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ABSTRACT.

This is a brief study of the mappings of the function MaX(p,, q)
across natural numbers, where p, is the second least prime factor of
n (or 1if nis a prime power), and q is the smallest prime nondivisor
of n. We show that the function takes prime values for certain classes
of number.

INTRODUCTION.

Let p, = A119288(n) be the second least prime factor of n or 1 if n
is a prime power, i.e,, w(n) = 1, and let g = A053669 (1) be the smallest
prime that does not divide .

We define the following functions:

0o(n) = A1220(n), number of prime factors of n with multiplicity ,

w(n) = A1221(n), number of distinct prime factors of

% =RAD(n) = A7947(n), squarefree kernel of n,

P(n) = A2110(n), product of the smallest n primes,

n/RAD(n) = A3557(n).

A126706 = { k : a(k) > w(k) > 1 }, tantus numbers k neither
squarefree nor prime powers.

We present 4 blocks resulting from the partition of tantus, known
as the “constitutive quadrisection” of tantus numbers k € A126706
according to the magnitudes of A3s557(k), A0s53669(k), and
A119288(k). These sequences are defined below:

V74 =4361098 ={n:0(n) >w(n) > 1,p,<n/n,q<n/n}.
V75 =A364999 = {n:0(n) >w(n) > 1,n/x< pyn/x<q}.
V76 =A364998 ={n:0(n)>wn)>1,q<n/x<p,}.

V77 =A364997 ={n:0n) >wn) > 1,py<n/x<q}. [1.1]

In [2] we find that A364999 represents even terms in A366825,
minimally tantus numbers. The “panstitutive” sequence A361098,
defined in [2], is remarkable in that it contains both A286708 and
A131605, powerful tantus and tantus that are perfect powers, respec-
tively [3].

In reflecting upon the definition of A361098, Peter Munn suggest-
ed the following sequence:

vo223 = MAX(p,, q) » IN,

The sequence begins as follows:

2,3,2,3,2,5,2,3,2,5,2,5,2,7,5,3,2,5,2,
5 17,11,2,5,2,13,2,17,2,17, 2,3, 11, 17, 7, 5,
2,19, 13,5, 2,5,2,11,5,23,2,5,2,5,17, 13, 2,
5,11, 7, 19, 29, 2, 7, 2, 31, 7, 3, 13, 5, 2, 17, ...

Let a = vo223. The sequence is proposed in OEIS as A369690.
In the function MAX(p,, q), we deal with primes related to n
through divisibility and coprimality. It is easy to see the following:

a(n) = p - a(mx) = p, RAD(m) | %, % = RAD(n).

[1.2]

a(n) = p for certain k € { k = max : RAD(m) | x }.

LEMMA Al. a(n) = 2 for nin A061345, where we define A061345 to
be thus:
A061345={p*:p>2,8§>0}
=U({1},{mp:p>2,RaD(m) |p }). [1.3]
This is to say, n is an odd prime power.

Proor. Consequence of g = 2 since n is odd, but p = 1 since nis a
prime power. B

LEMMA A2. a(n) = 3 for nin A79, where we define A79 to be thus:

A79={25:820}
~U({1}, {2m: wanm) | 2). (14

This is to say, n is a power of 2.
Prook. Consequence of g = 3 since # is even, but p = 1 since nis a
prime power. B

LEMMA A3. a(n) = PRIME(j) for j > 2 and P(j-1)-coregular sequence
{k=mx P(j-1) : RaDp(m) | P(j-1) }. [1.5]
PRrOOF. For primorials P(i), i > 1, we show p, = 3, but g > 3. Hence,
a(P(i)) = priME(i+1), thus, a(P(j—1)) = PRIME(}). This pertains to
the P(j-1)-coregular sequence via Lemma Al. B
LEMMA A4. a(n) = PRIME(j) for j > 2 and the following sequence:
{k=mx P(j-1) x Q: RaD(m) | P(j-1),
Vp,|Q,p, > PrIME()) }.

Prookr. Consequence of Lemma A3 and the fact that multiplication
of P(j-1) by a product of primes p_ > PRIME(j) preserves p, < g,
with a(n) = g = PRIME(j). B

[1.6]

Define number triangle T(n, k) = priME(k) X PRIME(n), k < n,
where the vectorized sequence is A339116, a permutation of square-
free semiprimes, A100484 \ {4}.

The triangle T(n, k) begins as shown below:

n\k 1 2 3 4 5 6 7 8

2 6;

3 10, 15;

4: 14, 21, 35;

5: 22, 33, 55, 77;

6: 26, 39, 65, 91, 143;

7 34, 51, 85, 119, 187, 221;

8: 38, 57, 95, 133, 209, 247, 323;

9: 46, 69, 115, 161, 253, 299, 391, 437;
LemmMmA AS:

T(n, k) = priME(k) X PRIME(n), n > 2, k < nimplies q < p,.
PROOF. Aside from s = T(2, 1) = 6, g < p,, since even s implies g = 3
and odd s implies g = 2, but p, = PRIME(n) > g in both cases. B
This is tantamount to saying that A100484(n) > 6 implies g < p,.
LEMMA A6. The inequality g < p, is preserved for the following in-
finite sequences:

{T(nk)xQ:n>2,Yp | Q,p, = PRIME(n) } = q < p,.
Prookr. Consequence of p, = PRIME(1) < p,. The factor Q is a prod-

uct of primes larger than p, = PRIME(1) and presents no impact on
the fact that g < p,. ®
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LEMMA A7. a(n) = PRIME(j) for j > 2 and for the following k-coreg-
ular sequence:

{k=mxT(jk)xQ:

raD(m) | T(j, k),

Vp,|Q,p, = priME()) }. [1.7]
ProoF. Consequence of Lemmas A3, A4, and AS.
However, we explore the case of prime m = p such that p < PRIME(j)
and p = prRIME(k). Suppose m > q. Then a(n) = p, = p and we have a
number in the form of Lemma AS instead for j = 7(p). It is clear that
m =5, or any product that yields P(i) for i > 2 gives us a number of
the form shown by Lemma A4. m

It is clear we may rewrite the formula shown in Lemma A7 thus:

{k=mxdxQ:rap(m)|d,V q|Q,q2PriME(j-1) }
ford | P(j) : w(d) =2, PRIME(j-1) | d. [1.8]
THEOREM A assembles Lemmas A1-A7.
a(n) =2 for n that are powers of odd primes.
a(n) = 3 for n > 1 that are powers of 2.
a(n) = PRIME(j) for j > 2 and for both of the following:

{k=mx P(j-1) x Q: RaD(m) | P(j-1),
Vp,|Q,p,>PrIME(j) },and
{k=mxdxQ:rap(m) |d,V q|Q, q=PriME(j-1) }
ford | P(j) : w(d) =2, PRIME(j-1) | d.

COROLLARY A8. a(n) < S forn € A961.
COROLLARY A9. a(n) > 5 for n € A024619.

COROLLARY A10. A3557(n) > a(n) > S forn € A361098.

CONCLUSION.

We have shown that vo223(n) = 2 for odd prime powers 1, vo223(n)
= 3 for n that are powers of 2, and exceeds 3 for numbers that are not
prime powers. Among numbers that are not prime powers, we see
that A3557(n) > a(n) > S forn € A361098. :%%:

CONCERNS SEQUENCES:

A000079, A000224, AO0O0961, A002110, A0O03557, A006530, A006881,
A007947,A024619, A053669, A061345, A100484, A119288, A126706,
A339116, 4361098, A364997, A364998, A364999, A369690. [1]
(V7,V9,V74,V75,V76,V77,V0103, V0109, V0111, V0119, V0220,
V0222, V0223, V0401, V0402, V0612, V1002, V1003.)
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CODE:

[c1] Generate 2'* terms of vo223:

v0223 = {2}~Join~Array|[
If [PrimePowerQ[#],
q = 2; While[Divisible[#, q], q = NextPrime[q]]; q,
q = 2; While[Divisible[#, q], q = NextPrime[q]];
Max [FactorInteger[#][[2, 1]], q]] &, 2*14, 2] ];

Tigure 1: ’Log [og scattetja[at ofV0223(n), n=1..2%.
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