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Abstract.
This is a brief study of the mappings of the function max(p₂, q) 

across natural numbers, where p₂ is the second least prime factor of 
n (or 1 if n is a prime power), and q is the smallest prime nondivisor 
of n. We show that the function takes prime values for certain classes 
of number.

Introduction.
Let p₂ = A119288(n) be the second least prime factor of n or 1 if n 

is a prime power, i.e., ω(n) = 1, and let q = A053669(n) be the smallest 
prime that does not divide n.

We define the following functions:
ω(n) = A1220(n), number of prime factors of n with multiplicity ,
ω(n) = A1221(n), number of distinct prime factors of n,
κ = rad(n) = A7947(n), squarefree kernel of n,
P(n) = A2110(n), product of the smallest n primes,
n/rad(n) = A3557(n).

A126706 = { k : ω(k) > ω(k) > 1 }, tantus numbers k neither 
squarefree nor prime powers.

We present 4 blocks resulting from the partition of  tantus, known 
as the “constitutive quadrisection” of tantus numbers k ∈ A126706 
according to the magnitudes of A3557(k), A053669(k), and 
A119288(k). These sequences are defined below:

	 V74 = A361098 = { n : ω(n) > ω(n) > 1, p₂ < n/κ, q < n/κ }.

	 V75 = A364999 = { n : ω(n) > ω(n) > 1, n/κ < p₂, n/κ < q }.

	 V76 = A364998 = { n : ω(n) > ω(n) > 1, q < n/κ < p₂ }.

	 V77 = A364997 = { n : ω(n) > ω(n) > 1, p₂ ≤ n/κ < q }.	 [1.1]

In [2] we find that A364999 represents even terms in A366825, 
minimally tantus numbers. The “panstitutive” sequence A361098, 
defined in [2], is remarkable in that it contains both A286708 and 
A131605, powerful tantus and tantus that are perfect powers, respec-
tively [3].

In reflecting upon the definition of A361098, Peter Munn suggest-
ed the following sequence:

V0223 = max(p₂, q) ↦ ℕ,

The sequence begins as follows:
2, 3, 2, 3, 2, 5, 2, 3, 2, 5, 2, 5, 2, 7, 5, 3, 2, 5, 2, 
5, 7, 11, 2, 5, 2, 13, 2, 7, 2, 7, 2, 3, 11, 17, 7, 5, 
2, 19, 13, 5, 2, 5, 2, 11, 5, 23, 2, 5, 2, 5, 17, 13, 2, 
5, 11, 7, 19, 29, 2, 7, 2, 31, 7, 3, 13, 5, 2, 17, ...

Let a = V0223. The sequence is proposed in OEIS as A369690.
In the function max(p₂, q), we deal with primes related to n 

through divisibility and coprimality. It is easy to see the following:

	 a(n) = p → a(mκ) = p, rad(m) | κ, κ = rad(n).

	 a(n) = p for certain k ∈ { k = mκ : rad(m) | κ }. 	 [1.2]

Lemma A1. a(n) = 2 for n in A061345, where we define A061345 to 
be thus:

	 A061345 = { pδ : p > 2, δ ≥ 0 }
	 = ∪({1}, { mp : p > 2, rad(m) | p }).	 [1.3]

This is to say, n is an odd prime power. 
Proof. Consequence of q = 2 since n is odd, but p = 1 since n is a 
prime power. ∎
Lemma A2. a(n) = 3 for n in A79, where we define A79 to be thus:

	 A79 = { 2δ : δ ≥ 0 }
	 = ∪({1}, { 2m : rad(m) | 2 }).	 [1.4]

This is to say, n is a power of 2.
Proof. Consequence of q = 3 since n is even, but p = 1 since n is a 
prime power. ∎
Lemma A3. a(n) = prime(j) for j > 2 and P(j–1)-coregular sequence

	 { k = m × P(j–1) : rad(m) | P(j–1) }.	 [1.5]

Proof. For primorials P(i), i > 1, we show p₂ = 3, but q > 3. Hence, 
a(P(i)) = prime(i+1), thus, a(P(j–1)) = prime(j). This pertains to 
the P(j–1)-coregular sequence via Lemma A1. ∎
Lemma A4. a(n) = prime(j) for j > 2 and the following sequence:

	 { k = m × P(j–1) × Q : rad(m) | P(j–1),
	 ∀ p+ | Q , p+ > prime(j) }.	 [1.6]

Proof. Consequence of Lemma A3 and the fact that multiplication 
of P(j–1) by a product of primes p+ > prime(j) preserves p₂ < q, 
with a(n) = q = prime(j). ∎

Define number triangle T(n, k) = prime(k) × prime(n), k < n, 
where the vectorized sequence is A339116, a permutation of square-
free semiprimes, A100484 \ {4}.

The triangle T(n, k) begins as shown below:
n\k    1    2     3     4     5     6     7     8
-------------------------------------------------
2:     6;
3:    10,  15;
4:    14,  21,   35;
5:    22,  33,   55,   77;
6:    26,  39,   65,   91,  143;
7:    34,  51,   85,  119,  187,  221;
8:    38,  57,   95,  133,  209,  247,  323;
9:    46,  69,  115,  161,  253,  299,  391,  437;

Lemma A5: 

T(n, k) = prime(k) × prime(n), n > 2, k < n implies q < p₂.

Proof. Aside from s = T(2, 1) = 6, q < p₂, since even s implies q = 3 
and odd s implies q = 2, but p₂ = prime(n) > q in both cases. ∎
This is tantamount to saying that A100484(n) > 6 implies q < p₂.

Lemma A6. The inequality q < p₂ is preserved for the following in-
finite sequences:

{ T(n, k) × Q : n > 2, ∀ p+ | Q , p+ ≥ prime(n) } → q < p₂.

Proof. Consequence of p₂ = prime(n) < p+. The factor Q is a prod-
uct of primes larger than p₂ = prime(n) and presents no impact on 
the fact that q < p₂. ∎
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Lemma A7. a(n) = prime(j) for j > 2 and for the following k-coreg-
ular sequence:

{ k = m × T(j, k) × Q : 
rad(m) | T(j, k), 
∀ p+ | Q , p+ ≥ prime(j) }.	 [1.7]

Proof. Consequence of Lemmas A3, A4, and A5. 
However, we explore the case of prime m = p such that p < prime(j) 
and p ≠ prime(k). Suppose m > q. Then a(n) = p₂ = p and we have a 
number in the form of Lemma A5 instead for j = π(p). It is clear that 
m = 5, or any product that yields P(i) for i > 2 gives us a number of 
the form shown by Lemma A4.  ∎

It is clear we may rewrite the formula shown in Lemma A7 thus:

	 { k = m × d × Q : rad(m) | d, ∀ q | Q , q ≥ prime(j–1) } 
	 for d | P(j) : ω(d) = 2, prime(j–1) | d.	 [1.8]

Theorem A assembles Lemmas A1-A7.
a(n) = 2 for n that are powers of odd primes.
a(n) = 3 for n > 1 that are powers of 2.
a(n) = prime(j) for j > 2 and for both of the following:

{ k = m × P(j–1) × Q : rad(m) | P(j–1),
∀ p+ | Q , p+ > prime(j) }, and

{ k = m × d × Q : rad(m) | d, ∀ q | Q , q ≥ prime(j–1) } 
for d | P(j) : ω(d) = 2, prime(j–1) | d.

Corollary A8. a(n) < 5 for n ∈ A961.

Corollary A9. a(n) ≥ 5 for n ∈ A024619.

Corollary A10. A3557(n) > a(n) ≥ 5 for n ∈ A361098.

Conclusion.
We have shown that V0223(n) = 2 for odd prime powers n, V0223(n) 
= 3 for n that are powers of 2, and exceeds 3 for numbers that are not 
prime powers. Among numbers that are not prime powers, we see 
that A3557(n) > a(n) ≥ 5 for n ∈ A361098. ••••

Concerns Sequences:
A000079, A000224, A000961, A002110, A003557, A006530, A006881, 
A007947, A024619, A053669, A061345, A100484, A119288, A126706, 
A339116, A361098, A364997, A364998, A364999, A369690. [1]

(V7, V9, V74, V75, V76, V77, V0103, V0109, V0111, V0119, V0220, 
V0222, V0223, V0401, V0402, V0612, V1002, V1003.)
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Code:

[c1]	Generate 2¹⁴ terms of V0223:
v0223 = {2}~Join~Array[
 If[PrimePowerQ[#],
   q = 2; While[Divisible[#, q], q = NextPrime[q]]; q,
   q = 2; While[Divisible[#, q], q = NextPrime[q]]; 
     Max[FactorInteger[#][[2, 1]], q]] &, 2^14, 2] ];

Figure 1: Log log scatterplot of V0223(n), n = 1…2²⁰.


