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Abstract.
We explore properties of numbers k < n such that both share a 

squarefree kernel, yet k does not divide n. The smallest example of 
such is k = 12, n = 18. We determine the sort of prime decomposi-
tion that k and n must have so as to enjoy this rare relationship. Ex-
amination of a counting function and records transform follow. The 
problem touches upon odd prime p-smooth numbers and the nature 
of the tensor product of prime divisor power ranges bounded by n, 
which relates to OEIS A010846.

Introduction.
Define an n-regular number k to be a product limited to primes p 

such that p | n. Let rad(n) = A7947(n) = κ be the squarefree kernel 
of n. We note that n-regularity is determined without regard to mul-
tiplicity ε of prime power factors pε | n. It is easy to see that n-regular 
k are such that rad(k) | rad(n). Furthermore, n-regular k are ele-
ments of set Rκ = { k : rad(k) | rad(n) } where κ = rad(n). We may 
also express this as follows:

	 Rκ =  ⊗
p|κ  

{ pε : ε ≥ 0 }.	 [1.1]

This expression implies | Rκ | = ℵ₀ for κ > 1, since | {pε : ε ≥ 0} | = ℵ₀. 
A consequence of restricting k to p | n allows the following:

	 Rκ = { k : k | nε : ε ≥ 0 }.	 [1.2]

It is clear from [1.2] that 1 ∈ Rκ, since 1 | nε : ε = 0. There are 2 species 
of n-regular k. Since multiplicity ε of prime power factors pε | n, we 
define these species with regard to n such that rad(n) = κ, rather 
than κ.
	 Divisors:	 Dn = { d : d | nε : 0 ≤ ε ≤ 1 }	 [1.3]
	 Semidivisors:	 Ðn = { k : k | nε : ε > 1 }	 [1.4]

The divisor counting function τ(n) = A5(n) is defined as follows:

	 τ(n) = | Dn | = ∏
pε|n

 (ε+1).	 [1.5]

Since Ðn = Rκ\ Dn, | Ðn | = ℵ₀.
We can construct a “regular counting function” that employs the 

bound n as follows:

	 θ(n) = | { k : k | nε : ε ≥ 0 ∧ 1 ≤ k ≤ n } |
	 = | A162306(n) |
	 = A010846(n)	 [1.6]

The bound n, though not as natural for n-regular k as it is for divi-
sors of n, is justified by the fact that n itself is n-regular. The computa-
tion of θ(n) is most efficiently achieved through an algorithm related 
to [1.1]. (Usage of θ comes from Granville.) Define “the semidivisor 
counting function” ð(n) to be the following:

	  ð(n) = | { k : k | nε : ε > 1 ∧ 1 ≤ k ≤ n } |
	 = θ(n) – τ(n)
	 = A010846(n) – a5(n)
	 = A243822(n)	 [1.7]

Consider a symmetric or completely regular relation k ∥ n, that is, 
k is n-regular, and n is k-regular. We may say that k and n are “coregu-
lar”. It is clear that this relation has the following property:
	 rad(k) = rad(n) = κ 	 [1.8]

We recognize that within coregular relations, we may have three 
species. These are symmetric divisibility (i.e., equality, k = n), mixed 
regularity wherein 1 term divides the other, and symmetric semidi-
visibility, a relation with no divisor relation. An example of symmet-
ric divisibility is the relationship between 12 and 18.
The Symmetric Semidivisor Counting Function.

Define f(n) to be the “symmetric semidivisor counting function” 
as follows:

	 f(n) = | { k : k ¦¦ n ∧ 1 < k < n } |. 	 [2.1]

Therefore the sequence a(n) = A355432(n) = { f(n) ↦ ℕ } begins:
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,2,0,0,0,4,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,0,2,0,2,0,0,0,0,0,0,0,4,
0,0,0,1,0,0,0,0,0,0,0,1,...

Code [C2] generates the sequence.
We know from theorems in [1] that we might rewrite the constitu-

tive expression k ¦¦ n, that is, k ⑨ n, as follows:

	 k ¦¦ n → rad(k) = rad(n) ∧ k | n ∧ n | k.	 [2.2]

Symmetric semidivisorship is a special case of coregularity. Con-
sequently, rad(k) = rad(n) = κ. Therefore it is clear that both k, n ∈ 
κRκ. We also have shown that symmetric semidivisorship pertains to 
k and n that are both not prime powers, that is, both k, n ∈ A024619. 
Therefore, for n ∈ A961, a(n) = 0 and k : k ∈ A961 do not satisfy k ¦¦ n.

We might most succinctly generate a(n) thus:

1. 	 Generate Rκ bounded by M for κ ∈ A024619 ∧ κ = M, where M 
is the largest n we want to compute.

2. 	 For n : n ∈ A961, a(n) = 0.
3. 	 For n : n ∈ A024619, 

	 a(n) = | { k : k ∈ Rκ ∧ 1 < k < n ∧ (k | n ⊽ n | k) |.	 [2.3]

4. 	 Let p = lpf(κ). For k : k ∈ Rκ ∧ k > n/p, (k | n ⊽ n | k).

This should serve as cogent pseudocode.
It is evident that a(n) < θ(n) for the following reason:

	 { k : k ¦¦ n ∧ 1 < k < n } ⊂ { k : k ∥ n ∧ 1 < k < n }.
	 { k : k ¦¦ n ∧ 1 < k < n } ⊂ A162306(n).	 [2.4]

This, since A010846(n) = | A162306(n) |.
We know that 1 is not an element of the former, but is in the latter, 

so that the former is a proper subset of the latter.
Furthermore, a(n) ≤ A243822(n). An interesting proposition 

would regard the question of any n such that a(n) = A243822(n). We 
might try n = 18, and see the following:

 { k : rad(k) | rad(n) ∧ k | n ∧ n | k ∧ 1 < k < n } 
	 = { k : k ∈ Rκ ∧ k | n ∧ n | k ∧ 1 < k < n }
	 = A162306(n) \ A027750(n)
	 = A162306(n) ∩ A173540(n)
	 = A272618(n)
	 = {4, 8, 12, 16}. 

	This, since A272618(n) = A162306(n) \ A027750(n) = A162306(n) ∩ 
A173540(n). Of these, only 12 does not divide 18, thus the following: 
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	 a(n) = | A272618(n) \ { k : rad(k) ≠ rad(n) } |
	 a(n) = | {12} | = 1.

In this case the sole symmetric semidivisor is 12, and we see the 
rest of the 18-regular numbers are composite prime powers. There-
fore we would need to show the following is true for numbers n that 
are not prime powers:

	 { k : k ∈ A246547(n) ∧ k ∈ A162306(n) } = ∅.	 [2.5]

Let’s return to the notion of Rκ, the infinite set of κ-regular num-
bers where κ = rad(n). Example: for squarefree κ = 6, we have R₆ = 
A3586, the “3-smooth numbers”:

	 R₆ = ⊗
p|6 

{pε : ε ≥ 0} 

	 = {2δ : δ ≥ 0} ⊗
 
{3ε : ε ≥ 0} 

	 = {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, …}
	 = A3586.

It is clear that for n such that rad(n) = κ, we may select any k ∈ R₆, 
and have the relation rad(k) | rad(n). We may also have the inverse 
rad(n) | rad(k), which is certainly true for k = n and for not all but 
infinitely many k > n.
Coregular Numbers.

It is clear that rad(k) = rad(n) = κ is a special case of the above. 
This case implies both k and n are in the set {κRκ}, i.e., both k and n 
are κ-coregular. 

Lemma 2.1: For κ = 1, R₁ = {1}.
Proof: For k > 1, at least 1 prime p | k, and all primes are coprime to 
1, therefore, k such that k > 1 is nonregular to 1. ∎
Lemma 2.2: For κ = p prime, prime powers comprise pRp.
Proof: For κ = p prime, Rp = { pε : ε ≥ 0 }, hence pRp = Rp\ {1}, and 
all terms are prime powers. ∎
Lemma 2.3: For composite κ, the first term of κRκ is κ, while the re-
maining terms are neither prime powers nor squarefree (i.e., a “tan-
tus” number, k ∈ A126706).
Proof: The empty product 1 is n-regular for all n because 1 | n. 
Therefore, the first term in κRκ is κ × Rκ(1) = κ × 1. With κ ∈ A120944 
since κ is by definition squarefree, the sequence κRκ begins with 
squarefree κ followed by numbers k of the form mκ, where m ∈ Rκ 
and m > 1, as consequence of [1.1]. Therefore, aside from the small-
est term, k is neither squarefree nor prime power. ∎ 

Corollary 2.4: The second-smallest number k in κRκ is clearly the 
product pκ, where p = lpf(κ) = A020736(κ), since p is the successor 
of 1 in Rκ.

Theorem 2: The infinite sequence κRκ, squarefree κ > 1, consists 
of prime powers for prime κ, otherwise, the first term is squarefree 
composite κ followed by tantus numbers (i.e., k ∈ A126706). Proof 
supplied by Lemmas 2.2 and 2.3.

We are concerned with the finite set defined below:

	 Sn = { k ∈ {κRκ} : k ≤ n ∧ k ∤ n}.	 [2.6]

This set Sn represents {κRκ} truncated after the appearance of n. 
Therefore we arrive at the following equation:

	 a(n) = | Sn |.	 [2.7]

Lemma 3.1: a(n) = 0 for prime powers n = pε.
Proof: rad(k) = rad(n) = p prime implies k = pδ and n = pε such 
that δ ≤ ε. Then pδ | pε, leaving Sn = ∅, hence a(n) = | Sn | = 0. ∎

Lemma 3.2: a(n) = 0 for squarefree n.
Proof: rad(k) = rad(n) = n implies k = n. All numbers divide 
themselves, leaving Sn = ∅, hence a(n) = | Sn | = 0. ∎
Theorem 3.3: a(n) ≥ 0 for tantus n (i.e., n ∈ A126706).
Proof: Consequence of Lemmas 3.1 and 3.2.

Lemma 3.4: a(n) = 0 for n = rad(n) × lpf(n) and ω(n) > 1.
Proof: In the sequence κRκ, only κ < n by Corollary 2.4, and κ | n by 
definition of squarefree kernel. Thus Sn = ∅, hence a(n) = | Sn | = 0. ∎
Theorem 3.5: Let prime p = lpf(n) and q be the second smallest 
prime divisor of n. Let pε be the largest power of p such that pε | n. Let 
rad(n) = κ, and let n/κ = m. For all n ∈ A126706 such that the ratio 
n/κ < q, a(n) = 0.

Proof: Consider n = pδqQ where p and q are as defined and Q is a 
product of primes greater than q. Clearly, n = p(δ–1)κ. Recalling Lem-
ma 2.3, we may divide κRκ/κ and cancel κ to obtain Rκ. The first term 
of Rκ, i.e, Rκ(1), is the empty product 1, followed by lpf(κ) = p and 
all powers pi such that i ≤ ε. After pε, we have q. Hence we have the 
following power range of p bounded by q:

 	 P = { pi : 0 ≤ i ≤ ε },
	 = { pi : 0 ≤ i ≤ ⌊logp q⌋ }	 [2.8]

It is sure that we do not have any interposing products pq, since 
pq > q, yet pε < q. It is immaterial whether we have multiplicity for 
q that exceeds 1, since this only makes for larger products in Rκ. By 
same token, any larger prime and any multiplicity of these primes 
that exceeds 1 also only makes larger products that do not interpose 
amid terms of P. Within P, all terms divide pε. Therefore, all terms in 
κP divide n, leaving Sn = ∅, thus a(n) = | Sn | = 0. ∎

Consequently, we may partition A126706 into 2 subsequences:

A “weak tantus” sequence t of numbers k that are neither 
prime powers nor squarefree semiprimes, where pε ≤ p⌊logp q⌋ 
such that p = lpf(n). For n ∈ t, a(n) = 0. Code [C4] generates 
the sequence t. This sequence A360767 begins as follows:
12, 20, 28, 40, 44, 45, 52, 56, 60, 63, 68, 76, 84, 88, 
92, 99, 104, 116, 117, 124, 132, 136, 140, 148, 152, 
153, 156, 164, 171, 172, 175, 176, 184, 188, 204, 207, 
208, 212, 220, 228, 232, 236, 244, 248, 260, 261, 268, 
272, 275, 276, 279, 280, 284, 292, 296, 297, 304, 308, 
315, 316, 325, 328, 332, 333, 340, 344, 348, 351, ...

A “strong tantus” sequence T of numbers k that are neither 
prime powers nor squarefree semiprimes, where pε > p⌊logp q⌋. 
(See Figure 2 in the Appendix for a curious pattern that aris-
es in A126706 amid strong and weak tantus numbers.) For n 
∈ t, a(n) > 0. Code [C5] generates T. This sequence A360768 
begins as follows:
18, 24, 36, 48, 50, 54, 72, 75, 80, 90, 96, 98, 100, 
108, 112, 120, 126, 135, 144, 147, 150, 160, 162, 168, 
180, 189, 192, 196, 198, 200, 216, 224, 225, 234, 240, 
242, 245, 250, 252, 264, 270, 288, 294, 300, 306, 312, 
320, 324, 336, 338, 342, 350, 352, 360, 363, 375, ...

The sequence below comprises the first terms of { f(n) ↦ T }:
1, 1, 1, 2, 2, 4, 2, 1, 1, 1, 4, 2, 2, 4, 1, 1, 1, 1, 
3, 1, 3, 2, 8, 1, 2, 1, 7, 2, 1, 2, 5, 2, 1, 1, 3, 3, 
1, 6, 1, 1, 5, 5, 4, 5, 1, 1, 4, 8, 3, 3, 1, 2, 1, 4, 
2, 3, 5, 10, 2, 1, 3, 3, 1, 1, 1, 6, 1, 3, 7, 1, 1, 7, 
3, 14, 3, 6, 3, 2, 1, 1, 2, 7, 2, 1, 1, 2, 2, 8, 4, 6, 
4, 8, 1, 1, 2, 1, 6, 9, 2, 1, 6, 2, 3, 1, 7, 1, 3, ...

Generate the above sequence using Code [C7].
Appendix Figure 1 is an example of the pattern of symmetric semi-

divisors k such that k < n for k, n in 6R₆.
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Highly Symmetrically Semidivisible Numbers.
Let’s examine the records transform r of A355432. The list r of re-

cord setters, A360589, begins with the following terms: 
1, 18, 48, 54, 162, 384, 486, 1350, 1458, 2250, 2430, 
3750, 6000, 6750, 7290, 11250, 12150, 14580, 15000, 
15360, 18750, 21870, 30720, 33750, 36450, 37500, 43740, 
56250, 61440, 65610, 93750, 122880, 168750, ...

Code [C10] generates the sequence.
Observation 4.1: r(i) = A055932(j), given n ≤ 2²² terms of 
A355432, essentially for i ≤ 80. Appendix Table A lists r(1…80) 
along with several parameters described under Table 1. The num-
bers in A055932 are products of the smallest primes p such that no 
nondivisor prime q < p.

The above observation, if true, implies the following:

	 r ⊂ { T ∩ A055932 }.	 [4.1]

Confinement of r to sequence A055932 implies the following:

	 k, n ∈ RA2110(j) such that j > 1.	 [4.2]

This statement is tantamount to saying that records in A355432 ap-
pear in sequences of the p-smooth numbers, where p is odd. In other 
words, sequences of numbers k where odd p is the largest prime fac-
tor. In OEIS, many such sequences of p-smooth numbers appear for 
small primes p:

A3586: R₆ = RA2110(2) = 3-smooth numbers.
A051037: R₃₀ = RA2110(3) = 5-smooth numbers.
A2473: R₂₁₀ = RA2110(4) = 7-smooth numbers.
A051038: R₂₃₁₀ = RA2110(5) = 11-smooth numbers.
A080197: R₃₀₀₃₀ = RA2110(6) = 13-smooth numbers.
A080681: R₅₁₀₅₁₀ = RA2110(7) = 17-smooth numbers.
A080682: R₉₆₉₉₆₉₀, = RA2110(8) = 19-smooth numbers.
A080683: R₂₂₃₀₉₂₈₇₀ = RA2110(9) = 23-smooth numbers.

Observation 4.2: For n ≤ 2²²,  n ∈ r have ω(n) ≤ 4. Table 1 is a list of 
the smallest terms that have ω distinct prime factors:

Table 1.

	 i	 n	 A067255(n)	 j	 a(n)
	 ------------------------------------------------
	 1	 1	 0	 1	 0
	 2	 18	 1.2	 8	 1
	 8	 1350	 1.3.2	 65	 16
	 40	 360150	 1.1.2.4	 554	 168
	 182	 507310650	 1.2.2.1.5	 5468	 1524
	 601	 289898148540	 2.1.1.1.1.7	 31947	 8191

In the table we list the index i, followed by r(i) = n, where 
A355432(n)  = a(n) is the number of symmetric semidivisors k < n. 
Furthermore, a(n) = A055932(j). We employ “multiplicity notation” 
A067255(n), which merely notes multiplicities of prime power fac-
tors of n where the first multiplicity pertains to 2, the second to 3, the 
third to 5, and generally the k-th pertains to prime(k).

Thus n = 18 = 2¹ × 3² = r(2) = A055932(8); A355432(18) = 1.
The parenthetic fifth line is a projection given Observation 4.1. We 

expect a term n with ω(n) = 7, and don’t have any reason to suspect 
that there are any limits against higher numbers of distinct prime fac-
tors for “highly symmetrically semidivisible numbers” n ∈ r. 

Theorem 4: A360589 ⊂ A055932.
Proof: Theorems in the last section show that A355432(n) = 0 for 
“strong tantus” numbers, which are in A126706, and that A055932 
contains prime powers and squarefree numbers that do not appear 
in A126706 by definition.

The numbers in A055932 are products of the smallest primes p 
such that no nondivisor prime q < p. The proposition thus implies 
that n ∈ A360589 are such that n = m × A2110(j) where m ∈ RA2110(j). 
This follows from [1.1] bounded by n and log n / log p for all p | n.

The following sequence is a different ordering of A162306(n) relat-
ed to the definition of Rκ bounded by n, by vectorizing the tensor in 
order of prime divisor p:

	 A275280(n) = { k = { ⊗
p|κ  

{ pε : ε ≥ 0 }} ∧ k ≤ n }.

	 A010846(n) = θ(n) 
	 = | A275280(n) | 
	 = | A162306(n) | 	 [4.3]

 In the ω(n)-orthosimplex defined by A275280(n), the origin is the 
empty product, the axes contain prime powers, etc., but for strongly 
tantus n, tantus numbers k reside in the interior where multiplici-
ty of at least 1 prime divisor exceeds 1. There is an encrustation of 
nontantus numbers that requires sufficiently large n to reach a sig-
nificant number of nondivisor strong tantus k. Hence, as n increases, 
there are proportionately more tantus numbers in A275280(n). For 
numbers n that conserve κ, larger n tend to proportionally enrich the 
polytope A275280(n).

Consider 2 large strong tantus numbers that are “comparable” in 
that they are the largest strongly κ-regular numbers less than n:

M = pεqδ, p < q, and n = pdre, q < r, 
where the multiplicities are conserved between the 2 numbers. Since 
log n / log q > log n / log r, we have more tantus numbers in M than 
in n. This implies that the distinct primes that produce n are a set of 
the smallest consecutive primes, that is, κ is in A2110.

The only numbers that might supersede products of m × A2110(j) 
at sufficient scale are numbers of the form m × A2110(j+1).

We would like to write a more rigorous proof of Theorem 4.
Code [C11] generates record setters A360589 and records A360912 

much more efficiently based on Theorem 4. 

Some Open Questions:
1. 	 Is there a simpler or more rigorous proof of Theorem 4?
2. 	 What is the smallest instance of 17-smooth n that sets a 

record in A355432?
3. 	 What is the reason for the pattern of weak and strong tan-

tus numbers (i.e., A126706) seen in Figure 1.
4. We have not proved that A355432(n) < A243822(n), 

though it seems to follow from the nature of n such that 
A355432(n) > 0.

Conclusion.
We have identified numbers n for which we have at least 1 num-

ber k such that rad(k) = rad(n), yet k does not divide n. These are 
the “strong tantus” numbers n ∈ A360768. A symmetric semidivisor 
counting function was defined in A355432. We explored the records 
transform, attempting to show the sort of numbers in A360589 that 
set records in A355432. These numbers are in A055932, which im-
plies that we need only search the odd prime p-smooth numbers for 
candidates.  ••••
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Appendix.
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Code:
[c1]	Calculate Rκ bounded by an arbitrary limit m (i.e., calculate 

A275280(n); flatten and take union to provide A162306)
regularsExtended[n_, m_ : 0] := 
  Block[{w , lim = If[m <= 0, n, m]}, 
   Sort@ ToExpression@
     Function[w, 
       StringJoin[
         "Block[{n = ", ToString@ lim, 
         "}, Flatten@ Table[", 
         StringJoin@
           Riffle[Map[ToString@ #1 <> "^" <> 
             ToString@ #2 & @@ # &, w], " * "], 
         ", ", Most@ Flatten@ Map[{#, ", "} &, #], 
         "]]" ] &@ 
       MapIndexed[
         Function[p, 
           StringJoin["{", ToString@ Last@ p, 
             ", 0, Log[", 
             ToString@ First@ p, ", n/(", 
             ToString@
               InputForm[
                 Times @@ Map[Power @@ # &, 
                   Take[w, First@ #2 - 1]]], 
             ")]}" ] ]@ w[[First@ #2]] &, w]]@
       Map[{#, ToExpression["p" <> 
         ToString@ PrimePi@ #]} &, #[[All, 1]] ] &@ 
       FactorInteger@ n];

[c2]	Generate A355432 (needs [C1]):
A355432 = Block[{a, c, f, k, s, t, nn}, 
  nn = 2^20; c[_] = 0;
  f[n_] := f[n] = n regularsExtended[n, Floor[nn/n]];
  s = Select[Range[nn], 
    And[CompositeQ[#], SquareFreeQ[#]] &];
  Monitor[
    Do[Set[t[ s[[i]] ], f@ s[[i]]], {i, Length[s]}], 
  i];
  Monitor[
    Do[k = t[ s[[j]] ]; 
      Map[Function[m, 
        Set[c[m], 
          Count[TakeWhile[k, # <= m &], 
            _?(Mod[m, #] != 0 &)]]], k], {j, Length[s]}],   
  j];
  Array[c, nn] ];

[c3]	Generate tantus numbers (A126706):
a126706 = Block[{k}, k = 0;
   Reap[Monitor[Do[
       If[And[#2 > 1, #1 != #2] & @@ 
         {PrimeOmega[n], PrimeNu[n]}, 
        Sow[n]; Set[k, n] ],
       {n, 2^21}], n]][[-1, -1]]] (* Tantus *);

[c4]	Generate “weak tantus” numbers (A360767):
Select[a126706[[1 ;; 120]], #1/#2 < #3 & @@ 
  {#1, Times @@ #2, #2[[2]]} & @@ 
  {#, FactorInteger[#][[All, 1]]} &] 

[c5]	Generate “strong tantus” numbers (A360768):
Select[a126706[[1 ;; 120]], #1/#2 >= #3 & @@ 
  {#1, Times @@ #2, #2[[2]]} & @@ 
  {#, FactorInteger[#][[All, 1]]} &] 

[c6] Select strongly tantus terms of a sequence:
stantusSelect[w_List] := 
 Select[
  Select[w, 
    Nor[PrimePowerQ[#], SquareFreeQ[#]] &], 
  #1/#2 >= #3 & @@ 
  {#1, Times @@ #2, #2[[2]]} & @@ 
  {#, FactorInteger[#][[All, 1]]} &];

[c7]	Generate { f(n) ↦ T }, effectively eliminating 0’s from A355432 :
A355432[[#]] & /@ 
 Select[a126706[[1 ;; 2^10]], 
   #1/#4 >= #3 & @@ 
   {#1, #2[[1]], #2[[2]], Times @@ #2} & @@ 
   {#, FactorInteger[#][[All, 1]]} &]

[c8]	Generate a table of A360589 and corresponding values in 
A355432:

With[{s = A355432}, 
  Map[{FirstPosition[s, #][[1]], #} &, 
   Union@ FoldList[Max, s]]] // TableForm

[c9]	Function that generates A055932:
A055932[n_, l_ : 0, o_ : 0] := 
  Block[{lim, ww, dec},
  dec[x_] := Apply[Times, 
    MapIndexed[Prime[First@ #2]^#1 &, x]];
  Set[{lim, ww},
   If[l < 1,
    {Product[Prime@ i, {i, n}], 
      NestList[Append[#, 1] &, {1}, n - 1]},
    {n, NestList[Append[#, 1] &, {1}, # - 1]} &[
       -2 + Length@ 
       NestWhileList[NextPrime@ # &, 
         1, Times @@ {##} <= n &, All] ] ] ];
  {{{Boole[o == 0]}}}~Join~Map[Block[{w = #, k = -1},
      Sort@
         Apply[Join, {{If[o > 0, #, dec@ #] &@
             ConstantArray[1, Length@ w]}, 
           If[Length@ # == 0, #, #[[1]]] }] &@
         Reap[Do[
           If[# <= lim,
             Sow[If[o > 0, w, #]]; k = -1,
             If[k <= -Length@ w, Break[], k--]] &@
               dec@ Set[w,
                If[k == -1,
                  MapAt[# + 1 &, w, k],
                  PadRight[#, Length@ w, 1] &@
                    Drop[MapAt[# + Boole[i > 1] &, 
                      w, k], k + 1] ]], 
           {i, Infinity}] ][[-1]] ] &, ww]]

[c10] Generate A360589 and a360912 via A355432 
	 (syntactically concise version):

Set[{a360589, a360912}, 
 With[{s = A355432[[1 ;; 2^16]]}, 
  Transpose@
  Map[{FirstPosition[s, #][[1]], #} &, 
   Union@ FoldList[Max, s] ] ] ]

[c11] Efficiently generate A360589 and a360912:
Set[{a360589, a360912}, 
  Block[{a, c, f, k, s, t, pp, nn}, 
   nn = 2^20; pp = 5; c[_] = 0;
   f[n_] := f[n] = n regularsExtended[n, Floor[nn/n]];
   s = Rest@ FoldList[Times, Prime@ Range[pp]];
   Monitor[
    Do[Set[t[s[[i]]], f@ s[[i]]], {i, Length[s]}], i];
   Transpose@
    Sort@ Reap[
       Monitor[Do[k = t[s[[j]]]; 
         Map[Function[m, 
           If[# > 0, Sow[{m, #}]] &@
            Count[TakeWhile[k, # <= m &], 
             _?(Mod[m, #] != 0 &)]], k], 
         {j, Length[s]}], j]][[-1, -1]] ] ];
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Concerns sequences:
A000040: Prime numbers.
A000961: Prime powers.
A001221: Number of distinct prime divisors of n, ω(n).
A002473: R₂₁₀ = RA2110(4) = 7-smooth numbers.
A003586: R₆ = RA2110(2) = 3-smooth numbers.
A005117: Squarefree numbers.
A007947: Squarefree kernel of n; rad(n).
A013929: Numbers that are not squarefree.
A024619: Numbers that are not prime powers.
A051037: R₃₀ = RA2110(3) = 5-smooth numbers.
A051038: R₂₃₁₀ = RA2110(5) = 11-smooth numbers.
A080197: R₃₀₀₃₀ = RA2110(6) = 13-smooth numbers.
A080681: R₅₁₀₅₁₀ = RA2110(7) = 17-smooth numbers.
A080682: R₉₆₉₉₆₉₀, = RA2110(8) = 19-smooth numbers.
A080683: R₂₂₃₀₉₂₈₇₀ = RA2110(9) = 23-smooth numbers.
A120944: “Varius” numbers; squarefree composites.
A126706: “Tantus” numbers neither prime power nor squarefree.
A162306: Truncation of Rκ: row n = { k ∈ Rκ : k ≤ n }, rad(n) = κ .
A275280: { k = { ⊗

p|κ  
{ pε : ε ≥ 0 }} ∧ k ≤ n }.

A355432: a(n) = symmetric semidivisor counting function.
A359929: Row n lists symmetric semidivisors of A360768(n).
A360589: Record setters in A355432.
A360767: Weakly tantus numbers.
A360768: Strongly tantus numbers.
A360912: Records in A355432.

Document Revision Record:
2023 0219: Draft 1. 2023 0222: Draft 2.
2023 1025: Minor edits to align with notation in later papers.

This work is dedicated to my son Karl  
on the occasion of his 16th birthday.

Table A.
	 i = index in A360589. 
	 j = index in A055932. 
	 n = index in A355432.
	 i	 r(i) = n	 A067255(n)	 j	 a(n)	 i
	 --------------------------------------------
	 1	 1	 0	 1	 0	 1
	 2	 18	 1.2	 8	 1	 2
	 3	 48	 4.1	 13	 2	 3
	 4	 54	 1.3	 14	 4	 4
	 5	 162	 1.4	 25	 8	 5
	 6	 384	 7.1	 37	 10	 6
	 7	 486	 1.5	 42	 14	 7
	 8	 1350	 1.3.2	 65	 16	 8
	 9	 1458	 1.6	 67	 21	 9
	 10	 2250	 1.2.3	 81	 23	 10
	 11	 2430	 1.5.1	 85	 26	 11
	 12	 3750	 1.1.4	 99	 33	 12
	 13	 6000	 4.1.3	 122	 34	 13
	 14	 6750	 1.3.3	 127	 39	 14
	 15	 7290	 1.6.1	 131	 44	 15
	 16	 11250	 1.2.4	 154	 51	 16
	 17	 12150	 1.5.2	 161	 52	 17
	 18	 14580	 2.6.1	 172	 54	 18
	 19	 15000	 3.1.4	 174	 55	 19
	 20	 15360	 10.1.1	 176	 58	 20
	 21	 18750	 1.1.5	 190	 67	 21
	 22	 21870	 1.7.1	 201	 70	 22
	 23	 30720	 11.1.1	 229	 76	 23
	 24	 33750	 1.3.4	 237	 77	 24
	 25	 36450	 1.6.2	 244	 80	 25
	 26	 37500	 2.1.5	 248	 83	 26
	 27	 43740	 2.7.1	 261	 84	 27
	 28	 56250	 1.2.5	 286	 95	 28
	 29	 61440	 12.1.1	 296	 98	 29
	 30	 65610	 1.8.1	 304	 104	 30
	 31	 93750	 1.1.6	 345	 119	 31
	 32	 122880	 13.1.1	 381	 124	 32
	 33	 168750	 1.3.5	 426	 133	 33
	 34	 182250	 1.6.3	 436	 134	 34
	 35	 187500	 2.1.6	 443	 142	 35
	 36	 196830	 1.9.1	 450	 148	 36
	 37	 245760	 14.1.1	 486	 153	 37
	 38	 281250	 1.2.6	 509	 160	 38
	 39	 328050	 1.8.2	 536	 164	 39
	 40	 360150	 1.1.2.4	 554	 168	 40
	 41	 375000	 3.1.6	 564	 169	 41
	 42	 393660	 2.9.1	 573	 172	 42
	 43	 425250	 1.5.3.1	 588	 174	 43
	 44	 430080	 12.1.1.1	 589	 178	 44
	 45	 459270	 1.8.1.1	 602	 186	 45
	 46	 468750	 1.1.7	 607	 191	 46
	 47	 504210	 1.1.1.5	 622	 197	 47
	 48	 590490	 1.10.1	 659	 201	 48
	 49	 648270	 1.3.1.4	 680	 210	 49
	 50	 656250	 1.1.6.1	 682	 217	 50
	 51	 765450	 1.7.2.1	 718	 223	 51
	 52	 833490	 1.5.1.3	 738	 229	 52
	 53	 860160	 13.1.1.1	 746	 235	 53
	 54	 918540	 2.8.1.1	 762	 236	 54
	 55	 918750	 1.1.5.2	 763	 243	 55
	 56	 1008420	 2.1.1.5	 787	 252	 56
	 57	 1071630	 1.7.1.2	 804	 253	 57
	 58	 1152480	 5.1.1.4	 824	 255	 58
	 59	 1181250	 1.3.5.1	 832	 262	 59
	 60	 1275750	 1.6.3.1	 852	 266	 60
	 61	 1286250	 1.1.4.3	 853	 273	 61
	 62	 1312500	 2.1.6.1	 860	 276	 62
	 63	 1377810	 1.9.1.1	 872	 284	 63
	 64	 1512630	 1.2.1.5	 902	 294	 64
	 65	 1720320	 14.1.1.1	 941	 303	 65
	 66	 1800750	 1.1.3.4	 954	 309	 66
	 67	 1944810	 1.4.1.4	 979	 314	 67
	 68	 1968750	 1.2.6.1	 984	 319	 68
	 69	 2016840	 3.1.1.5	 991	 320	 69
	 70	 2296350	 1.8.2.1	 1032	 333	 70
	 71	 2500470	 1.6.1.3	 1062	 340	 71
	 72	 2521050	 1.1.2.5	 1066	 350	 72
	 73	 2755620	 2.9.1.1	 1096	 353	 73
	 74	 3010560	 12.1.1.2	 1130	 358	 74
	 75	 3025260	 2.2.1.5	 1132	 364	 75
	 76	 3214890	 1.8.1.2	 1154	 373	 76
	 77	 3281250	 1.1.7.1	 1163	 386	 77
	 78	 3529470	 1.1.1.6	 1188	 397	 78
	 79	 4033680	 4.1.1.5	 1242	 402	 79
	 80	 4133430	 1.10.1.1	 1252	 415	 80

Figure 1: Pattern of symmetric semidivisors shown in large black dots, versus divisors 
in gray, for k and n both in the sequence κRκ such that κ = 6, i.e., OEIS a3586. Numbers 
that are strong tantus are printed in red, in row and column that springs from the gray dot 
“southwest” of the diagonal index. The exponents of 2 and 3 appear in black to the right of 
the index. Sorting lexically by A067255(n), we see a pattern shared by numbers of similar 
prime power decomposition, incrementing only one of the exponents.
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Figure 2: OEIS A126706 is the sequence of tantus numbers: neither prime power nor squarefree. Consider 2 smallest prime factors p and q, p < q, and define a “strong tantus” number n 
to be such that pε > q. Define a sequence b(n) that is a characteristic function of n such that A126706(n) is a strong tantus number, where white represents weak and black strong tantus 
numbers. This is an image of b(1…1032256), 1032256 = 1016², exhibiting a curious interference pattern (the reason for 1016 terms per row). Perhaps the rarefaction delimiated by 
compression features to make “sand ripple” shapes pertains to congruence relations with numbers in the cototient of 6 or 12. The ripples are still not explained.


