29% g,
108 2*-3° 0.11%1 22§9(§ 0%?3 ¥ ; § 133 3 561 § 132 22311 0.10%1 32465 0%83 i % ; 3 2 i §
109 109 2, MO 108 oo 133 57 Gk 10 198 s
110 2511 8, 216 40 o oizose 134 200 B85 el
111 3-37 0_8‘36 11_35629 0_76%9 12 ; ; 135 35 0_§59 12;‘7% 0.75%3 X i 2 i 2
2 27 3 B 2 DD 136 217 ok fag om Biloge
113 113 0_318 11_(}0% 01_91921 B 137 137 0_315 11.30§ 01.2963 &,
114 2:3.19 (80 240 36 4 12 138 223003 Ko 2B A sl
115 5-23 0_8‘35 11?5% 0_87§5 v oL 139 139 0_314 11.(4)109 01.2983 g,
116 2°-29 0.(?52 %z}l(()) 0.54g3 Z i ; 2 140 2*-5-7 0.10%6 3:%0% oﬁs € 1 3 : 2 ; E
17 w3 8, 182 2 g1 141 s 4o 19200 92 gt
118 2-s9 A, 180 58 i 42 2 b HS T sl
119 7-17 0.?34 11?14(‘) 0237 % ; f7r 143 11-13 0.0428 11.16785 01.82392 N é ;

15 403 48 12 3 4 6 89
144 2*.3 0.104 2.799 oz T 2



Octal

(Base 8)

O 4 0 2 0 %5 0 1
1 2 3 5 6 7 10
2 4 6 10 12 14 16 20
3 6 11 14 17 22 25 30
4 10 14 20 24 30 34 40
5 12 17 24 31 36 43 50
6 14 22 30 36 44 52 60
7 16 25 34 43 52 61 70
10 20 30 40 50 60 70 100

Full Multiplication Table.




Hexadecimal

(Base 16)
0O 8040°%020%0%b0°%e01
112345 6,7 89 ¢ ] C ] ¥ ]0]&]| € ]10
24|68, 8 € 10 12 14 |16 | 18 | 1T | 1¥ | 1€ | 20
36918 | @ 12|15 ]18  1C 1€ |21 24 27 | 2¢ | 20 | 30
4 8 | % |10 14 18| 1% | 20 24 28 | 2y 30 | 34| 38 3% | 40
5 | ¢ @ |14 19| 1€ |23 28|29 |32 37|36 41| 40 4U | 50
6 ¥ 12|18 1€ | 24| 22 | 30 | 36 3% | 42 48  4E£ | 54 | 5C | o0
7 € 151y | 23| 2¢| 31 383046 40 54 57V 62|69 70
8 |10 18|20 28 | 30 | 38 | 40 | 48 | 50 | 58 60 68 70| 78| 80
9 112 | 1V | 24 | 20 | 36 | 30 | 48 | b1 | 5C | 63 68 75 6E | 87| 90
¢ |14 1€ | 28 | 32 | 35 | 46 | 50 | 5C | 64 | 6E€ 78 82  8¥ | 96 | <0
C 1o | 21| 28| 37|42 |40 | 58 | 63 | 6E |79 | 84 82 92 | ¢5 | (0
§ | 182430 3548 54|60 |08 |78 84 90 9¥ ¢8| (4| ¥0
o 1|27 |34 41 4€ |5V |68 75 8280 9% 29 V6 | ¥3 |90
€ 18 | 2¢ | 38 | 46 | 54|62 |70 6E 8% | 9¢ ¢8 (o6 | ¥4 02 €0
€ 1€ | 20| 38 | 4V | 5¢ |69 |78 87 96 |¢5 (4 83 02 €1 ]¢€0
10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | €0 | TO | O | 00 | €O | €0 | 100

Full Multiplication Table with Argam notation for transdecimal bases.




Dozenal

(Base 12)
O 6 4 3020°3%4%°%601
1 2 3 4 5 6 7 8 9 X 2 10
2 4 o 8 X 10 12 14 160 | 18 1X | 20
3 6 9 10|13 | 16|19 20 23 | 26 29 30
4 8 10 14 | 18 20 24 28 30| 34 38| 40
5 X 13 18 21 20 2% 34 39 42 47 | 50
6 10 16 | 20 26 30| 36 40 46 50 56 60
7 112 19 24 22 30 41 48 | 53 5X | 65| 70
8 14 20| 28 34 40 48 54 60 o8 | 74 80
9 116 233039 40|53 60 69 70 83 90
X 18 26|34 42 50 5X 68 76 84 92| X0
¢ | 1X 29|38 47 56|65 74 83 92 X1 <0
10 20 30|40 50 60| 70 80 90| X0 | 20 100

Traditional Full Dozenal Multiplication Table.




Decimal

(Base 10)

O 50%2%0%01
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 |9 12 15 18 21 24 27 30
4 8 |12 16 20 24 28 32 30 40
5 10 15 20 25 30 | 35 40 45 50
o 12 18 24 30 36 42 48 54 o0
7 14 21 28 35 42 49 560 63 70
8 1o | 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 1 20 30 40 50 o0 70 80 90 100

Full Multiplication Table.
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5 ¢ @ 2 6| &¢ & 9 € ¢ | K 10 15 1z 1e |12 16 1 14 19| 1€ 1¢ 18 20 25|2¢ 20 22 26 26
6 ¥ & ¥ & | & & ¥ & 10|16 1¥ 18 1¥ 16 |1k 18 1¥ 1% 20|26 2% 28 2¥ 26|28 28 23 22 30
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G ¢ 1@ 19 25|28 258 32 3€ 4¢ |44 50 5G 5C 6@ |6¥ 75 76 75 82|88 9¢ 94 <0 & |cc e Ui ¥5 ¥¢
8 8 18 1R 2|28 32 3E 3% 42|48 5% 5% 64 66|63 7t 7¥ 89 871|9 9% 9X ¥ <€ | (P (6 ¥8 ¥R o0
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U 1€ 1k 28 35|38 47 43 52 6T |6Z 7% 81 8% 90|96 ¥ (o6 (b ¥2|¥% ok &V E¥ G| P2 FPY kP Kk &
% 1f 18 2% 32| 3% 48 54 56 6d|6X 78 8E 88 96| <8 v U¥ ¥2 ¥V |oR 93 Ek €y eC|FPE k6 EY Rx 70
$ 1% 1% 28 30 |3% 42 5% S5k 66|79 7% 8% 96 9€|Z¥ (3 (6 ¥7 90|09 €8 EZ B fO| PR Kz /¥ Rk 7¢
9 12 20 29 32|40 49 52 60 69|72 80 8% 92 <O | <21 T2 ¥O ¥V 092 | €0 €V €2 FO FPY|EKD R0 ¥ 72 20
B 1t 23 2R 3G |46 4Z 58 69 6C |7 8y 8k 9k <C€ |23 (U ¥R ¥P oV |E7 €2 eb F¥ k5| kv /3 78 74 3¢
& 1% 26 2% 36 |4y 4% 58 6% 70|78 8% 96 9% <& | (¥ (2 ¥k o% €0 €6 €¥ fo F¥ K& | R¥T R 7B 2R 70
b 18 29 28 34|48 51 5% 63 7|7k 88 97 <2 <& |CE ¥C ¥R oMU €2 | €3 €8 P¥ k¥ KK | K% 7?7 24 JE VG
R 1€ 2 23 39|4% 58 58 o6& 72|84 8% 9% Zf TO0|CR ¥E o¥ o3 €4 |Q¥ Ff8 FfEB k& R2 |74 78 2% 7P R0
€ 16 20 30 38|4c 50 60 6% 7c |80 90 9¢ T& (@ |¥O ¥E o6 £ RO |e8 P& KC R0 R& |7 2@ 70 78 %6
¥ 1% 2% 34 3C| 4k 5t 68 6% 77|88 9y 9X R (¢ |¥P 02 o¥ Ek 2| fo FPEB K% /¥ 72| 73 238 VE & WO
Z 1k 27 38 35|48 5F 6f 73 7¢|8M 9¥ U X U4 |¥% 97 €6 &k eI | Py kKE R4 RF F4A |2t V9 73 b A&
¥ 1k 2% 3% 40| 4% |5k | 6¥ | 75 | 80|88 98 ¥ (¥ ¥O|¥3 ok E€¥ Q¥ FPO|F¥ KR ¥ 7Z¥ 20| 2F 7& 1¥ ¥ ¥0
4 1% 23 3f 45|48 5P 6% 77 8CZ|8F 9% <M (B ¥@ |04 ok €8 eI FPI| K9 KX RZ 7& 2G| 7€ I3 168 LB ¥G
¢ 19 26 32 42|50 5C 6% 76 82|92 O <& (9 ¥e|o0d &€ €O e¢ PI| kG R 72 20 3C |71 e V2 ¥CT GO
E 18 22 3% 4@ |56 5% 6% 79 86|97 ¥ (3 (2 ¥¢|ok € €% f9 KO | KR R8 7Z 2% 7@ |16 1% ¥ ¥§ GE
8 1% 28 3E 42 |5 64 63 7% 81|9% <¢¥ (P ¥8 00|08 ER €& FPE KD | R¥ 74 73 ¥ 7| A% bv¥ ¥ G8 6O
1% 2% 3% 4G | 5% 6C 74 7% 8C |9V Z& T4 ¥t o0 | €8 €1 eR FPEZ kY| R%Z 78 72 V¥ 5| X VR ¥V GHU 68
2 1% 286 3& 4G |58 6% 78 86 90 (9% ¥ (6 ¥& o6 |E€¥ e} P¥ Ko RO | R 7¥ 28 7& G | ¥ ¥R G¥ 86 1310
5 1€ 28 39 44|56 606G 72 8 9¢|¢5 TO (K ¥C o8| €Y ea P& EG 2|70 2C¢ 75 0 5| %bvE ¥ G BA 3¢
3 16 2% 3R 49|58 6% 7€ 8% 92 |c¢f (¥ ¥8 o4 €0 | €3 €8 P¥ KV RV | 7B 2% VE ¥ Vo | ¥P Gy B8 314 E£O
# 12 2k 3% 48|56 68 7& 8% 96 |2k (¥ ¥7 o} €| Ry f9 K6 R3 70| 7% 28 VR I¥T W@ | ¥G6 G BR 1z EC
X 13 28 38 4C| 5% o8 7% 88 97 c¢% (B ¥k 0% €& |RE FPE K¥ Rt 72|28 7P A LY ¥C | G8 66 314 £2 10
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Sexagesimal (Base 60)

O % % % Y h ® % Y h © % O % 5 A O % O % % % O Y % % Y% oo 1

r » z & &4 | & ¥u % & S| & P R £|%¥ Z ¥ 9 ¢|k € & & 5|3 % X B 10
12 14 16 18 1z |1y 1€ 1f 1% 12 | 1% 1¥ 168 1&€ 16 |1?% 1k 16 1% 1|18 1®% 1% 1% 1¢ |16 12 13 1X 20
12 18 18 18 14| 1% 1k 18 1% 20|23 26 29 28 20|28 27 28 23 26 |2%2 28 2% 26 26|28 2k 2% 2% 30
24 28 28 2P 29 |2¥ 28 2% 28 29 |2° 2% 28 23 30|34 38 3y 3f 32 |3% 3¢ 3% 3 37|3v 3% 38 33 40
20 29 26 2¢ 28|30 35 32 3@ 32|36 3¢ 34 31 3¢ |3C 35 40 45 4C |40 42 4G 4¢ 44 | 49 4€ 4C 485 50
36 3% 3% 3% 36|38 38 3% 3% 40|46 4% 48 4% 4G |4k 486 4% 42 50|56 58 5% 5% 56|58 56 5% 5% 60
3u 3% 3k 3X 45 |4y 47 48 4z 49| 4Z 42 51 58 5@ |5t 5% 58 5 5G| 5% 64 60 68 6G|63 63 68 ok 70
48 4f 4¥ 4% 49| 4% 43 54 5% 52 | 56 5k 5% 58 60|68 6f 6¥ 6% 61|63 63 74 V¥ 72|7€ 78 7R 78 80
4% 4% 4% 56 5@ | 5% 5% 58 5k 60|69 6% 63 6& 68 |6R 73 7% 77 76|79 7% 7% 86 8€|8¥ 8% 86 8k 90
5¢ 52 56 51 5¢ |60 6 62 66 6¥|6C 70 7C 72 76|71 7¢ 80 8Z 8|8 87 8 90 9¢ |92 9¢ 91 9¢ <0
58 58 63 6€ 6G |68 6Z 6X 79 72|70 78 7k 84 80|88 8Z 8% 8F 9¢ |97 9% 9 98 I5|c¢f Ty <% <4 QO
68 6% o6& 63 70 |7% 7% 7& 7% 80 |8y 8% 8& 8% 90| 9% 9¥ 9 9% <0 | ¥ <¢¥ <c¢& <¢¥ (0 |y (¥ C& (¥ %0
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7€ 7€ 786 73 8Z|8% 8% 88 9 92 |9k 9% 22 <¢f <& |<CR X Cy (6 U | (R ¥8 ¥t ¥k ¥E| o4 ok 9% 08 EO0
74 80 80 8¢ 88|90 9@ 9¢ 94 <c0|<Ce <C& ¢& CO0 Ce|Cé CT& ¥0 @ ¥G|¥e o0 of ot o€ |EO €@ ec €& €0
8f 8% 8% 94 92 |9 98 <8 ¥ ¢i|Z3 (¥ TE (R ¥O|¥P ¥? ¥T 04 02| ok o8 €8 &¥ €V |€3 @y CE e€v fO
8Z 94 97 9% 95 |2y ¢t Z¢ (U3 (2 |TH (R ¥C Y& ¥€ |02 o7 ok of €2 | &% EV @1 ek ea| €6 f9 FPE FP KO
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Octal

(Base 8)

O 4 0 2 0 %4 0 1
.
1 2 3 4 5 o 7 | 10
N {

> 4 6 (10)12 14 16 (20
\_/ %
3 (6 1 14 17 22 (25(30,
IR SR ) N

a (10) 124 (20) 24 (30) 32 ( 40
\_/ T\ TN\ <
5 12 17 24 31 36 43| 50
— \

6 14 2 (30) 36 44 52 (6o
\_/ %
7 16 25 34 43 52 1 (70,
o un o o o — o N\
20 30240 X 50 A 60 X 70 @

NN AN N IN I\ I\ I\ J



Hexadecimal

(Base 16)
0O 8040°%020%60%b0°%e01
1 2 3|45 66|78 ,9]¢ |0 8|0 |€]|®e 10\
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Multiplication Table Analysis.

Circles indicate periods. Phases are shaded triangular areas. The
width of the phases relates to the magnitude of the unit digit. Multi-
phase cycles feature a phase which begins on a period and one
which ends on a period. Cycles which start and end on a period and
include one uptrending phase are divisors of the base.
Notation above the table indicates the integral reciprocal divisor for
divisor factors. A “T” in a circle marks totative factors. The simpli-
fied ratio d’ / r = d / m, appears above non totative non divisor
factors. The periods of totative factors 1 and - 1 are indicated, but

all other totative factors are marked with a simple gray stroke.
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Multiplication Table Analysis.

Circles indicate periods. Phases are shaded triangular areas. The
width of the phases relates to the magnitude of the unit digit. Multi-
phase cycles feature a phase which begins on a period and one
which ends on a period. Cycles which start and end on a period and
include one uptrending phase are divisors of the base.

Notation above the table indicates the integral reciprocal divisor for
divisor factors. A “T” in a circle marks totative factors. The simpli-
fied ratio d’ / r = d / m, appears above non totative non divisor
factors. The periods of totative factors 1 and - 1 are indicated, but
all other totative factors are marked with a simple gray stroke.
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Sexagesimal Multiplication Table using Reciprocal Divisors
Argam Numeral Set and Names
appropriate for Base-60.
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to enhance your fluency

with base -60 computation
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R % the full table may be
2 9 10| memorized in the future
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Copyright 2007 Michael Thomas De Vlieger
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Zero d score 9 kinoct
one 7 tress B alume
two X dell 6 exeff
three L flore P silick
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five G quint € kinove
Six B dithe ® diore
seven 3 trine Z foss
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ell I’ sode ke trizote
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trick &  kineff 5 kinell
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Class | computations involve factors whose
product is represented in the table. An example is
9*5 = &

Class Il computations involve the usage of
reciprocal divisors for operations involving at
least one divisor in order to obtain carries for
products greater than 10. Example is:
2*¥ = 10(%/3) = 40

Class Il computations extend the basic set of
reciprocal divisors to their simple multiples by
splitting the operation into two parts. An example
is:
V¥ = 10(b/3)*2 = 79*2 = @3.
Class IV computations use addition to reach
factors that are near the divisors:

Exp = (9*p)+p =

(10(v/3)*2)+p = (€2*2)+D = E9+D
= 1L,
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Study of the third rank divisors versus prime factorization shape

zeff (14)

dess (10)

six

27
€

25
4

3

3

1000

1

3

3

1000
500
250
200
125
100

1

3

3

1000
300
200
130
100

1

700
370
200
137
100

10
12
13
20

10
20
37

10
20
25

43

70
40

50
40

40

30

cadeff (28)

score (20)

zen (12)

3

6

1000

1

3

6

1000
200
500
400
220
200
150
100

1

3

6

1000
600
400
300
200
160
140
100

90

1

€00
700
400
3€0
200
170
100

10
14
17

10
15
13
20
22
34

10
14
16
20
23
28
30

¥E
f0
€0
¥7

PO
114
20
80
65

80

20
28
3€
40

60

54
46

80
70

50

40

30

zeffent (196)

kent (100)

exent (36)

6

6

1000

1

6

6

1000
€00
<00
200
¥E0
200
6G0
500
400
3%¢
2¢0
200
13¢
160
100

1

6

6

1000
200
¥00
900
600
420
400
300
290
200
180
1%0
148
100

1

400
100
£Q0
¥40
€00
%410
700
6%¥d
400
340
3¥4
200
1F0
100

10
1%
1R
1€

10
1€

10
16
1%
20
28
32

30
¥0

74

40
4
co
10
re
G0
30
PO
¥C

70
40

BE

1E

29
R0

20
23

20
29
2%
30
40
a8
5%

f0O
aR

30
40
£0
¥4

34

40
70
80
¥

40
50
6G

30

90

80

f0

80

63

€0

20

60



Study of the third rank divisors versus prime factorization shape
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Study of the third rank divisors versus prime factorization shape
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Study of the factorization of integers which set or tie records for the number

A002183 A005179 of divisors. The notation below the argam indicates the exponents of the
primes which compose the integer. The notation situates two at the right,

two two three zeros holding places for skipped primes.
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two three Study of the divisors of the first integers which

) é 3 é either set or meet records for total number of
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