OEIS A334468

by Michael Thomas De Vlieger, St. Louis, Missouri. 2020 0501, modified 0505.

Introduction:

Consider OEIS A217287, length of a chain of consecutive integers starting with n, where each new integer in the chain has a prime factor q which no previous member in the chain has. In other words, starting from n, we consider the length wherein we encounter ensuing numbers n + 1, n + 2, …, n + − 1 whose prime decomposition introduces novel distinct primes q to a set of distinct prime divisors p of all such numbers encountered hitherto.

For example, we start with n = 1, which has no prime divisors (empty product). For n = 2, we introduce the factor 2. For n = 3, we introduce 3; these two are both prime; when we introduce a prime, we introduce a new prime factor q, thus, the chain lengthens. When we reach a perfect prime power, like n = 4 = 2², the chain terminates. Thus,(1) = 3.

Since n = 4 serves as the very same obstruction starting from n = 2,(2) = 2.

Beginning with n = 3, the number 4 introduces the factor 2 and does not obstruct, admtting access to 5, with 6 serving as the obstruction, thus(3) = 3, etc.

We can generate A217287 using Code 1.3, via encoding n as A087207(n) through Code 1.1, with a second but less efficient method Code 1.2.

Figure 1 below plots (n, (n)).

Tony Noe observed the following:

1.(n) ≥ 2.
2. If n < 2 is prime or a prime power,(n) ≥ 3.
3. For any n > 1, k > 1,(nkn) ≤ n.

Neil Sloane added that(n) = least k > 0 such that n + k is k-smooth, i.e., that has no prime divisor q > k.

We observe additionally that (2k − 2) = 2, since 2k − 2 is even, and the distinct prime divisor of 2k is 2, which does not contribute new primes to the set of distinct prime factors of the chain that starts with 2k − 2. Therefore we have minima at {2, 6, 14, 30, 62, 126, 254, 510, …}, i.e., terms in A000918.

Maxima are {3, 4, 5, 8, 9, 11, 14, 18, 19, 20, 22, 25, 30, 32, …} in A217288, their indices {1, 4, 7, 16, 36, 79, 106, 222, 456, 460, 650, 1046, 1090, 2110, 2205, 2302, 3455, …} in A217289. We can compute the former via Code 1.4, the latter by Code 1.5.

We also note in Figure 1 the jumping of (n) to a number only for the function to decrement strictly to a point and pop again.

Let's look at numbers m in the chains starting from n as set out by A217287. These m are listed in row n of the irregular triangle T(n, k) at A217438. We note that T(n, 1) = n and row n has length (n).

Triangle begins:
1  2  3
   2  3
      3  4  5
         4  5  6  7
            5  6  7
               6  7
                  7  8  9  10  11
                     8  9  10  11
                        9  10  11
                           10  11  12  13  14
                               11  12  13  14  15
                                   12  13  14  15
                                       13  14  15
                                           14  15
                                               15  16  17
                                               ...

We note the zig-zag or stair step pattern toward the upper right of the line (n, n).

Figure 2 below justifies the plot in Figure 1, placing (n) “on” pixels starting from pixel (n, n) to produce a raster. In other words, we plot numbers m in rows n of irregular triangle A217438 in black, with all other pixels left blank:

In the image we see the “obstructions” that appear as vertical borders of “on” pixels to the left, the first white pixel of the field to the right. This is the sequence s = {4, 6, 8, 12, 15, 16, 18, 24, 27, 30, 32, 36, 40, 45, …}. We see similar vertical “breakthroughs” where beginning from n allows a row of “on” pixels to stream past a previous barrier. These appear as horizontal borders of field above “on” pixels. The sequence of these is t = {3, 4, 7, 10, 11, 15, 16, 22, 25, 26, 31, 34, 36, …}. We note that s contains no prime number, since primes always admit a novel prime to the common set. The sequence t does admit primes, and seems sensitive instead to a number recently dropped. Perhaps t ought to instead be t – 1, since that is the number recently dropped by incrementing of n.

Figure 3 screens back the plot of A217438 in light gray, showing columns in s adjacent to terms in A217438 in red:


We propose a sequence s(n) = A334468(n) = primitive terms that are smallest numbers m = n +(i) that are (i)-smooth. In other words, if m is the last number in row n of A217438, s(n) lists in order any m + 1. Thus, s(n) constitutes a sequence of the “obstructions” mentioned in the examples above. The red pixels occur at (A334468(n), y). This sequence is generated by Code 1.6. All terms in this sequence are composite, since prime q always admits a novel prime (i.e., q) to the chain described above and at A217287.

Figure 4 again screens back the plot of Figure 2 in light gray, accentuating rows in t that are not adjacent to terms T(n − 1, k) in red, retaining the red-highlighted pixels of Figure 3 instead in yellow for comparison:

A second sequence t(n) = A334469(n) addresses the horizontal rows that include blue pixels at (x, A334469(n)). The sequence A334469(n) then is simply the indices of first differences d ≥ 0 of (n) (see Code 1.8). We may generate this sequence via Code 1.7 or Code 1.9.

Using Code 1.3 to generate over 222 terms of (i) (4323295 to be exact), we can produce 36960 terms of s(n). Taking first differences of s(n) to obtain u(n) = {4, 2, 2, 4, 3, 1, 2, 6, 3, 3, 2, 4, 4, 5, 3, 6, 6, …}. Define v(n) as maxima of u(n):

4, 6, 9, 12, 14, 16, 20, 24, 36, 42, 48, 51, 52, 55, 72, 75, 82, 84, 85, 86, 89, 92, 94, 104, 115, 117, 120, 133, 142, 144, 158, 162, 180, 195, 198, 204, ...

Define w(n) as least indices of the maxima of u(n):

1, 8, 25, 30, 54, 102, 166, 187, 287, 791, 1264, 1580, 2126, 2174, 2502, 4049, 6102, 6738, 9370, 9739, 10136, 10446, 10466, 10844, 12985, 20968, 24310, 27115, 31322, 36448, 42743, 45714, 56259, 60960, 107999, 108395, ...

Examining the prime decomposition of terms m in s(n), we note that all are composites with relatively small prime factors p. We define π(gpf(s(n))) as the sequence A333518(n) of indices of the greatest prime factors of s(n). The following table shows the smallest term s(j) with greatest prime factor p(i), i.e., A333518(j). Here, we define r(i) as the numbers s(j).

   i   p(i)      j   ω   Ω       r(i)
  -----------------------------------
   1     2       1   1   2         4
   2     3       2   2   2         6
   3     5       5   2   2        15
   4     7      18   2   3        63
   5    11      59   3   4       308
   6    13      49   3   4       234
   7    17      68   3   3       374
   8    19      84   2   3       475
   9    23     292   3   5      2392
  10    29     401   2   4      3625
  11    31     518   3   3      4991
  12    37     791   4   4      8547
  13    41     614   3   5      6232
  14    43     615   3   3      6235
  15    47    1153   3   5     13912
  16    53    1221   4   4     14946
  17    59    2654   3   6     39825
  18    61    1220   3   4     14945
  19    67    2646   3   6     39664
  20    71    4965   4   4     87685
  21    73    5499   2   3     99937
  22    79    4931   4   6     86900
  23    83    5879   4   4    108647
  24    89    6994   5   5    135102
  25    97   10109   4   6    214758
  26   101   10444   4   5    223412
  27   103   12322   4   5    274804
  28   107   13343   4   5    304094
  29   109   14088   3   3    325583
  30   113   11256   3   9    245888
  31   127   19523   4   6    488696
  32   131   23472   5   6    614652
  33   137   27295   5   6    741444
  34   139   22588   4   6    586024
  35   149   32147   4   4    908751
  36   151   40572   4   6   1213436
  37   157   41323   4   8   1240928
  38   163   48489   4   5   1515085
  39   167   43924   4   4   1340843
  40   173   68859   4   6   2331175
  41   179   77441   5   5   2692518
  42   181   70471   4   6   2398250
  43   191   61084   5   6   2016196
  44   193   94726   4   6   3449875
  45   197   75033   4   6   2589368
  46   199   94725   4   6   3449864
  47   211   75034   4   7   2589392
  ...

Figure 5 is a logarithmic plot of r(n).

First positions of ω(m) = i distinct prime divisors of m in s generally seems to correspond with primorial P(i) for 2 ≤ i ≤ 7, but notably not i = 5, 2310 is not found in A334468(n) for 1 ≤ n ≤ 113891. Instead, the smallest m with ω(m) = 5 is 2730 = 2 × 3 × 5 × 7 × 13:

1       1        4
2       2        6
3      10       30
4      45      210
5     324     2730
6    2134    30030
7   20224   510510
...

First positions of Ω(m) = i prime divisors with multiplicity of m in s corresponds with powers 2i:

   Ω        i       s(i)
  ---------------------
   2        1         4
   3        3         8
   4        6        16
   5       11        32
   6       19        64
   7       32       128
   8       53       256
   9       91       512
  10      156      1024
  11      260      2048
  12      439      4096
  13      767      8192
  14     1315     16384
  15     2286     32768
  16     3958     65536
  17     6824    131072
  18    11855    262144
  19    20666    524288
  20    36084   1048576
  21    63108   2097152
  22   111111   4194304
  ...

A similar study of the prime decomposition of terms in A334469 doesn't seem to prove as interesting.

Appendix.

Code 1.1: Binary encoding b(n) = A087207(n). This sums the mappings 2(π(p) − 1) across primes p | n:

Array[If[# == 1, 0,
  Total[2^(PrimePi /@ FactorInteger[#][[All, 1]] - 1)]] &, 120]

Code 1.2: Binary encoding b(n) = A087207(n). This approach concatenates the bits [p | n] (Iverson brackets) for primes p | n to arrive at a binary number that we convert to decimal:

Block[{nn = 120, r}, r = Prime@ Range[PrimePi@ nn, 1, -1];
  Table[FromDigits[#, 2] &@ Map[Boole[Mod[n, #] == 0] &, r], {n, nn}]]

Code 1.3: Generate (n) = A217287(n):

Block[{nn = 2^8, r},
  r = Array[
    If[# == 1, 0,
      Total[2^(PrimePi /@ FactorInteger[#][[All, 1]] - 1)]] &, nn];
  Array[Block[{k = # + 1, s = r[[#]]},
    While[UnsameQ[s, Set[s, BitOr[s, r[[k]] ] ] ], k++]; k - #] &,
    nn - Ceiling@ Sqrt@ nn] ]

Code 1.4: Records transform of (n) = A217288(n):

Block[{nn = 2^16, r, t},
  r = Array[
    If[# == 1, 0,
      Total[2^(PrimePi /@ FactorInteger[#][[All, 1]] - 1)]] &, nn];
  t = Array[Block[{k = # + 1, s = r[[#]]},
    While[UnsameQ[s, Set[s, BitOr[s, r[[k]] ] ] ], k++]; k - #] &,
    nn - Ceiling@ Sqrt@ nn]
  Map[FirstPosition[t, #][[1]] &, Union@ FoldList[Max, t] ] ]

Code 1.5: Indices of records in (n) = A217289(n):

Block[{nn = 2^8, r},
  r = Array[
    If[# == 1, 0,
      Total[2^(PrimePi /@ FactorInteger[#][[All, 1]] - 1)]] &, nn];
  Array[Block[{k = # + 1, s = r[[#]]},
    While[UnsameQ[s, Set[s, BitOr[s, r[[k]] ] ] ], k++]; k - #] &,
    nn - Ceiling@ Sqrt@ nn] ]

Code 1.6: Generate A334468(n):

Block[{nn = 2^8, r},
  r = Array[
    If[# == 1, 0,
      Total[2^(PrimePi /@ FactorInteger[#][[All, 1]] - 1)]] &, nn];
  Union@ Array[Block[{k = # + 1, s = r[[#]]},
    While[UnsameQ[s, Set[s, BitOr[s, r[[k]] ] ] ], k++]; k] &,
    nn - Ceiling@ Sqrt@ nn] ]

Code 1.7: Generate A334469(n):

Block[{nn = 2^8, r},
  r = Array[
    If[# == 1, 0,
      Total[2^(PrimePi /@ FactorInteger[#][[All, 1]] - 1)]] &, nn];
  1 + Accumulate@ Tally[#][[All, -1]] &@
  Array[Block[{k = # + 1, s = r[[#]]},
    While[UnsameQ[s, Set[s, BitOr[s, r[[k]] ] ] ], k++]; k] &,
    nn - Ceiling@ Sqrt@ nn] ]

Code 1.8: First differences of A217287(n):

Block[{nn = 2^8, r},
  r = Array[
    If[# == 1, 0,
      Total[2^(PrimePi /@ FactorInteger[#][[All, 1]] - 1)]] &, nn];
  Prepend[Differences[#], #[[1]] ] &@
  Array[Block[{k = # + 1, s = r[[#]]},
    While[UnsameQ[s, Set[s, BitOr[s, r[[k]] ] ] ], k++]; k - #] &,
    nn - Ceiling@ Sqrt@ nn] ]

Code 1.9: Generate A334469(n):

Block[{nn = 2^8, r},
  r = Array[
    If[# == 1, 0,
      Total[2^(PrimePi /@ FactorInteger[#][[All, 1]] - 1)]] &, nn];
  Position[Prepend[Differences[#], #[[1]] ], _?(# >= 0 &)][[All, 1]] &@
  Array[Block[{k = # + 1, s = r[[#]]},
    While[UnsameQ[s, Set[s, BitOr[s, r[[k]] ] ] ], k++]; k - #] &,
    nn - Ceiling@ Sqrt@ nn] ]

Concerns sequences:

A000918: 2n − 2, indices of minima (i.e., positions of 2) in A217287.
A087207
: A binary representation of the primes that divide a number, shown in decimal.
A217287: Length of chains of numbers starting with n whose prime divisors divide at least one of the previous numbers in the range.
A217288: Maxima of A217287.
A217289: Indices of maxima of A217287.
A217438: Irregular triangle T(n, k) where row n lists numbers m in the chains described by A217287.
A334468: Primitive terms that are smallest numbers m = n + k that are k-smooth for k in A217287.
A334469: Indices of first differences d of A217287(n) such that d ≥ 0.
A333518: Indices of greatest prime factors of A334468(n).

Document Revision Record.

2020 0501 2200 Created.
2020 0502 1245 Added reference to A217438.
2020 0503 0930 Added gpf and first differences of A334468, maxima of the latter, the least indices of their maxima.
2020 0503 1300 Extended A217287 dataset to over 222 terms, and those of dependent sequences.
2020 0504 1630 Analysis of prime decomposition of m in A334468, A334469.
2020 0505 1430 Add A333518.